• Nenhum resultado encontrado

Após a implementação do trabalho e respetiva validação de forma a comprovar o conceito, pode-se dar por concluída esta dissertação. No entanto, tal como evidenciado anteriormente, nem todas as capacidades do sistema de carregamento rápido foram exploradas, pelo que seguidamente são apresentadas algumas propostas do que pode ainda ser explorado:

 Fazer a validação experimental com baterias, uma vez que não foi possível efetuar testes com as mesmas.

 Efetuar testes com valores de tensão simples (fase-neutro) da rede elétrica maiores, nomeadamente, 115 V.

 Fazer uma análise à influência dos componentes passivos nas técnicas de controlo de correntes utilizadas.

 Uma vez que os conversores implementados podem fazer a transferência de potência de forma bidirecional, podem ser exploradas as capacidades destes para fazer o carregamento das baterias e assim que o seja necessário proceder ao descarregamento destas devolvendo a energia acumulada para a rede.

Referências

[1] M. Yilmaz and P. T. Krein, “Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151–2169, Maio 2013. doi:

10.1109/TPEL.2012.2212917, ISSN: 0885-8993.

[2] Schneider Electric, “EVlink Electric vehicle charging solutions.” p. 68, 2015. [3] C. Botsford and A. Szczepanek, “Fast Charging vs . Slow Charging : Pros and

cons for the New Age of Electric Vehicles,” Stavanger, Norway, 2009.

[4] T. Thiringer, M. Grenier, and M. G. H. Aghdam, “Design of on-board charger for plug-in hybrid electric vehicle,” in 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), 2010, pp. 152–152. doi: 10.1049/cp.2010.0101.

[5] S. Lacroix, E. Laboure, and M. Hilairet, “An integrated fast battery charger for Electric Vehicle,” in 2010 IEEE Vehicle Power and Propulsion Conference, 2010. doi: 10.1109/VPPC.2010.5729063.

[6] B. N. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A Review of Three-Phase Improved Power Quality AC-DC Converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641–660, Junho 2004. doi: 10.1109/TIE.2004.825341, ISSN: 0278-0046.

[7] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, pp. 2151–2169, 2013. doi:

10.1109/TPEL.2012.2212917, ISSN: 08858993.

[8] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Novel power factor correction AC/DC converters with high efficiency based on the forward

topology,” in PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), vol. 2, pp. 1815–1821. doi:

10.1109/PESC.1998.703428.

[9] P. Ide, N. Froehleke, and H. Grotstollen, “Comparison of selected 3-phase switched mode rectifiers,” in Proceedings of Power and Energy Systems in Converging Markets, pp. 630–636. doi: 10.1109/INTLEC.1997.646061. [10] T.-F. Wu and Y.-K. Chen, “Decoding the PWM converters,” in 2014

International Power Electronics and Application Conference and Exposition, 2014, pp. 220–225. doi: 10.1109/PEAC.2014.7037858.

[11] A. Nakajima, S. Motegi, and A. Maeda, “Comparison of the characteristics between buck and buck-boost high-power-factor converters with pulse-space- modulation,” in IECON’99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029), vol. 1, pp. 168– 173. doi: 10.1109/IECON.1999.822191.

[12] A. Hamid and P. Agarwal, “Improved Power Quality AC/DC Converters,” in Power Quality, InTech, 2011. doi: 10.5772/14797.

[13] M. Duvall, “Comparing the Benefits and Impacts of Hybrid Electric Vehicle Options for Compact Sedan and Sport Utility Vehicles,” 2002. doi: 1006892. [14] Mohammad Rhaiz and M. Blackburn, “The History Of Electric,” p. 20, 2014.

[15] C. C. Chan, “The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 704–718, Abril 2007. doi:

10.1109/JPROC.2007.892489, ISSN: 0018-9219.

[16] A. G. Boulanger, A. C. Chu, S. Maxx, and D. L. Waltz, “Vehicle Electrification: Status and Issues,” Proc. IEEE, vol. 99, no. 6, pp. 1116–1138, Junho 2011. doi: 10.1109/JPROC.2011.2112750, ISSN: 0018-9219.

[17] C. C. Chan, “The Rise & Fall of Electric Vehicles in 1828-1930: Lessons Learned,” Proc. IEEE, vol. 101, no. 1, pp. 206–212, Janeiro. 2013. doi: 10.1109/JPROC.2012.2228370, ISSN: 0018-9219.

[18] M. Bellis, “The Early Years, Electric Cars from 1830 to 1930,” History of Electric Vehicles. [Online]. Disponível em:

http://inventors.about.com/od/estartinventions/a/History-Of-Electric- Vehicles.htm.

[19] M. Bellis, “Decline and Rise of Electric Cars from 1930 to 1990,” History of Electric Vehicles. [Online]. Disponível em:

http://inventors.about.com/od/estartinventions/a/Electric-Vehicles.htm.

[20] B. Kramer, S. Chakraborty, and B. Kroposki, “A Review of Plug-in Vehicles and Vehicle-to-Grid Capability,” Proc. - 34th Annu. Conf. IEEE Ind. Electron. Soc. IECON 2008, pp. 2278–2283, 2008. doi: 10.1109/IECON.2008.4758312, ISSN: 1553-572X.

[21] M. . Yoong, Y. . Gan, G. . Gan, C. . Leong, Z. . Phuan, B. . Cheah, and K. . Chew, “Studies of regenerative braking in electric vehicle,” in 2010 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, 2010, no. November, pp. 40–45. doi:

10.1109/STUDENT.2010.5686984.

[22] T. M. Jahns and V. Blasko, “Recent advances in power electronics technology for industrial and traction machine drives,” Proc. IEEE, vol. 89, no. 6, pp. 963– 975, Junho 2001. doi: 10.1109/5.931496, ISSN: 0018-9219.

[23] D. Linden and T. Reddy, “Advanced Batteries for Electric Vehicles and

Emerging Applications - Introduction,” in Handbook of Batteries, 3rd ed., 2002. [24] K. Young, C. Wang, L. Y. Wang, and K. Strunz, “Electric Vehicle Battery

Technologies,” in Electric Vehicle Integration into Modern Power Networks, R. Garcia-Valle and J. A. Peças Lopes, Eds. New York, NY: Springer New York, 2013, pp. 15–56. doi: 10.1007/978-1-4614-0134-6_2.

[25] J. Dixon, “Energy storage for electric vehicles,” in 2010 IEEE International Conference on Industrial Technology, 2010, pp. 20–26. doi:

10.1109/ICIT.2010.5472647.

[26] Toyota, “Catálogo Toyota Prius,” 2015. [Online]. Disponível em:

http://www.toyota.pt/new-cars/prius/Prius-Brochure.json. [Acessado em: 06-Oct- 2015].

[27] Nissan, “E-Catálogo Nissan Leaf,” 2015. [Online]. Disponível em: http://www.nissan.pt/content/dam/services/PT/brochure/E-

Catalago_Leaf_PT.pdf. [Acessado em: 06-Oct-2015].

[28] D. Linden and T. Reddy, “Principles of Operation - Basic Concepts,” in Handbook of Batteries, 3rd ed., 2002.

[29] J. Larminie and J. Lowry, “Batteries,” in Electric Vehicle Technology Explained, Chichester, UK: John Wiley & Sons, Ltd, 2003, pp. 23–67. doi:

10.1002/0470090707.ch2.

[30] INVT, “Bateria de Chumbo-Ácido.” [Online]. Disponível em:

http://img.directindustry.com/images_di/photo-g/lead-acid-battery-power- maintenance-free-emergency-power-supply-69492-3441921.jpg. [Acessado em: 21-Jun-2015].

[31] ALCAD, “Bateria de Níque-Cádmio.” [Online]. Disponível em:

http://img.directindustry.com/images_di/photo-g/ni-cd-battery-power-20330- 2632971.jpg. [Acessado em: 21-Jun-2015].

[32] Panasnic, “Bateria de Níquel-Hidreto-Metálico.” [Online]. Disponível em: http://images.pluginamerica.org/.a/6a0120a635cd9d970c0120a8ce815b970b- pi.jpg. [Acessado em: 21-Jun-2015].

[33] X. Chen, W. Shen, T. T. Vo, Z. Cao, and A. Kapoor, “An overview of lithium- ion batteries for electric vehicles,” in 2012 10th International Power & Energy Conference (IPEC), 2012, pp. 230–235. doi: 10.1109/ASSCC.2012.6523269. [34] Tenergy, “Bateria de Iões de Lítio.” [Online]. Disponível em: http://www.all-

battery.com/productimages/lifepo4/31900-LifePO4-12.8V-20Ah-Battery 1x450.jpg. [Acessado em: 21-Jun-2015].

[35] M. S. Whittingham, “Lithium Batteries and Cathode Materials,” Chem. Rev., vol. 104, no. 10, pp. 4271–4302, Outubro 2004. doi: 10.1021/cr020731c, ISSN: 0009- 2665.

[36] B. C. Ricaud and P. Vollet, “Connection method for charging systems – A key element for electric vehicles,” 2013.

[37] S. Haghbin, K. Khan, S. Lundmark, M. Alakula, O. Carlson, M. Leks, and O. Wallmark, “Integrated chargers for EV’s and PHEV's: examples and new solutions,” in The XIX International Conference on Electrical Machines - ICEM 2010, 2010, pp. 1–6. doi: 10.1109/ICELMACH.2010.5608152.

[38] M. Rawson and S. Kateley, “Electric Vehicle Charging Equipment Design and Health and Safety Codes,” in SAE transactions, 1999, pp. 1–12. doi:

10.4271/1999-01-2941.

[39] SAE International, “SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler.” SAE Standard J1772, 2010.

[40] W. Su, H. Eichi, W. Zeng, and M. Chow, “A Survey on the Electrification of Transportation in a Smart Grid Environment,” IEEE Trans. Ind. Informatics, vol. 8, no. 1, pp. 1–10, Feb. 2012. doi: 10.1109/TII.2011.2172454, ISSN: 1551-3203. [41] Wikipedia, “NEMA connector.” [Online]. Disponível em:

https://en.wikipedia.org/wiki/NEMA_connector. [Acessado em: 28-Sep-2015]. [42] Kevin Morrow, Donald Darner, and James Francfort, “U.S. Department of

Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review,” Novembro 2008. doi: 10.2172/946853.

[43] D. P. Tuttle and R. Baldick, “The Evolution of Plug-In Electric Vehicle-Grid Interactions,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 500–505, Março. 2012. doi: 10.1109/TSG.2011.2168430, ISSN: 1949-3053.

[44] P. Dost, A. Bouabana, and C. Sourkounis, “On analysis of electric vehicles DC- quick-chargers based on the CHAdeMO protocol regarding the connected systems and security behaviour,” in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 2014, pp. 4492–4497. doi:

10.1109/IECON.2014.7049179.

[45] National Renewable Energy Laboratory, “Plug-In Electric Vehicle Handbook for Public Charging Station Hosts,” Golden, Colorado, 2012. doi: DOE/GO-102012- 3257.

[46] T. Brown, J. Mikulin, N. Rhazi, J. Seel, M. Zimring, D. M. Kammen, F. Advisor, and E. Bardach, “Bay Area Electrified Vehicle Charging Infrastructure : Options for Accelerating Consumer Access,” University of California, Berkeley, 2010. [47] EMSD, “Technical Guidelines on Charging Facilities for Electric Vehicles.”

Electrical and Mechanical Services Department, Hong Kong, pp. 1–16, 2015. [48] IEC International Standard, “Plugs, socket-outlets, vehicle couplers and vehicle

inlets – Conductive charging of electric vehicles – Part 1: Charging of electric vehicles up to 250 A a.c. and 400 A d.c.,” in IEC 62196-1, 2003, p. 78.

[49] WorldStandards, “Power plug & outlet Type F,” 2015. [Online]. Disponível em: http://www.worldstandards.eu/electricity/plugs-and-sockets/f/. [Acessado em: 29-Sep-2015].

[50] Magnum Cap, “MCR63 Charger - Electric Vehicle Charging for service stations, parks and workshops fleets of electric vehicles.” [Online]. Disponível em: http://magnumcap.com/index.php/solutions/emobility?id=76. [Acessado em: 30- Sep-2015].

[51] Magnum Cap, “Magnum Cap MCR63.” [Online]. Disponível em:

http://magnumcap.com/images/products/mcr63_big.jpg. [Acessado em: 26-Jun- 2015].

[52] Efacec, “Quem Somos?” [Online]. Disponível em:

http://www.efacec.pt/PresentationLayer/efacec_ctexto_00.aspx?idioma=1&local =5&area=1. [Acessado em: 30-Sep-2015].

[53] Efacec, “Veículos Eléctricos,” 2010. [Online]. Disponível em:

http://www.efacec.pt/PresentationLayer/efacec_projecto_00.aspx?idioma=1&are a=2&competenciaid=49&projectoid=252. [Acessado em: 30-Sep-2015].

[54] Efacec, “Quick CHarge Station QC45.” Portfolio of Products, pp. 1–2. [55] Efacec, “Efacec QC45.” [Online]. Disponível em:

http://electricmobility.efacec.com/wp-content/uploads/2015/06/QC45.png. [Acessado em: 26-Jun-2015].

[56] ABB, “Quem Somos - História.” [Online]. Disponível em:

http://new.abb.com/pt/sobre-nos/quem-somos/historia. [Acessado em: 30-Sep- 2015].

[57] ABB EV Charging Infrastructure, “Electric Vehicle Charging Infrastructure Terra 51 Charge Station.” pp. 1–2, 2011.

[58] ABB, “ABB Terra 53.” [Online]. Disponível em: http://blog.e-stations.de/wp- content/uploads/sites/7/2015/03/ABB-Stationen.jpg. [Acessado em: 26-Jun- 2015].

[59] Schneider Electric, “Quem Somos.” [Online]. Disponível em:

http://www.schneiderelectric.pt/sites/portugal/pt/empresa/perfil/quem- somos/quem-somos.page. [Acessado em: 01-Oct-2015].

[60] Schneider Electric, “Schneider Electric EVlink Fast Charge.” [Online]. Disponível em: http://www.schneider-electric.com/en/product-image/206228- evlink-fast-charge-solution. [Acessado em: 26-Jun-2015].

[61] Schneider Electric, “EVlink Fast Charge Solution.” [Online]. Disponível em: http://www.schneider-electric.com/en/product-range/60852-evlink-fast-charge- solution/?parent-subcategory-id=1830. [Acessado em: 01-Oct-2015].

[62] A. H. Bhat and P. Agarwal, “Three-phase, power quality improvement ac/dc converters,” Electr. Power Syst. Res., vol. 78, no. 2, pp. 276–289, Feb. 2008. doi: 10.1016/j.epsr.2007.02.002, ISSN: 0378-7796.

[63] S. Srivastava and S. Kumar, “Comparative Analysis of Improved Quality Three Phase AC / DC Boost Converters , using SIMULINK,” Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 9, pp. 2–7, 2012, ISSN: 2250-2459.

[64] J. Minbock and J. W. Kolar, “Design and experimental investigation of a single- switch three-phase flyback-derived power factor corrector,” in INTELEC. Twenty-Second International Telecommunications Energy Conference (Cat. No.00CH37131), 2000, pp. 471–478. doi: 10.1109/INTLEC.2000.884291. [65] E. Vuthchhay and C. Bunlaksananusorn, “Modeling and control of a Zeta

converter,” in The 2010 International Power Electronics Conference - ECCE ASIA -, 2010, pp. 612–619. doi: 10.1109/IPEC.2010.5543332.

[66] J. A. Pomilio and G. Spiazzi, “High-precision current source using low-loss, single-switch, three-phase AC/DC converter,” IEEE Trans. Power Electron., vol. 11, no. 4, pp. 561–566, Julho 1996. doi: 10.1109/63.506121, ISSN: 08858993. [67] D. C. Martins, A. H. de Oliveria, and I. Barbi, “Three-phase rectifier using a

Sepic DC-DC converter in continuous conduction mode for power factor correction,” in INTELEC - Twentieth International Telecommunications Energy Conference (Cat. No.98CH36263), 1998, no. I, pp. 491–497. doi:

10.1109/INTLEC.1998.793580.

[68] R. Zhang and F. C. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC rectifier,” in Proceedings of APEC 97 - Applied Power Electronics

Conference, vol. 2, pp. 895–901. doi: 10.1109/APEC.1997.575751.

[69] G. Spiazzi and F. C. Lee, “Implementation of single-phase boost power-factor- correction circuits in three-phase applications,” IEEE Trans. Ind. Electron., vol. 44, no. 3, pp. 365–371, Junho 1997. doi: 10.1109/41.585834, ISSN: 02780046. [70] Gi-Taek Kim and T. A. Lipo, “VSI-PWM rectifier/inverter system with a

reduced switch count,” in IAS ’95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting, 1996, vol. 3, no. 6, pp. 2327–2332. doi: 10.1109/IAS.1995.530598.

[71] B. T. Ooi, J. W. Dixon, A. B. Kulkarni, and M. Nishimoto, “An integrated AC drive system using a controlled-current PWM rectifier/inverter link,” IEEE Trans. Power Electron., vol. 3, no. 1, pp. 64–71, Janeiro. 1988. doi:

10.1109/63.4332, ISSN: 0885-8993.

[72] Hengchun Mao, C. Y. Lee, D. Boroyevich, and S. Hiti, “Review of high- performance three-phase power-factor correction circuits,” IEEE Trans. Ind.

Electron., vol. 44, no. 4, pp. 437–446, 1997. doi: 10.1109/41.605616, ISSN: 02780046.

[73] Jih-Sheng Lai and Fang Zheng Peng, “Multilevel converters-a new breed of power converters,” IEEE Trans. Ind. Appl., vol. 32, no. 3, pp. 509–517, 1996. doi: 10.1109/28.502161, ISSN: 00939994.

[74] H. Pouliquen, “Control of a single-switch three-phase rectifier operating in continuous conduction mode,” in Proceedings of 5th International Conference on Power Electronics and Variable-Speed Drives, 1994, vol. 1994, no. 399, pp. 301–306. doi: 10.1049/cp:19940981.

[75] Y. Nishida, “A new simple topology for three-phase buck-mode PFC rectifier,” in Proceedings of Applied Power Electronics Conference. APEC ’96, 1996, vol. 2, pp. 531–537. doi: 10.1109/APEC.1996.500493.

[76] B. W. Williams, M. Mirkazemi-Moud, D. Tooth, and S. J. Finney, “A three- phase AC to DC converter with controllable displacement factor,” in Proceedings of PESC ’95 - Power Electronics Specialist Conference, 1995, vol. 2, pp. 996– 1000. doi: 10.1109/PESC.1995.474937.

[77] K. Wang, D. Boroyevich, and F. C. Lee, “Charge control of three-phase buck PWM rectifiers,” in APEC 2000. Fifteenth Annual IEEE Applied Power

Electronics Conference and Exposition (Cat. No.00CH37058), 2000, vol. 2, pp. 824–831. doi: 10.1109/APEC.2000.822600.

[78] D. C. Katsis and F. C. Lee, “A single switch buck converter for hybrid electric vehicle generators,” in Power Electronics in Transportation, 1996, pp. 117–124. doi: 10.1109/PET.1996.565919.

[79] M. Hombu, S. Ueda, and A. Ueda, “A Current Source GTO Inverter with Sinusoidal Inputs and Outputs,” IEEE Trans. Ind. Appl., vol. IA-23, no. 2, pp. 247–255, Março. 1987. doi: 10.1109/TIA.1987.4504899, ISSN: 0093-9994. [80] Dong-Choon Lee, Dong-Hee Kim, and Dae-Woong Chung, “Control of PWM

current source converter and inverter system for high performance induction motor drives,” in Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation, vol. 2, pp. 1100–1105. doi: 10.1109/IECON.1996.566032.

[81] L. S. Slazar, F. H. Zapata, and E. F. Wiechmann, “Analysis, design and experimental evaluation of a four-pole PWM rectifier using space vector modulation,” in PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972, 1997, vol. 1, pp. 484–490. doi: 10.1109/PESC.1997.616767.

[82] H. F. Bilgin, K. N. Kose, G. Zenginobuz, M. Ermis, E. Nalcaci, I. Cadirci, and H. Kose, “A unity power factor buck type PWM rectifier for medium/high power DC motor drive applications,” in Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), vol. 1, pp. 331–341. doi: 10.1109/IAS.2001.955436.

[83] J. W. Kolar and F. C. Zach, “Direct three-phase single-stage flyback-type power factor corrector,” Electron. Lett., vol. 34, no. 12, p. 1177, 1998. doi:

10.1049/el:19980891, ISSN: 0013-5194.

[84] D. C. Martins and M. M. Casaro, “Isolated three-phase rectifier with high power factor using the Zeta converter in continuous conduction mode,” IEEE Trans.

Circuits Syst. I Fundam. Theory Appl., vol. 48, no. 1, pp. 74–80, 2001. doi: 10.1109/81.903189, ISSN: 1057-7122.

[85] J. B. Ejea, E. Sanchis, A. Ferreres, J. A. Carrasco, and R. de la Calle, “High- frequency bi-directional three-phase rectifier based on a matrix converter topology with power factor correction,” in APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181), 2001, vol. 2, no. 2, pp. 828–834. doi: 10.1109/APEC.2001.912465.

[86] L. G. Barbosa Rolim, D. Rodrigues da CostaJr., and M. Aredes, “Analysis and Software Implementation of a Robust Synchronizing PLL Circuit Based on the pq Theory,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1919–1926,

Dezembro 2006. doi: 10.1109/TIE.2006.885483, ISSN: 0278-0046.

[87] M. Parvez, S. Mekhilef, N. M. L. Tan, and H. Akagi, “Model predictive control of a bidirectional AC-DC converter for V2G and G2V applications in electric vehicle battery charger,” in 2014 IEEE Transportation Electrification Conference and Expo (ITEC), 2014, pp. 1–6. doi: 10.1109/ITEC.2014.6861795.

[88] M. A. Boost and P. D. Ziogas, “State-of-the-art carrier PWM techniques: a critical evaluation,” IEEE Trans. Ind. Appl., vol. 24, no. 2, pp. 271–280, 1988. doi: 10.1109/28.2867, ISSN: 00939994.

[89] Z. M. Salameh, M. A. Casacca, and W. A. Lynch, “A mathematical model for lead-acid batteries,” IEEE Trans. Energy Convers., vol. 7, no. 1, pp. 93–98, Mar. 1992. doi: 10.1109/60.124547, ISSN: 08858969.

[90] Power Mobility, “WCG-U1.” [Online]. Disponível em:

http://www.powerfactorinc.net/Batteries/wcgu1.htm. [Acessado em: 06-Oct- 2015].

[91] B. G. Kim, F. P. Tredeau, and Z. M. Salameh, “Fast chargeability lithium polymer batteries,” in 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1–5. doi: 10.1109/PES.2008.4596431.

[92] Chih-Chiang Hua and Meng-Yu Lin, “A study of charging control of lead-acid battery for electric vehicles,” in ISIE’2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543), vol. 1, pp. 135–140. doi: 10.1109/ISIE.2000.930500.

[93] SEMIKRON, “SKM100GB125DN.” [Online]. Disponível em:

http://www.semikron.com/dl/service-support/downloads/download/semikron- datasheet-skm100gb125dn-21915390.pdf.

[94] SEMIKRON, “IGBT SKM100GB125DN.” [Online]. Disponível em: http://img- asia.electrocomponents.com/largeimages/F4682410-01.jpg. [Acessado em: 23- Sep-2015].

[95] “Condensador Snubber.” [Online]. Disponível em: http://img-

europe.electrocomponents.com/largeimages/R0334811-01.jpg. [Acessado em: 23-Sep-2015].

[96] EPCOS, “Datasheet EPCOS Film Snubber Capacitors.” [Online]. Disponível em: http://www.cpcares.com/pdf/1928.pdf. [Acessado em: 21-Sep-2015].

[97] Panasonic, “Datasheet Aluminum Electrolytic Capacitors - Snap-in Type,” 2006. [Online]. Disponível em: http://uk.farnell.com/panasonic-electronic-

components/eetuq2w561da/cap-alu-elec-560uf-450v-snap-in/dp/1198690. [Acessado em: 21-Sep-2015].

[98] SEMIKRON, “Datasheet SKHI 22 A / B H4 (R).” [Online]. Disponível em: http://www.semikron.com/dl/service-support/downloads/download/semikron- datasheet-skhi-22-a-b-h4-r-l5012522.pdf.

[99] Traco Power, “Enclosed Power Supplies, TXL series,” June, 2013. [Online]. Disponível em: http://www.farnell.com/datasheets/1723810.pdf. [Acessado em: 25-Sep-2015].

[100] ChenYang, “Hall Effect Voltage Sensor CYHVS5-25A.” [Online]. Disponível em: http://www.cy-sensors.com/CYHVS5-25A.pdf.

[101] LEM, “Current Transducer LA 200-SD / SP3 Electrical data.” [Online]. Disponível em: http://www.lem.com/docs/products/la_100-p.pdf.

[102] Texas Instruments, “TMS320F28335 - Data Manual.” [Online]. Disponível em: http://www.ti.com/lit/ds/symlink/tms320f28335.pdf.

[103] Texas Instruments, “DSC TMS320F28335.” [Online]. Disponível em: http://img- europe.electrocomponents.com/largeimages/F7094355-01.jpg. [Acessado em: 23-Sep-2015].

[104] Texas Instruments, “TMS320C2000 TM Experimenter Kit Overview,” 2011. [Online]. Disponível em: http://www.ti.com/lit/ug/sprufr5f/sprufr5f.pdf. [Acessado em: 25-Sep-2015].

[105] Texas Instruments, “Datasheet DAC TLV5610,” 2008. [Online]. Disponível em: http://www.ti.com/lit/ds/symlink/tlv5610.pdf. [Acessado em: 21-Sep-2015]. [106] Porto Editora, “Passivação,” Lingua Portuguesa com Acordo Ortográfico.

[Online]. Disponível em: http://www.infopedia.pt/$passivacao. [Acessado em: 01-Oct-2015].