• Nenhum resultado encontrado

The results are applied then toobtain bounds for the extreme zeros of Laguerre andHermite polynomials

N/A
N/A
Protected

Academic year: 2023

Share "The results are applied then toobtain bounds for the extreme zeros of Laguerre andHermite polynomials"

Copied!
6
0
0

Texto

(1)

Classical Orthogonal Polynomials

Dimitar K. Dimitrov y

Departamento de Ci^encias de Computac~ao e Estatstica, IBILCE, UniversidadeEstadual

Paulista, 15054-000 S~ao Jose do Rio Preto, SP, Brazil

Abstract. Let P (;)

n

; n =0;1;:::; ; > 1 be the Jacobi polynomials, orthogonal on ( 1;1)

with respect to the weight function (1 x)

(1+x)

. Denote by x

n;k

(;);k = 1;:::;n the zeros of

P (;)

n

enumerated in decreasingorder. Lower boundfor x

n;n

(;) and upper boundfor x

n;1

(;) are

obtained as a consequence of the electrostatic interpretation of the zeros of P (;)

n

. The results are

applied then toobtain bounds for the extreme zeros of Laguerre andHermite polynomials.

1 Introduction

One of the important reasons forthe interest in the zeros of Jacobi polynomials is the fact that

x

n;k

(;);k = 1;:::;n admit a very interesting electrostatic interpretation. They are the points of

equilibriumofnunitchargesin( 1;1) intheeldgenerated bycharges(+1)=2at 1and (+1)=2

at 1, wherethe charges repelleach other according to the lawof logarithmic potential. It isworth

mentioning that this electrostatic eld is not the eld of point charges but of long straight wires

perpendicularto the real axis [9]. Thisbeautiful interpretation is dueto Stieltjes[10 , 11 , 12 ]. Szego

[13 , Section6.7]provedthattheequilibriumisaminimumoftheenergyofthedescribedeld. Werefer

to thereview papers[14 , 15 ]forthehistoricalbackground andother resultsconcerningelectrostatics

of zeros oforthogonal polynomials.

Thus, anyresult aboutthebehaviourof x

n;k

(;) provides informationaboutthe above electro-

staticeld. Inthispaper,theoppositeapproachissuggested. WeemploytheaboveresultsofStielties

and Szegoto obtainboundsfortheextreme zeros ofJacobipolynomials.

Foreverypositiveintegernandforanyreal > 1and > 1,thefunctionB(n;;)isdened

by

B(n;;) = ( 2

2

) 2

+

(4n(n+++1)+(+)(++2))

4n(n+++1)+2(++2) ( ) 2

:

ResearchsupportedbytheBrazilianfoudationCNPqunderGrant300645/95-3andtheBulgarianScienceFoundation

underGrantMM-414.

y

OnleavefromTheUniversityofRousse,Bulgaria

(2)

x

n;n

(;)>

2

2

p

B(n;;)

4n(n+++1)+(+)(++2)

(1.1)

and

x

n;1

(;)<

2

2

+ p

B(n;;)

4n(n+++1)+(+)(++2)

(1.2)

hold.

Asconsequences weobtainboundsforthe extremezeroof Laguerre andHermite polynomials.

Corollary 1 Leth

n;1

bethe largest zero of the Hermite polynomial H

n

(x). Then

h

n;1

p

2n 1: (1.3)

Corollary 2 Letx

n;n

() andx

n;1

() bethe smallest andlargest zero Laguerrepolynomial L ()

n (x),

respectively. Then for any > 1 the inequalities

x

n;n

()2n++1 q

(2n++1) 2

+1 2

(1.4)

and

x

n;1

()2n++1+ q

(2n++1) 2

+1 2

(1.5)

hold.

Although the bounds obtained in Theorem 1 and Corollaries 1 and 2 are not the sharpest one,

theyareasymptoticalysharpinthesencethatasndiverges,theybehavelikethebestknownbounds.

SharperboundsfortheextremezerosofJacobipolynomialsaregivenbyElbert,LaforgiaandRodono

[3 ]andbyIsmailandLi[7]. ThebestlowerboundforthesmallestzeroofLaguerrepolynomialisthat

obtainedbyIsmailandLi[7 ]and thebestupperboundforthelargestzeroofLaguerre polynomialis

givenbySzego[13 ,Theorem6.32]. Inequality(1.3)isslightlysharperthantheinequalityh

n;1

<

p

2n,

which wasobtained recentlybyIfantis andSiafarikas[6 ].

2 Proof of Theorem 1

Consider theelectostatic eld,described above. Charges (+1)=2 and (+1)=2 are distributed

along long wires wich are perpendicular to the real axes and intersect it at 1 and 1, respectively.

Theremainingnunitchargesaredistributedalonglongwireswhicharealsoperpendiculartothereal

axes and pass throughthe pointsx

1

;:::;x

n

,where 1<x

1

<:::<x

n

<1:Then the energyof the

eldis given by

L(x

1

;:::;x

n )=

+1

2 n

X

i=1 log

1

j1 x

i j

+ +1

2 n

X

i=1 log

1

j1+x

i j

+ X

1i<jn log

1

jx

j x

i j

:

(3)

T(x

1

;:::;x

n ):=

n

Y

i=1 (1 x

i )

(+1)=2

(1+x

i )

(+1)=2 Y

1i<jn jx

j x

i

j: (2.1)

ismaximal. Stiltjesand Szego's resultsaresummarizedinthe followingtheorem:

Theorem A ([13 , Theorem6.7.1]) Let > 1; > 1; and let fx

i

g; 1x

i

1, be a systemof

values for which the expression (2.1) becomes a maximum. Thenthe fx

i

g are the zeros of the Jacobi

polynomial P (;)

n

(x).

The proof is straightforward and uses thefact that y(x)=P (;)

n

(x) isthe unique(up to a constant

factor)nonzero polynomialsolutionofthedierentialequation

(1 x 2

)y 00

+( (++2)x)y 0

+n(n+++1)y=0: (2.2)

Moreprecisely,oneneeds thefollowingtheorem:

Theorem B ([13 ,Theorem4.2.2]) Let > 1 and > 1. Thedierential equation

(1 x 2

)y 00

+( (++2)x)y 0

+y=0;

where is a parameter, has a polynomial solution not identically zero if and only if has the form

n(n++ +1); n = 0;1;:::. This solution is const P (;)

n

(x), and no solution which is linearly

independent of P (;)

n

(x) can be a polynomial.

It is well-known (see [13 , p. 117]) and easy to see that for any nonnegative integer l, y(x) =

P (;)

n

(x)is asolutionof thedierentialequation

(1 x 2

)y (l +2)

+( (++2l+2)x)y (l +1)

+( n(n+++1) l(l+++1))y (l )

=0:

(2.3)

Proof of Theorem 1. Considerthe functionT 2

(x

1

;:::;x

n

) on thesimplex:=f 1<x

1

<:::<

x

n

<1g. Observe that

T 2

(x

1

;:::;x

n

) = (x

1

;:::;x

k 1

;x

k+1

;:::;x

n )(1 x

k )

+1

(1+x

k )

+1 Y

i6=k (x

k x

i )

2

= (x

1

;:::;x

k 1

;x

k+1

;:::;x

n )(1 x

k )

+1

(1+x

k )

+1

! 2

k (x

k ):

Here the function(x

1

;:::;x

k 1

;x

k+1

;:::;x

n

) =(xnx

k

) doesnot depend on x

k and !

k (x) :=

!(x)=(x x

k

),where !(x):=

Q

n

i=1 (x x

i ).

Dierentiatingthe latter identityand usingtheequalities ! (l +1)

(x

k

)=(l+1)!

(l )

k (x

k

); l=0;1;2,

we obtainconsecutively

@

@x

k T

2

(x

1

;:::;x

n

) = (xnx

k )

@

@x

k

(1 x

k )

+1

(1+x

k )

+1

! 2

k (x

k )

= (xnx

k

) (1 x

k )

(1+x

k )

!

k (x

k )

2(1 x 2

k )!

0

k (x

k

)+( (++2)x

k )!

k (x

k )

= (xnx

k

)(1 x

k )

(1+x

k )

! 0

(x

k )

(1 x 2

k )!

00

(x

k

)+( (++2)x

k )!

0

(x

k :

(2.4)

(4)

1

(xnx

k )

@ 2

@x 2

k T

2

(x

1

;:::;x

n ) =

@

@x

k

(1 x

k )

(1+x

k )

!

k (x

k )

2(1 x 2

k )!

0

k (x

k

)+( (++2)x

k )!

k (x

k )

+(1 x

k )

(1+x

k )

!

k (x

k )

2(1 x 2

k )!

00

k (x

k

)+( (++6)x

k )!

0

k (x

k )

(++2)!

k (x

k )g

=

@

@x

k

(1 x

k )

(1+x

k )

!

k (x

k )

(1 x 2

k )!

00

(x

k

)+( (++2)x

k )!

0

(x

k )

+(1 x

k )

(1+x

k )

! 0

(x

k )

n

(1 x 2

k )

2!

000

(x

k )

3

+( (++6)x

k )

! 00

(x

k )

2

(++2)!

0

(x

k )g:

(2.5)

The functionT 2

ispositiveinandvanisheson theboundaryof. Thereforethemaximalvalue

isattainedatan intrinsicpointof . Thismeansthatthemaximumislocal. Now(2.4) andTheorem

Bcompletetheproofof TheoremA.

AnotherimplicationofthefactthatthemaximumofT 2

islocalanditisunique,isthat@ 2

T 2

=@x 2

k

arenegativefork =1;:::;nattheonlyextremalpoint(x

n;n

(;);:::;x

n;1

(;)). Since 1

(xnx

k )>

0 and (1 x 2

k )!

00

(x

k

)+( (++2)x

k )!

0

(x

k

)=0forx

k

=x

n;k

(;); k =1;:::;n, then

F(x

k

) := ! 0

(x

k )

2

3 (1 x

2

k )!

000

(x

k )+

1

2

( (++6)x

k )!

00

(x

k

) (++2)!

0

(x

k )

< 0; for x

k

=x

n;k

(;); k =1;:::;n:

We use (2.3) forl=1and l=0 consecutivelyinorder to simplifyF(x

k ):

6F(x

k

) = !

0

(x

k

) f [(+ 2)x

k

+ ]!

00

(x

k )

[4n(n+++1)+2(++2)]!

0

(x

k )g

= (!

0

(x

k ))

2

1 x 2

k

f [(+ 2)x

k

+ ][(++2)x

k

+ ]

[4n(n+++1)+2(++2)] (1 x 2

k ) :

Thereforetheinequalities

[(+ 2)x

k

+ ][(++2)x

k

+ ]

[4n(n+++1)+2(++2)] (1 x 2

k ) <0

hold for x

k

= x

n;k

(;); k = 1;:::;n. This latter statement is equivalent to the statement of the

theorem. 2

3 Bounds for the extreme zeros of Gegenbauer, Laguerre and

Hermite polynomials

Let

n;1

()bethelargest zeroof theGegenbauer (ultraspherical)polynomialC

n

. Therearethree

recent resultsaboutupperbounds for

n;1

(). We refer to [8 ] fora more detailedreview. Elbertand

(5)

n;1 ()<

s

n 2

+2n

n 2

+2n+ 2

+

for 0;

and Ifantisand Siafarikas[5 ] proved theinequality

n;1 ()<

s

n 2

+2n n

n 2

+2n+ 2

n

for >1=2:

Forsterand Petras[4 ] obtainedtheupperbound

n;1 ()<

s

n 2

+2n 1=2

n 2

+2n+ 2

1=4

for > 1=2: (3.1)

Substituting= = 1=2 in(1.2),weobtain

n;1 ()<

s

n 2

+2n++1=2

n 2

+2n+ 2

1=4

for > 1=2: (3.2)

Although our estimate (3.2) is obviously weaker than (3.1), its advantage is that it is an immediate

consequenceofanestimateforx

n;1

(;), whileallthepreviousresultsholdspecicallyforthelargest

zerosofultrasphericalpolynomials. Weemploytheinequality(3.1) inorderto giveaveryshortproof

of Corollary1.

Proof of Corollary 1. It waspointedoutbyElbertandLaforgia[2 ] thatforanypositiveinteger n

p

n;1

() !h

n;1

as !1:

Then multiplying(3.1) by p

andletting to diverge, we obtainthedesired result. 2

Proof of Corollary 2. LetA(n;;) be denedby

A(n;;)=4n(n+++1)+(+)(++2)+ 2

2

:

Then inequalities(1.1) and (1.2) yield

1 x

n;n

(;)<

A(n;;)+ p

B(n;;)

4n(n+++1)+(+)(++2)

(3.3)

and

1 x

n;1

(;)>

A(n;;) p

B(n;;)

4n(n+++1)+(+)(++2)

; (3.4)

respectively. On theotherhand, by(6.71.11) in[13 ],we have

lim

!1

2 (1 x

n;n

(;))=x

n;1

() (3.5)

and

lim

!1

2 (1 x

n;1

(;))=x

n;n

(): (3.6)

(6)

A(n;;)=2

(2n++1)+2n(n++1)+ 2

+

andB(n;;)isaquadraticpolynomialin withleadingcoeÆcient4 (2n++1) 2

+1 2

,then

therelations (3.3) and (3.5) imply(1.5). Similarly,(3.4) and (3.6) yield(1.4). 2

References

[1]

A.Elbert and A.Laforgia, Upper bounds for the zeros of ultraspherical polynomials,

J.Approx.Theory 61(1990),88-97.

[2]

A.Elbert and A.Laforgia, Asymptotis formulas for ultraspherical polynomials P

n

(x) and

theirzeros forlargevaluesof, Proc. Amer.Math. Soc.114(1992), 371-377.

[3]

A.Elbert, A.Laforgia and

L.Rodon

o, On the zeros of Jacobi polynomials, Acta

Math.Hungar.64(1990), 351-359.

[4] K-J. F



orster and K. Petras, On estimates for the weights in Gaussian quadrature in the

ultrasphericalcase, Math.Comp. 55(1990), 243-264.

[5] E.K.Ifantis and P.D.Siafarikas, Dierentialinequalitieson thelargest zeroof Laguerreand

ultraspherical polynomials, in \Actas del VI Simposium on Polinomios Orthogonales y Aplica-

tiones,"pp.187-197,Gijon, 1989.

[6] E.K.Ifantis and P.D.Siafarikas, Dierentialinequalities and monotonicityproperties of the

zeros ofassociatedLaguerre and Hermitepolynomials,Ann. Num. Math.2 (1995), 79-91.

[7] M. E. H. Ismail and X. Li, Bounds on the extreme zeros of orthogonal polynomials, Proc.

Amer.Math. Soc. 115(1992), 131-140.

[8] A.Laforgia and P.D.Siafarikas, Inequalities for the zeros of ultraspherical polynomials,

in \Orthogonal Polynomials and Their Applications," (C. Brezinski et al., Eds.), pp. 327-330,

IMACS,1991.

[9] E. M. Purcell, \Electricity and Magnetism, Berkeley Physics Cuorse - Volume 2", McGraw-

Hill,New York,1963.

[10] T.J.Stieltjes,Surlesquelquestheoremesd'algebre,C.R.Acad.Sci.Paris100(1885),439-440.

[11] T.J.Stieltjes,Surlespolyn^omesde Jacobi, C.R.Acad. Sci. Paris100(1885), 620-622.

[12] T.J.Stieltjes,Sur lesracines de l'equation X

n

=0,Acta Math. 9(1886),385-400.

[13]

G.Szeg

o,\Orthogonalpolynomials,"4thed.,Amer.Math.Soc.Coll.Publ.,Vol.23,Providence,

RI,1975.

[14] G.Valent and W. Van Assche, The impact of Stieltjes' work on continued fraction and

orthogonal polynomials: additionalmaterial,J. Comp.Appl. Math 65(1995), 419-447.

[15] W.VanAssche,TheimpactofStieltjes'workoncontinuedfractionandorthogonalpolynomials,

in\T. J.Stieltjes: Collectedpapers,Vol.I" (G.van Dijk,ed.),pp.5-37, Springer-Verlag,Berlin,

1993.

Referências

Documentos relacionados

The objectives are: (1) to determine the most appropriate minimum number of zircon age populations (peaks); (2) to charac- terize each peak in terms of age and event duration; and