• Nenhum resultado encontrado

Energy spectrum and eigenfunctions through the Quantum Section Method

N/A
N/A
Protected

Academic year: 2017

Share "Energy spectrum and eigenfunctions through the Quantum Section Method"

Copied!
8
0
0

Texto

(1)

Energy Spetrum and Eigenfuntions

through the Quantum Setion Method

J.S. EspinozaOrtiz

and R. Egydio de Carvalho y

Institutode Geoi^eniase Ci^eniasExatas

UniversidadeEstadual Paulista

Rua10, 2527,Santana,13500-230, Rio Claro,SP, Brazil.

Reeivedon16May,2001. Revisedversionreeivedon23July,2001.

WepresenttheQuantumSetionMethodasaquantizationtehniqueto omputetheeigenvalues

and theeigenfuntions of quantumsystems. As aninstrutiveexample we apply this proedure

to quantize the annularbilliard. The methoduses thesymmetry of the system to determinean

auxiliarysetionseparatingthesystemintopartialregionsandomputestheGreen'sfuntionsfor

Shroedinger'sequation,obeyingthesameboundaryonditionsimposedontheeigenfuntionsofthe

system. Theeigenvaluesare obtainedaszeroesofaniterealdeterminantandtheeigenfuntions

arealsodetermined.Thepresentanalytialandnumerialresultsareintotalagreementwiththose

obtainedbyotherproedures,whihshowstheeÆienyofthemethod.

I Introdution

The Green's funtion method applied to the

Shroedinger's equation assoiated to the Poinare's

setiontehniqueusedtostudylassialdynamis,have

originatedamethodtoomputetheeigenvaluesandthe

eigenfuntionsofquantumsystems. Thismethodis

de-notedbyQuantumSetionMethod(QSM).Itwasrst

introduedbyBogolmonyasanessentialingredientto

theresummationtheoryoflassialperiodiorbits

on-tributing to the quantum energy spetrum of haoti

systems[1,2℄.

Theonnetionbetweenlassialperiodi

or-bitsandquantumenergyspetrumomesfromthefat

that thesemilassiallimit ofstationary statesshould

beonnetedwithlassialinvariantmanifoldsandfor

ahaotiHamiltoniansystemthelatteraretheperiodi

orbits,besidesthetotalenergy. Forsystemswhihare

notfully haotibut mixed by haos and regular

mo-tion, the quantum energy spetrum arries also

inu-enesofinvarianttori.

Alass ofmodelswhihnielydesribe

regu-lar,mixed orhaotidynamisarethebilliards. These

orrespondto geometrialboundarieswhereapartile

movesfreelyinsidethem andreetsspeularlyatthe

boundaries. For these type of systems the motion is

stronglydependentontheshapeoftheboundariesthus

allowingthesimulationofanydesireddynamis.

Inthis work weonsider the annular billiard

(annulus) probing the appliability of the QSM. This

billiardonsistsoftwoeentri irleswhere onlythe

annular region onstitutes the aessible spae to the

motion. Changing the eentriityweanontrol the

seaof haosand alsotheregularityofthesystem. We

onsider lassial and quantum mehanial aspets of

theannularbilliard insetion II.InsetionIII we

de-velop the QSM. Finally in setion IV we present the

numerialalulationsandadisussionoftheseresults.

II The Model

AsdepitedinFig. (1a-1b)thebilliardisdened

by two eentri irles on the XY-plane, where the

outerirlehasradius R 'andtheinnerirleradius

r'. Theentre oftheouterirle isonsidered asthe

originof thesystemand the inner irleandisloate

horizontallyinrelationtoit. Thedistanebetweenthe

entres of the irles is alled by eentriity and we

denoteitby'Æ'. As'r'as'Æ'areonstrainedbythe

in-equality(r +Æ) R. Thetrajetoriesonthebilliard

are polygonal lines among ollisions with the

bound-aries. There are twodierent typesof motion

identi-edbytheletters'A'and'B'andwhenomposedan

desribe any possiblebehaviorof the system[3℄. The

A-typemotionorrespondsto thosetrajetorieswhih

ollidewiththeouterirlebeforeaollisionwithitself,

e-mail:ortizr.unesp.br

(2)

whiletheB-typemotionreportstothetrajetories

ol-lidingwiththeinnerirlebetweentwoollisions with

the outer one. There is also a partiular ase of

A-trajetories,alledWhisperingGalleryOrbits(WGO),

whih never attain the inner irle, what means they

neverrosstheausti-anauxiliaryirlewithradius

(r+Æ). The austihelps us toseparate bothkindof

motions and later we will assoiate to it an algebrai

tangeny ondition to distinguish the A-motion from

theB-motion.

Figure 1. a) The annular billiard sheme exhibiting the

outerirleofradiusR ;theinnerirle ofradiusr,the

e-entriityÆ;bothangleoordinates and ;and atypial

trajetoryofA-motion;b)atypialtrajetoryofB-motion;

)anauxiliaryirularsetionofradius,onentriwith

theinnerirle,deningtwopartialregions.

Thedynamisonphasespaeisnaturally

de-sribedbyBirkho'soordinates,these aredened on

the outer boundary at the positions where the

olli-try,twoangleoordinatessuÆetodenetheollision

points: ' assoiated with the ar-length ounted

from the positive absissaaxis and ', the reeted

angle formed between the trajetory and the normal

at theollision point, see Fig. (1a-1b). Hene we

de-ne the phase spae oordinates as S = sin() and

L==(2),sothatphasespaereduestothe

retan-gle: 1 S 1, 1=2 L1=2. Thusthemotion

anbe desribed by adisrete dynamis, or merelya

map,involvingonlykikswiththeexternalirle. The

map an be easily obtained through pure geometrial

onsiderations. Hereafterweonsider R=1andfora

trajetorystarting at anyinitial ondition (

0 ;

0 ) we

requirethetangenyondition

jsin()+Æsin( )j > r (1)

whih means that at the nextollisionwith the outer

irle the trajetory had not previously hit the inner

irle. This denes the A-motion (Fig. 1a) given by

themap equations

1

=

0

1

=

0

+( 2

0 ):

(2)

Ifthetangenyonditionisnotsatised,whihmeans

thatat thenextollisionwiththeouterirle the

tra-jetoryhaspreviouslyreahedtheinnerirleone,the

B-motion(Fig. 1b)isdenedviathemapequations

sin() = ( sin(

0

)+Æsin(

0

0 ))=r;

(

1 +

1

) = 2 (

0

0 );

sin(

1

) = rsin() Æsin(

1 +

1 );

(3)

where isthe angle ofthe reetion at theinner

ir-le (see Fig. 1b). It is easy to verify from the rst

formulaaboveas thetangeny onditionemerges. To

generatethedynamis of atrajetoryonphase spae,

thetangenyonditionshouldbehekedat eah

iter-ation to selet what map has to be used. The set of

Figs. (2a-2d)exhibits thedynami rihnessof the

an-nular billiarddepending ontherelationshipbetweenr

andÆ. From these plots we an observesomegeneral

results[3℄,theoriginofthephasespae(L;S)=(0;0)

orresponds to an ellipti xed point (stable

equilib-rium) while r > Æ and it beomes a hyperboli xed

point (unstableequilibrium) if r <Æ passingthrough

a neutral stability when r = Æ. Looking at the Fig.

1bthe trajetory(L;S)=(0;0) orrespondsto aline

over the positive absissa starting at the outer irle

andkikingtowardtheinnerirle. Ontheotherhand

wenotethatthepoint(L;S)=(1=2;0)always

orre-spondstoahyperbolixedpoint(exeptwhenÆ=0).

From Fig. 1b, the orresponding trajetory starts on

thenegativeabsissa at the outer irle and kiks

to-wardtheinnerirle. Numerialobservationsindiates

that the aessible phase spae beomes almost fully

haotiatÆ 3r[3℄. Inthatontextitisimportantto

establishonemoreidentiationoftheWGO:onphase

spaethey are thestraightlines whih haveordinates

(3)

Figure2. Thephasespae(L;S)forr=0:2andfourvaluesofÆ: (a)Æ=0:02,thereisathinlayerofhaosandtheWGO

areloatedatjSj > 0:22;(b)Æ=0:15,theoriginstillorrespondstoastablexedpointbutthehaotiseahasinreased,

the WGOare loated at jSj > 0:35 ; ()Æ =0:30, theorigin is a hyperbolixed point andhaos ontinues inreasing,

theWGOareloated atjSj > 0:5; (d)Æ=3r=0:60,theaessible phasespaeisalmostfullyhaoti,andtheWGOare

loatedatjSj > 0:8.

Regardingthese mainlassialaspetsofthe

annulus,the orresponding quantum problem onsists

onsolvingtheHelmholtzequation

r 2

+ 2

(;)=0; (4)

obeying Dirihlet's boundary onditions, where =

p

2E=~(m = 1) with and the radialand angular

polarvariablesrespetively. Itisanalogoustothe

eigen-modeproblemforanannularvibratingmembrane,also

withaninnitenumberofdisretevibrational

frequen-ies. FortheaseÆ=0theeigenvalues

nm

assoiated

with the Helmholtzs equation are obtainedas zeroes

oftheequation

J

n (

nm R )

J

n (

nm r)

Y

n (

nm r)

Y

n (

nm R )

=0 (5)

andtheorrespondingeigenfuntionsaregivenby

nm

(;)=A

nm

J

n (

nm )

J

n (

nm r)

Y ( r) Y

n (

nm )

os(n) ;n=0;1;2;::::::evenstates;

sin(n) ;n=1;2;3;::::::oddstates;

(4)

where J

n andY

n

aretheBessel'sfuntions ofrstand

seond kindrespetivelyand A

n;m

is anormalization

onstant. Exeptforn=0whihisasinglestate,the

remainingstatesaredegeneratedoublets. Forthease

Æ6= 0theangularmomentumisnotonserved,however

thesystemstillpossessesadisretesymmetryunder

re-etion with respet to theline joining the entres of

bothirles. Consequentlytheeigenstatesofeq.(4)

on-tinuetobeseparatedintoevenandoddstates,butnot

longer degenerate due to an eet of dynamial

tun-nelling'whihsplitsthem. Thisphenomena,inuened

byhaos,isattributedtolassialtransportonneting

WGO regions[3, 4℄. These quantum billiardhasbeen

onsidered by dierent theoretial methods in the

lit-erature [5,6,7, 8℄and also experimentally [9℄,paving

thediretionsforusto applytheQSM.

III The Quantum Setion

Method

Thismethodonsidersthepossibilitytoseparate

any system into partial regions through oneauxiliary

setionin ordertoexploreertainloalsymmetries,as

forexamplebilliardboundariesorpotentialsymmetries

(in theaseofopensystems)[10℄.

Theunertaintypriniplepreludesthe

simul-taneousknowledgeofmomentaandpositionofa

quan-tum partile, henethe quantum setion is developed

only on position spae. We onstrut partial Green's

funtions,G

1 (q;q

0

;E)and G

2 (q;q

0

;E),in bothpartial

regionswiththefollowingproperties: a)theysatisfythe

non-homogeneous Shroedinger's equation inside eah

partial region r 2 + 2 G j (q j q 0 j

;)=Æ(q

j q

0

j

);j=1;2; (7)

b)ontheboundariestheseGreen'sfuntionsshould

sat-isfythesameboundaryonditionsastheeigenfuntions

oftheoriginal system, ) these Green'sfuntions may

bearbitraryonthesetion,buttheyshouldmath

on-tinuously. Wewritedowntheansatzforsolutionsinthe

formofasinglelayerpotential

j;E (q)= Z G j (q;Q 0 ;E) j (Q 0 )dQ 0 ; (8) whereQ 0

is denedon thesetionand

j

isthesingle

layer density whih is initially an unknown funtion.

Theideanowistotakeasolutioninonepartialregion

andextenditto theother region,imposing ontinuity

forthepartialfuntions

j;E

(q)andtheirderivativeson

thesetion. Then thequantization onditionemerges

andtheeigenvaluesareobtainedaszeroesofamatrix

determinantdenedonthesetion. Thisallowsthe

sin-glelayerdensitytobeobtainedandfurthertoalulate

theeigenfuntionsoftheoriginalsystem.

For the annular billiard the additional

par-tialseparability of the Shroedinger's equation in

po-laroordinates makespossibleto onstrutexat

par-tialGreen'sfuntionsineigenmodesrepresentationand

fromtheretheonstrutionofpreisepartialfuntions

in eah side of the setion asdepited in Fig.1. We

dene the setion as an auxiliary irle of radius ,

onentri with the outer irle, whih separatesboth

partial regions: the region (1) outer to the irle

andtheregion(2)innertoit.

The Green's funtions are onstruted

satis-fying the non-homogeneous Helmholtz's equation (7),

whereq

1

=(;)andq

2

=(;)arethepositionsin

re-lationtotheR -irle'andther-irle',respetively. As

fortheeigenfuntions,werequireG

1

tosatisfy

Dirih-let's boundary onditions on the outer irle. In the

samefashion G

2

anelsontheinner irle,withboth

Green'sfuntionsarbitraryoverthesetion.

Due to partial separability in polar

oordi-natesinrelationtothe R(r)irle',wemaywrite

G 1 ( 0 ; 0 ;) = P m g 1;m ( 0

;)hjmihmj 0

i; 0

<<R;

G 2 ( 0 ; 0 ;) = P n g 2;n ( 0

;)h jnihnj 0

i; r<< 0

;

(9)

where h mji = hjmi / os[sin℄(m)for theGreen'sfuntion G

1

andfor theGreen'sfuntion G

2

oneexhanges

m! nand!toobtainhnji = h jni / os[sin℄(n). Forintegersmorntheangularfuntions 0 os 0 and 0 sin 0

willyieldsolutionspossessingevenandoddsymmetries,respetively. Nowitishosenapartiularone-dimensional

Green's funtiong

j

in radialoordinates,exludinganypossibilityforG

1 andG

2

toaneloverthesetion

g

1;m (

0

;) = H (1)

m

(R )H (2) m ( 0 )fY m (R )J

m

() J

m (R )Y

m ()g ; g 2;n ( 0

;) = H (1) n ( 0 )H (2) n

(r)fY

(5)

whereJ;Y;H (1;2)

are theBesselfuntions oftherst,

seondandthirdkindrespetively. TheseGreen's

fun-tionsaregiven,inAppendix A,byapplyingtheimage

method for asoure in 0

( 0

) with respet to = R

( =r)in suhawaythatthequantumdynamis

or-responds to twoquantum paths between 0

and ( 0

and ). Onepath is diret while the other reets in

R (r). There isnopossibility forthepartileto ome

bak sineit leavesthe setion. Inthis sense there is

ananalogywiththesatteringformalism[11℄.

Both Green's funtions are diagonal in eah

eigenmodes representation. We write down anygiven

partialwavefuntionineahpartialregionintheform

ofasinglelayerdensity

1 (;;) = R 2 0 d0( 0 )G 1 ( 0 ; 0 ;); 2 (;;) = R 2 0 d 0 ( 0 )G 2 ( 0 ; 0 ;): (11)

These funtions satisfy Shroedinger's equation with

appropriated boundary onditions in eah partial

re-gion. Theonditionfor these funtions andtheir

nor-mal derivativesto math over the setion is the

exis-teneofonlyonedensity. Thisonditionimposes

Z 2 0 d 0 ( 0 ) ~ G (q 0 2 q 0 1 ;)= Z 2 0 ~ G (q 0 2 q 0 1 ;)( 0 )d 0

= 0; (12)

where ~ G(q 0 2 q 0 1 ;)= Z 2 0 dfG 2 ( 0 ; 0 ;) G 1 ( 0 ; 0

;) G

1 ( 0 ; 0 ;) G 2 ( 0 ; 0

;)g: (13)

Thisequationmayberewrittenas

~ G (q 0 2 q 0 1 ;) = P mn < 0

jn><nj ~

Gjm><mj 0

>; (14)

where,

<nj ~

Gjm> = R 2 0 dfG 1 (;;) G 2

((;Æ;);(;Æ;);)+

G

2

((;Æ;);(;Æ;);)

G

1

(;;)g;

(15)

andtheonditiongivenin eq.(12)beomes

X m hjmi D mj ~ Gjn E = X n D mj ~ Gjn E

h nji = 0: (16)

The eigenvaluesare omputed asthezeroes of detj <nj ~

G jm> j, where the integralsare evaluated over

thesetion. Before omputingthe integralsit isneessaryto drive 0

ontoR aswell as 0

onto r andto expand

G

2

(;)in termsof(;). Thisexpansionusestheaddition theoremforBessel'sfuntions

J n () os(n) sin(n) =os(n) P l J l+n ()J l (Æ) os(l) sin(l) sin(n) P l J l+n ()J l (Æ) sin(l) os(l) ; (17) and Y n () os(n) sin(n) =os(n) X l Y l+n ()J l (Æ) os(l) sin(l) sin(n) X l Y l+n ()J l (Æ) sin(l) os(l) (18)

Finallytheintegralsareomputedonthesetiononsidering

R

2

0

os(n)os(m)os(l) = Æ

l; (m n) +Æ l;(m+n) +Æ l;(m n) +Æ l; (m+n) =4 R 2 0

sin(n)os(m)sin (l) = Æ

l;(m+n) +Æ

l; (m n) Æ l;(m n) Æ l; (m+n) =4 R 2 0

os(n)sin(m)sin (l) = Æ

l;(m+n) +Æ

l;(m n) Æ

l; (m n) Æ l; (m+n) =4 R 2 0

sin(n)sin(m)os(l) = Æ

l; (m n) +Æ l;(m n) Æ l;(m+n) Æ l; (m+n) =4 (19)

yieldingthegoal

<nj ~

Gjm> = 1 2 f[Y n (r)J m () J n (r)Y m ()℄ [Y m (R )J

m

() J

m (R )Y

m ()℄

[Y

m (R )J

m

() J

m (R )Y

m ()℄ [Y n (r)J m () J n (r)Y m ()℄ gj

=

fJ

m n

(Æ)( 1) n

J

m+n (Æ)g:

(6)

In this form the eigenvalues are obtained as

zeroesof the determinant of the real matrix given in

eq.(20), where the refers to the evenand odd

solu-tions,respetively.

IV Results and Disussion

Without loss of generality by taking the setion

overto theouterirle, whatreads=R ;the

math-ing ondition leads to the known Nagaya & Sing &

Kothary's eigenvalues expression[5℄. The ase Æ = 0

impliesthat thesinglepossibilityprovidingnon-trivial

solutions foreq.(20) holds when m = n. In this ase

thematriesbeomediagonalforbothparitiesandthe

eigenvaluesareexatlydegenerate(exeptwhenmand

n are null). When Æ > jm nj; for a xed , the

Bessel's funtionsbeomenon-osillatingand they

de-rease exponentiallyasjmnj inreases. Soitis

ne-essary to be areful when enlarging the determinant

dimension beause it will beome numerially

unsta-ble. Hene as anie and interestingonsequene, the

dimension of detf<nj ~

G jm >g is alwaysnite. With

the eigenvaluesin hand the eigenfuntionsare readily

determined going bak to eq.(16) and omputing the

density.

Theoperator given in eq.(14) is alled

quan-tum transferoperator andin thesemilassiallimit it

an be expressed in term of lassial paths providing

a wayto interpret the quantum dynamial tunnelling

phenomenain termsoflassialtransport.

Wehaveomputedtheeigenvalueswith14

dig-its of preision for any given energy sale. Figs. (3)

and (4) onern to an energy spetrum with the

fol-lowing set of parameters: ~ 0:4583; r = 0:40 and

Æ=0:19. InFig.(3)itisplottedthenumerial

umula-tivedensityof statesfortherst2500eigenvaluesand

in Fig.(4)its deviation in relation to thesoft

umula-tivedensityofstatesforbilliards,givenbytheformula:

N()= 1

4~ 2

fA 2

L g[12℄, wherefor theannular

billiard, A isthe netarea (=(R+r)(R r)) andL

thenetperimeter(=2(R+r)). Frombothplotsitis

inferred that nolevelismissing from theenergy

spe-trum and that there is no lak of onvergene. A

se-queneofeigenvaluesofbothparitiestogetherisshown

in Fig.(5) for dierent values of the eentriity, with

xed~ 0:2731;andr=0:20. Thisplotpresentsthe

levelsdynamisasafuntionof Æ exhibiting avoided

rossing' as it is expeted in haoti/mixed systems.

Note also the degeneraies breakdown for some levels

as haos inreases(remember thehaotisea enlarges

with the inreasing of Æ; see Fig.(2a-2d)). These

en-ergy splittingsrelatinglevelsofunoupled parities are

attributedtoakindoftunnelingdenotedasdynamial

tunneling. Finallysomesarredeigenfuntionsare

pre-sentedinFig.(6)forsomeseletedeigenvaluesobtained

withthesameparametersofFig.(3). Theyarry

infor-trajetorieslyingin dierentpositionsonphasespae.

Figure 3. The numerial umulative density of states for

therst2500eigenvaluesusingthesetofparameters: ~

0:4583;r=0:40andÆ=0:19. Theinsertpitureshowsthe

numerial umulativedensityof statesand thesoft

umu-lativedensityofstatesforbilliards.

Figure4. Thedeviation(N =(N)numerial (N)soft)

betweenthenumerialumulativedensityofstatesandthe

softumulative density ofstatesusingthe samesetof

pa-rametersofFig.(3). Bothumulativedensitiesdieraround

(7)

be-Figure 5. The levels quantum dynamis. A sequene of

eigenvaluesis shownfor dierent valuesoftheeentriity

using thefollowing setof parameters~ 0:2731;r=0:20

andÆ=[0:0;0:75℄.

Finallythesequantum analytialand

numer-ialresults tompletely with the known results

on-erningthisbilliardasestablishedintheliteratureand

essentially they assert that the QSM is an eÆient

quantizationmethod.

Aknowledgments

We thank the Brazilian sienti agenies

Funda~ao de Amparo a Pesquisa do Estado de S~ao

Paulo (FAPESP) and Funda~ao para o

Desenvolvi-mento da Unesp (Fundunesp) for nanial support.

JSEO is partiularly aknowledged to the LPTMS at

Orsay Cedex, Frane for kind hospitality during last

visitandtoDr. D. Ullmoforfruitfuldisussions.

Appendix - The Radial Green Funtions

Hereitisonsideredthepartialregion2where

thepartial radialGreen's funtion isonstrutedwith

the following boundary onditions: it is nullat =r

and itis arbitraryat = 0

. These onditionsleadto

thedenitions

g

2 (

0

;) =AfY

n (r)J

n

() J

n (r)Y

n

()g ;r<<0

~ g

2 (

0

;) =BfJ

n

()+ iY

n

()g ;

0

<;

(21)

whereAandBareonstantsto bedeterminedfrom theadditionalrestritionsat = 0

g

2 (

0

;) ~g

2 (

0

;)j

= 0

=0;

1

d

d fg

2 (

0

;) ~g

2 (

0

;)gj

= 0

= 1:

(22)

Solvingeq.(A-2)yelds,

g

2 (

0

;) =H (1)

n (

0

)H (2)

n

(r)fY

n (r)J

n

() J

n (r)Y

n

()g ; r < < 0:

(23)

Bysimilar argumentstheGreen'sfuntion inthepartialregion(1)isgivenby

g

1 (

0

;) =H (1)

n

(R )H (2)

n (

0

)fY

n (R )J

n

() J

n (R )Y

n

()g; 0

< R < R:

(24)

d

Referenes

[1℄ E. Bogomolny, Comments Atomi Moleular Phys.

2567(1990); andinNonlinearity5,1055(1992).

[2℄ E.B.BogomolnyandJ.P.Keating,Phys.Rev.Lett.77,

1472(1996).

[3℄ O. Bohigas, D. Bose, R. Egydio deCarvalho and V.

Marvulle,Nul.Phys.A560.197(1993).

[4℄ O. Bohigas, S. Tomsovi and D. Ullmo, Phys. Rev.

Lett. 64, 1479 (1990); and in Phys. Rep. 233, 43

(1993).

[5℄ K.Nagaya,J.SoundVib.50,545(1977).

[6℄ G.S. Singhand L.S.Kothari, J.Math. Phys.25,810

(1984).

[7℄ M.J.Hine,J.SoundVib.15,295(1971).

[8℄ S.D. Frishat and E. Doron, Phys. Rev. E 57, 1421

(1998).

[9℄ C.Dembowisk,H.D.Graf,A.Heine,R.Hoerbert,H.

RehfeldandA.Rihter,Phys.Rev.Lett.(2000).

[10℄ J.S. Espinoza Ortizand A.M. Ozorio de Almeida, J.

Phys.A30,7301(1997); andinPhysiaD145(2000).

[11℄ E. Doron and U. Smilansky, Nonlinearity 5, 1055

(1992).

[12℄ H.P.Baltes and E.R. Hilf, Spetra of Finite Systems,

(8)

Figure 6. Sarred eigenfuntions using the same set of parameters of Fig.(3). The even solutions are loated on the

left of the gure and the odd solutions are loated on the right. The eigenvalues used in the plots are the following:

a) = 16:8961439227900 ; b) = 16:91942974911557; ) = 27:3224162938150 ; d) = 27:3035930847495; e) =

27:4114121918047; f) =27:3452473498958 ; g)=31:6387754925558; h)=31:6383421881693; i)=31:7006255714796;

Referências

Documentos relacionados

O presente trabalho busca estudar a possibilidade de alterações da PIC em pacientes com suspeita de IAM, e suas possíveis correlações clínicolaboratoriais, associativamente

ACE– Acordo de Complementação Econômica AEC– Associação dos Estados do Caribe ALBA-TCP– Aliança Bolivariana para os Povos da Nossa América – Tratado de Comércio dos

In Section III, we present some quantum effects, as for example, the energy shifts in the hydrogen atom placed in the gravitational field of a cosmic string, the modifications of

The main contribution of this work con- sists in designing optimizations to describe quantum transformations using Quantum Processes and Partial Quantum Processes, as conceived in

equivalence between standard quantum mechanics and Bohm’s interpretation..

From his analysis of Carnot, Oliveira moves to a discussion of the incorporation of the work concept into economic thought, by which he means theories of the economy of machines, or

Since the 1960s, the steady increase in tidal action, triggered by the actions described above, has led to a major ecosystem change within the Ria de Aveiro, resulting today in

Major, minor depression and depressive symptoms are mostly underdiagnosed and undertreated in cardiovascular patients, although several studies have found that they