• Nenhum resultado encontrado

General Relativistic Anisotropic Hydrostatic Equilibrium Equations for a Magnetized Compact

N/A
N/A
Protected

Academic year: 2023

Share "General Relativistic Anisotropic Hydrostatic Equilibrium Equations for a Magnetized Compact"

Copied!
24
0
0

Texto

(1)

General Relativistic Anisotropic Hydrostatic Equilibrium Equations for a Magnetized Compact

Object

Daryel Manreza Paret,1 Aurora P ´erez Mart´ınez2 Jorge Horvath3

1Universidad de la Habana, Facultad de F´ısica

2ICIMAF

3IAG/USP

October 1, 2013

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 1 / 24

(2)

Outline

1 Introduction.

2 TOV equation.

3 Pressures anisotropy due to a magnetic field.

4 Cylindrical coordinates.

5 Hydrostatic Equilibrium Equations for a Magnetized CO.

Numerical solution

6 Conclusions.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 2 / 24

(3)

Introduction

1. M

M.8 WD

e−

e−

e− e−

e−

e−

e−

e−

M M>8

NS

u

u

s s

d d

d d

?

n

n n

n n

n n

M

M>20 BH

Figure:Diagram of the final state of stars.

Figure:Sirius A and B (Hubble telescope).

Figure:Crab nebula (Hubble and Chandra).

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 3 / 24

(4)

Introduction

Neutron Stars. Quark Stars?

M∼1.4M R∼12 km

ρ∼1014g/cm3 B ∼1013−1015G

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 4 / 24

(5)

Introduction

Mass–Radius relation Measurements of the masses or radii of CO can strongly constrain the neutron star matter equation of state and rule out theoretical models of their composition.

The observed range of neutron star masses, however, has hitherto been too narrow to rule out many predictions of exotic non-nucleonic

components. Figure:Mass–Radius diagram.

P. Demorest, T. Pennucci, S. Ransom, M. Roberts and J. Hessels, Nature467, 1081 (2010)

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 5 / 24

(6)

TOV equation

To found the static structure of a relativistic spherical star we most solve the Einstein’s equation

Gµν≡Rµν−1

2Rgµν = 8πGTµν, (1) (µ, ν= 0,1,2,3), using the Schwarzschild metric

ds2=−edt2+edr2+r2dΩ2, dΩ2=dθ2+ sin2φdφ2, (2) and the energy momentum tensor

Tµν = (+P)uµuν+P gµν, (3) we obtain the TOV equations

dM

dr = 4πG, dP

dr = −G(+P)(M+ 4πPr3) r2−2rM , with boundary conditionsP(R) = 0,M(0) = 0.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 6 / 24

(7)

Pressures anisotropy due to a magnetic field

A magnetic field breaks the spherical symmetry and produce an anisotropy in the pressures inside the object.

NE

d u s

d

u s u s

d

B

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 7 / 24

(8)

Pressures anisotropy due to a magnetic field

Magnetized Fermion Gas

The thermodynamical potential in the framework of the MIT Bag Model is given by:

i,vi, T) =− diT (2π)3

Z

p

[ln[1 + exp{−Ep,in,η−µi T }]d3p], where,

Ep,in,η= q

p2z+p2+m2i, p2=m2i{( sB

Bic

(2n+ 1−η) + 1−ηyiB)2−1},

i=e, u, d, s,Bic=m2i/|ei|is the critical magnetic field,yi=|Qi|/mi accounts for the AMM andη=±1correspond to the orientations of the particle

magnetic moment, parallel or antiparallel to the magnetic field. Parameters de= 1anddu,d,s= 3are degeneracy factors.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 8 / 24

(9)

Pressures anisotropy due to a magnetic field

Magnetized Fermion Gas

For degenerate magnetized strange quark matter, the number density, energy density and pressures are given by the expressions:

N =−X

i

∂Ωi,v

∂µi

=X

i

Ni0 B Bic

nimax

X

n

X

η=±1

pηF,i,

ε= Ω +µN =BX

i

M0i nimax

X

n

X

η=±1

xipηF,i+hηi2lnxi+pηF,i hηi

! ,

Pk=−Ω =BX

i

M0i nimax

X

n

X

η=±1

xipηF,i−hηi2lnxi+pηF,i hηi

! ,

P=−Ω− MB=BX

i

M0i nimax

X

n

X

η=±1

2hηiγiηlnxi+pηF,i hηi

! ,

The sum over the Landau levelsnis up to nimax=I

(xi+ηyiB)2−1

Bic/(2B)

,whereI[z]denotes the integer part of z.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 9 / 24

(10)

Pressures anisotropy due to a magnetic field

Magnetized Fermion Gas

We have defined the dimensionless quantities:

M0i = eidim2i

2 , Ni0=dim3i

2 , xii/mi pηF,i =

q

x2i −hηi 2, hηi = sB

Bic(2n+ 1−η) + 1−ηyiB γiη = B(2n+ 1−η)

2Bicp

(2n+ 1−η)B/Bci + 1−ηyiB,

wherexiis the dimensionless chemical potential,pF,icorresponds to the modified Fermi momentum due to the magnetic field andhηi corresponds to the magnetic mass.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 10 / 24

(11)

Pressures anisotropy due to a magnetic field

MIT Bag model for SQM

In order to study the matter inside the star we use the MIT Bag model.The stelar equilibrium conditions are then determined by the following relations:

d↔u+e+ ¯νe s↔u+e+ ¯νe u+s↔d+u So that we have to solve the system of equations

µue−µd= 0, µd−µs = 0 βequilibrium 2nu−nd−ns−3ne = 0 charge neutrality

nu+nd+ns−3nB = 0 baryon number conservation.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 11 / 24

(12)

Pressures anisotropy due to a magnetic field

MIT Bag model for SQM

3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0

1 4 0 P B = 5 ×1 0 1 8 G

P B = 5 ×1 0 1 8 G P B = 1 ×1 0 1 6 G P B = 1 ×1 0 1 6 G

P [MeV fm-3 ]

ε [ M e V f m - 3] B b a g= 7 5 M e V f m - 3 Figure:Equations of state for magnetized strange quark matter.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 12 / 24

(13)

Pressures anisotropy due to a magnetic field

MIT Bag model for SQM

1 E 1 7 1 E 1 8 1 E 1 9

1 1 0 1 1 5 1 2 0 1 2 5 1 3 0 1 3 5

P P 

P [MeV fm-3 ]

B [ G ]

B b a g= 7 5 M e V f m - 3

Figure:Dependence of the pressures whit respect to the magnetic field.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 13 / 24

(14)

Pressures anisotropy due to a magnetic field

MIT Bag model for SQM

4 5 6 7 8 9 1 0

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8

P B = 5 × 1 0 1 8 G P B = 5 × 1 0 1 8 G P B = 1 ×1 0 1 6 G P B = 1 ×1 0 1 6 G

M/M

R [ k m ] B b a g= 7 5 M e V f m - 3

Figure:Mass-Radius diagram comparing the effects of taking parallel or perpendicular pressure.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 14 / 24

(15)

Cylindrical symmetry

For the study of the impact of pressures anisotropies in the structure of magnetized stars we will use the cylindrically symmetric metric

ds2=−edt2+edr2+r22+edz2 (5) whereΦ,Λ,Ω, andΨare functions ofronly.

With this metric we have for the nonzero Einstein tensor components Gtt = e−2Λ00+ Ψ02−Ψ0Λ0−1

0+1 rΨ0) Grr = e−2Λ0Φ0+1

0+1 rΨ0)

Gφφ = e−2Λ00+ Φ02−Φ0Λ0+ Ψ00+ Ψ02−Ψ0Λ0+ Ψ0Φ0) Gzz = e−2Λ00+ Φ02−Φ0Λ0−1

0+1 rΦ0)

C. S. Trendafilova and S. A. Fulling, “Static solutions of Einstein’s equations with cylindrical symmetry,” Eur. J. Phys.32, 1663 (2011) [arXiv:1101.4668 [gr-qc]].

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 15 / 24

(16)

Cylindrical symmetry

Energy momentum tensor for magnetized mater is

Tµν=

0 0 0

0 P 0 0 0 0 P 0 0 0 0 Pk

. (6)

From the Einstein field equations in natural units we get the following four differential equations:

4π = −e−2Λ00+ Ψ02−Ψ0Λ0−1 rΛ0+1

0) 4πP = e−2Λ0Φ0+1

0+1 rΨ0)

4πP = e−2Λ00+ Φ02−Φ0Λ0+ Ψ00+ Ψ02−Ψ0Λ0+ Ψ0Φ0) 4πPk = e−2Λ00+ Φ02−Φ0Λ0−1

0+1 rΦ0)

R. G. Felipe, H. J. Mosquera Cuesta, A. Perez Martinez and H. Perez Rojas, “Quantum instability of magnetized stellar objects,” Chin. J. Astron. Astrophys.5, 399 (2005) [astro-ph/0207150].

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 16 / 24

(17)

Hydrostatic Equilibrium Equations for a Magnetized CO

By doing some algebra with the previous system of equation we get

P0 = −Φ0(+P)−Ψ0(P−Pk) 4πe(+Pk+ 2P) = Φ00+ Φ00+ Φ0−Λ0) +Φ0

r 4πe(+Pk−2P) = −Ψ00−Ψ00+ Φ0−Λ0)−Ψ0

r 4πe(Pk−) = 1

r(Ψ0+ Φ0−Λ0) This is a system of differential equations in the variables

P, Φ, Λ, Ψ, (7)

provided the equations of state

→f(P), Pk→f() (8) andinitial conditions.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 17 / 24

(18)

Hydrostatic Equilibrium Equations for a Magnetized CO

Initial conditions

Since the differential equations involve factors of1/rwe will make power series expansions ofp,Φ,Ψ, andΛaroundr= 0to find initial condition suitable for numeric calculation

P = P⊥0+P⊥1r, (9)

Λ = Λ0+ Λ1r, (10)

Φ = Φ0+ Φ1r+ Φ2r2, (11) Ψ = Ψ0+ Ψ1r+ Ψ2r2. (12) We take also

Ψ = Φ = Λ = 0atr= 0so that the corresponding metric coefficients are equal to1at that point.

Ψ0 = Φ0 = 0to get smooth solutions at the axis.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 18 / 24

(19)

Hydrostatic Equilibrium Equations for a Magnetized CO

Initial conditions

By substitution of these conditions in the system of differential equations we find

P(0) = P⊥0 Λ(0) = 0 Φ(0) = 1

2(Pk0+ 2P⊥0+0)(r02−2r0) Ψ(0) = 1

2(−Pk0+ 2P⊥00)(r20−2r0) Φ0(0) = 0

Ψ0(0) = 0 And we also take

Pk(Rk) = 0, P(R) = 0

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 19 / 24

(20)

Hydrostatic Equilibrium Equations for a Magnetized CO

Mass equation

For computing the mass we will use Tolman generalization for the the mass of a source

mT = Z √

−g(T00−T11−T22−T33)dV (13) for our cylindric metric we have

mT = Z

reΦ+Ψ+Λ(−2P−Pk)dV (14)

R. C. Tolman, Relativity, Thermodynamics and Cosmology. Oxford University Press, London (1934)

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 20 / 24

(21)

Hydrostatic Equilibrium Equations for a Magnetized CO

Numerical solution

0 1 2 3 4 5 6 7 8

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8

1 . 0 B = 1 ×1 0 1 6 G

M/M

R [ k m ] )

B b a g= 7 5 M e V f m - 3

Figure:Mass-Radius diagram forB= 1016G.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 21 / 24

(22)

Hydrostatic Equilibrium Equations for a Magnetized CO

Numerical solution

0 1 2 3 4 5 6 7 8

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

B = 1 0 1 6 G R B = 1 0 1 8 G R  B = 1 0 1 8 G M/M

R [ k m ] )

B b a g= 7 5 M e V f m - 3

Figure:Mass-Radius diagram forB= 1016G andB= 1018.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 22 / 24

(23)

Conclusions

1 Taking into account pressure anisotropy due to a magnetic field leads to smaller maximum masses.

2 For high values of the magnetic field the behaviour of the mass radius relation changes.

Future work

1 Make more numerical experiments varying parameters such as the Bag in order to see if there are any configurations in which the system could reach higher values of the mass.

2 Investigate other models for anisotropic equations of state.

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 23 / 24

(24)

GRACIAS!

OBRIGADO!

THANKS YOU!

(FF/UH, ICIMAF, IAG/USP, & CLAF/ICTP. D. Manreza Paret) 24 / 24

Referências

Documentos relacionados

In our 2018 technology and innovation survey, findings indicated that only 12% of legal services providers used DCTs or had plans to do so.13 Further, the 2019 Individual Legal Needs