• Nenhum resultado encontrado

On a new sequence of q -Baskakov-Szasz-Stancu operators

N/A
N/A
Protected

Academic year: 2017

Share "On a new sequence of q -Baskakov-Szasz-Stancu operators"

Copied!
9
0
0

Texto

(1)

ISSN: 2347-2529

Available online atwww.ijaamm.com

International Journal of Advances in

Applied Mathematics and Mechanics

On a new sequence of

q

-Baskakov-Szasz-Stancu operators

Research Article

Sangeeta Garg

1,

1(Research Scholar) Department of Mathematics, Mewar University, Chittorgarh, Rajasthan,India

Received 02 July 2014; accepted (in revised version) 25 August 2014

Abstract:

This paper deals with Stancu type generalization ofq-analogue of Baskakov-Szasz operators introducing a new sequence of positiveq-integral operators. We show that it is a weighted approximation process in the polynomial space of continuous functions defined on[0,∞). An estimate for the rate of convergence and weighted approximation properties are also obtained for these operators.

MSC:

41A25• 41A35

Keywords:

Stancu type generalization• Continuity of functions•q-integrals• q-Baskakov-Szasz operators•Rate of Con-vergence•Weighted approximation.

c

2014 IJAAMM all rights reserved.

1.

Introduction

In approximation theory,q-calculus makes our research very interesting. In the year 1987, firstlyq-analogue of classical Bernstein polynomials was given by A. Lupas[11]. In 1997, the most importantq-analogue of the Bernstein polynomials was introduced by Phillips[13]. After that many researchers worked in this direction and proposed manyq-operators and motivated their different properties related to some special functions, number theory and convergence behaviour. Gupta et al. [6]established the generating functions of someq-basis functions. In the theory of approximation, the convergence is important. In this context we mention some results for the convergence ofq-discrete operators due to[2],[7]etc.

In the year 2012, Gupta-Kim-Lee[6]proposed theq-analogue of a new sequence of linear positive operators and modified the well known Baskakov-Szasz operators by Agrawal-Mohammad[1], which is given as

Dqn(f;x) = [n]q ∞ X

v=1 pqn,v(x)

Z q/(1−qn)

0

qvsqn,v1(t)f(t qv)dqt+p q

n,0(x)f(0), (1)

where

pnq,v(x) = 

n+v−1

v ‹

qv(v−1)/2 xv (1+x)−q(n+v) snq,v(t) =Eq(−[n]qt)

([n]qt)v [v]q!

In caseq=1, we get the original Baskakov-Szasz operators. It is observed that the above operators reproduce con-stant as well as linear functions.

Now we discuss Stancu type generalization[15]of the aboveq-Baskakov-Szasz operators. Very recently some results on Szasz-Mirakyan- Stancu operators are obtained by Maheshwari-Garg[12]. The Stancu variant is based on two

∗ Corresponding author.

E-mail address:sangeetavipin@rediffmail.com

(2)

parametersα,βsatisfying 0≤αβ. So for 0<q<1 andx∈[0,∞), we proposeq-Baskakov-Szasz-Stancu operators as

Mnq,α,β(f;x) = [n]q ∞ X

v=1

pnq,v(x)

Z q/(1−qn)

0

qvsnq,v1(t)f

qv [

n]qt+α [n]q+β

dqt+pnq,0(x)f

α [n]q+β

, (2)

where Baskakov operatorspnq,vand Szasz operatorssnq,vare defined as above.

The literature ofq-calculus is described in different branches of Mathematics and Physics. Recently theq-analogues of the Baskakov operators and their Kantorovich and Durrmeyer variants have been studied by Aral-Gupta[2],[3]

and Gupta-Radu[8]respectively. The history ofq-calculus and its use to obtain some results can be seen in Ernst[4]

and Kac-Cheung[9]. Some of the notations and concepts inq-calculus are recalled here. Hence for a real number

q(0, 1)andnN

(x;q)n= (1+x)nq =:(1+x)(1+q x)...(1+qn−1x), n=1, 2, ...

=: 1 n=0.

Theq-binomial coefficients are given by

• n v ˜

q

= [n]q!

[v]q![nv]q!, 0≤vn.

Theq-derivative of a functionf that isDqf is given by

(Dqf)(x) =

f(x)f(q x)

(1−q)x , x6=0

and(Dqf)(0) =f′(0)providedf′(0)exists.

Theq-Gamma integral is defined by Koornwinder[10]as

Γq(t) = Z 11q

0

xl−1Eq(−q x)dqx, l>0,

where

Eq(x) = ∞ X

n=0

qn(n2−1) x

n

[n]q!; Γq(l+1) = [l]qΓq(l), Γq(1) =1.

Furthermore,q-Beta function defined by Solo-Kac[14]is

Bq(l,m) =K(A,l) Z ∞/A

0

xl−1

(1+x)lq+mdqx,

whereK(x,l) =x1+1xl 1+1

x l

q(1+x)

1−l

q . AlsoK(x,l)is aq-constant, that is,K(q x,l) =K(x,l)and in case ofl to be

an integer, it is independent ofx. In particular for any integernN, we have

K(x,n) =qn(n2−1), K(x, 0) =1, B

q(l,m) =

Γq(l)Γq(m)

Γq(l+m)

.

For details onq-Beta functions, we refer the readers to Sole-Kac[14].

Now forfC[0,∞),q>0 andnN Aral-Gupta[2]introducedq-Baskakov operators are defined as

Bn,q(f;x) = ∞ X

v=0

•

n+v−1

v ˜

qv(v2−1) x

v

(1+x)nq+vf

[v]q

qv−1[n]

q

=:

∞ X

v=0

pnq,v(x)f [

v]q qv−1[n]

q

. (3)

(3)

2.

Moment estimations

In this section, we give moments and higher order moments for operators(3)and(1). Also we estimate the corre-sponding moments for new operators(2). Also we give higher order moments.

Lemma 2.1.

For the operators(3), the following equalities hold:

Bn,q(1;x) =1, Bn,q(t;x) =x,

Bn,q(t2;x) =x2+ x [n]q



1+x q ‹

.

Proves are along the lines of Aral-Gupta[2].

Lemma 2.2.

For the operators(1), the following equalities hold:

Dnq(1;x) =1, Dnq(t;x) =x,

Dnq(t2;x) =x2+ x [n]q



1+q+x q ‹

.

Proves can be seen in Gupta et al.[6].

Lemma 2.3.

For q∈(0, 1)and x∈[0,∞),we have

Dqn((tx)2;x) =x(x+q[2]q) q[n]q .

Lemma 2.4.

For q∈(0,),nN and0< α < β,the equalities hold

Mnq,α,β(1,x) =1, Mnq,α,β(t,x) =[n]qx+α [n]q+β ,

Mnq,α,β(t2,x) =

[n]q+q[n]2q

q([n]q+β)2x

2+(1+q+2α)[n]q ([n]q+β)2 x+

α [n]q+β

2

.

Proof. ObviouslyMnq,α,β(1,x) =1. Now we proceed as

Mnq,α,β(t,x) = [n]q ∞ X

v=1

pnq,v(x)

Zq/(1−qn)

0

qvsnq,v1(t)qv [

n]qt+α [n]q+β

dqt+p

q n,0(x)

 α

n+β

‹

= [

n]q [n]q+β

Dnq(t;x) + α [n]q+βD

q n(1;x)

=[n]qx+α [n]q+β ,

using Lemma2.2. In the similar way, we have

Mnq,α,β(t2,x) = [

n]q [n]q+β

2

Dnq(t2;x) + 2α[n]q ([n]q+β)2D

q n(t;x) +

α [n]q+β

2

= [

n]q [n]q+β

2

x2+ x

[n]q(1+q+ x q)

+ 2α[n]qx ([n]q+β)2+

α [n]q+β

2

=

[n]q+q[n]2q

q([n]q+β)2x

2+(1+q+2α)[n]q ([n]q+β)2 x+

α [n]q+β

2

.

(4)

Lemma 2.5.

For0< α < βand0<q<1,the central moments for our operators(2)are

Tnq,m,α,β(x) =Mnq,α,β((tx)m,x)

= [n]q ∞ X

v=1

pnq,v(x)

Z q/(1−qn)

0

qvsnq,v1(t)qm v

[n]qt+α

[n]q+βx m

dqt+p q n,0(x)

 α

n+βx

‹m

.

Then we have the first three moments as

Tnq,0,α,β(x) =1 (4)

Tnq,1,α,β(x) = αβx

[n]q+β (5)

Tnq,2,α,β(x) =

α [n]q+β

2 +

–

(1+q+2α) [n]q ([n]q+β)2−

2α [n]q+β

™

x+

– q[n]2

q+ [n]q ([n]q+β)2 −

2[n]q [n]q+β+1

™

x2. (6)

Proof. From Lemma2.2it is obvious thatTnq,0,α,β(x) =1. Further we get

Tnq,1,α,β(x) =Mnq,α,β((tx),x) =Mnq,α,β(t,x)−x Mnq,α,β(1,x)

= αβx [n]q+β,

Tnq,2,α,β(x) =Mnq,α,β((tx)2,x)

=Mnq,α,β(t2,x)−2x Mnq,α,β(t,x) +x2Mnq,α,β(1,x)

=

α [n]q+β

2 +

–

(1+q+2α) [n]q ([n]q+β)2−

2α [n]q+β

™

x+

–

q[n]2q+ [n]q

([n]q+β)2 −

2[n]q [n]q+β +1

™ x2.

Remark 2.1.

For 0< α < βand 0<q<1, it can be proved easily from above lemma that

Mnq,α,β((tx)2,x)≤x(x+q[2]q) q([n]q+β) .

Higher Order MomentsNow we consider for higher order moments for the operators(2).

Lemma 2.6 ([5]).

For0<q<1,we have for operators(3)

Bn,q(t3;x) =

1

[n]qx+

1+2q q2

[n+1]q

[n]2q x

2+ 1

q3

[n+1]q[n+2]q

[n]2q x

3

Bn,q(t4;x) =

1

[n]3qx+

1+3q+3q2 q3

[n+1]q

[n]3q x

2+(1+3q+5q2+3q3)

q5[2]

q

[n+1]q[n+2]q

[n]3q x

3

+(1+3q+5q

2+6q3+5q4+3q5+q6)

q6[2]

q[3]q[4]q

[n+1]q[n+2]q[n+3]q

[n]3q x

(5)

Lemma 2.7 ([6]).

Let0<q<1,then for operators(1)we have

Dnq(t3;x) =[n+1]q[n+2]q q3[n]2

q

x3+

1+2q q2

[n+1]q

[n]2q +

2+3q+q2 [n]q

x2+1+2q+2q

2+q3

[n]2q x

Dnq(t4;x) =(1+3q+5q

2+6q3+5q4+3q5+q6)

q6[2]

q[3]q[4]q

[n+1]q[n+2]q[n+3]q

[n]3q x

4

+

1+3q+5q2+3q3

q5[2]q +q(3+2q+q

2)

[

n+1]q[n+2]q [n]3q x

3 +    

1+3q+3q2 q3

[n+1]q

[n]q +

(1+2q)(3+2q+q2) q

[n+1]q

[n]3q

+q

2(3+4q+3q2+q3)

[n]2q +

q(3+4q+3q2+q3) [n]3q

    x2 + 1

[n]q +

q(3+5q+6q2+5q3+3q4+q5) [n]3q

x.

Lemma 2.8.

For q∈(0, 1)and0< α < β,we have

Mnq,α,β(t3;x) =

α [n]q+β

3 +

[ n]q [n]q+β

3[

n+1]q[n+2]q q3[n]2q x

3+

[ n]q [n]q+β

3

×

2+3q+q2 [n]q +

1+2q q2

[n+1]q

[n]q +

(q[n]q+1)3α

q[n]2q

x2

+ [

n]q [n]q+β

3

(1+2q+2q2+q3) +3(1+q)α [n]2q +

3α2 [n]2q

x

and

Mnq,α,β(t4;x) =

(1+3q+5q2+6q3+5q4+3q5+q6) q6[2]q[3]q[4]q

[n]q[n+1]q[n+2]q[n+3]q

([n]q+β)4

x4+

1

+3q+q2(5+4α[2]q) +3q3+q6(3+2q+q2)[2]q

q5[2]

q

[n]q[n+1]q[n+2]q

([n]q+β)4

x3

+{1+3q+3q

2

q3

[n+1]q[n]3q

([n]q+β)4 +

(1+2q)(4α+3q+2q2+q3) q2

[n+1]q[n]q

([n]q+β)4

+ [n]2q

([n]q+β)4+

[n]q

([n]q+β)4}x

2+• [n] 3

q

([n]q+β)4+2α{2+3α+2α

2+ (4+3α)q

+4q2+2q3} [n]2q

([n]q+β)4+q(3+5q+6q

2+5q3+3q4+q5) [n]q ([n]q+β)4

˜

x+

α [n]q+β

4

.

Proof.

Mnq,α,β(t3;x) = [n]q ∞ X

v=1

pnq,v(x)

Z q/(1−qn)

0

qvsnq,v1(t)q−3v

[n]qt+α

[n]q+β 3

dqt+p q n,0(x)

α [n]q+β

3

= [

n]q [n]q+β

3

Dqn(t3;x) + 3α [n]2q

([n]q+β)3D

q n(t

2;x) + 3α2[n]q ([n]q+β)3D

q n(t;x) +

α [n]q+β

3

=

[n]q

[n]q+β 3

([n+1]q[n+2]q q3[n]2

q

x3+

1+2q q2

[n+1]q

[n]2q +

2+3q+q2 [n]q

x2

+1+2q+2q

2+q3

[n]2q x) +

3α[n]2q

([n]q+β)3(x

2+ x

[n]q 

1+q+x q ‹

+ 3α

2[n]

q ([n]q+β)3x

+

α [n]q+β

3

(6)

using Lemma2.2and Lemma2.6. Collecting the coefficients ofx,x2,x3we have the required result. Similarly we find that

Mnq,α,β(t4;x) = [n]q ∞ X

v=1

pnq,v(x)

Z q/(1−qn)

0

qvsnq,v1(t)q−4v

[n]qt+α

[n]q+β 4

dqt+pnq,0(x)

α [n]q+β

4

=

[n]q

[n]q+β 4

Dqn(t4;x) + 4α [n]3q

([n]q+β)4D

q n(t

3;x) + 6α 2[n]2

q ([n]q+β)4D

q n(t

2;x)

+ 4α

3[n]

q ([n]q+β)4D

q n(t;x) +

α [n]q+β

4

=

[n]q

[n]q+β 4

(1+3q+5q2+6q3+5q4+3q5+q6) q6[2]

q[3]q[4]q

[n+1]q[n+2]q[n+3]q

[n]3q x

4

+

1+3q+5q2+3q3

q5[2]q +q(3+2q+q

2)

[

n+1]q[n+2]q [n]3q x

3+

•1+3q+3q2

q3

[n+1]q

[n]q + (3+4q+3q

2+q3)

q2 [n]2q +

q [n]3q

+[n+1]q [n]3q

×3+8q+5q2+2q3 q

˜ x2+

1

[n]q +

q(3+5q+6q2+5q3+3q4+q5) [n]3q

x

‹

+ 4α [n]3

q ([n]q+β)4

•[n+1]

q[n+2]q q3[n]2

q

x3+

1+2q q2

[n+1]q

[n]2q +

2+3q+q2 [n]q

x2

+1+2q+2q

2+q3

[n]2q x ˜

+ 6α

2[n]2

q ([n]q+β)4

x2+ x

[n]q 

1+q+x q

‹ + 4α

3[n]

q ([n]q+β)4x

+

α [n]q+β

4

using Lemmas2.2and Lemma2.6. Rearranging the coefficients ofx,x2,x3,x4we get the required lemma.

Definition 2.1 (Peetre’sK-functional).

Let us consider the spaceCB[0,∞)of all the continuous and bounded functionsf that isfCB[0,∞)and endowed

with the normkfk={|f(x)|:x∈[0,∞)}, then theK-functional

K2(f,δ) = inf

gW2 ∞

{kfgk+δkg′′k},

whereδ >0 andW2 ={gCB[0,∞):g′,g′′∈CB[0,∞)}. Also there exists an absolute constantC >0 such that K2(f,δ)≤2(f,

p

δ), where

ω2(f,

p

δ) = sup 0<h<pδ

sup

x∈[0,∞)|

f(x+2h)−2f(x+h) +f(x)|

is the second order modulus of smoothness offCB[0,∞).

Also, forfCB[0,∞)a usual modulus of continuity is given by

ω(f,δ) = sup 0<h<δ

sup

x∈[0,∞)|

f(x+h)−f(x)|.

Definition 2.2 (Rate of convergence).

LetBx2[0,∞)be the set of all functions f ∈[0,∞)satisfying the condition|f(x)| ≤Mf(1+x2),Mf is a constant

depending onf. We denote the subspace of all continuos functions byCx2[0,∞)belonging toBx2[0,∞). Again, we

supposeCx∗2[0,∞)be the subspace of all the functionsfCx2[0,∞), for which limx→∞1f+(xx)2is finite. The norm on Cx∗2[0,∞)is defined askfkx2=supx→∞|f

(x)|

1+x2. We denote the usual modulus of continuity off on the closed interval

[0,a]fora>0, by

ωa(f,δ) = sup |tx|≤δ

sup

x,t∈[0,a]|

f(t)−f(x)|.

(7)

Definition 2.3.

Here we define some classes of functions

If there exists some constantMf >0 corresponding to functionf, then we have

Cm[0,∞) =:

fC[0,):|f(x)|<Mf(1+xm);kfkm:= sup x∈[0,∞)

|f(x)|

1+xm

,

Cm∗[0,) =:

§

fCm[0,∞): lim x→∞

|f(x)|

1+xm <∞,∀mN ª

,

3.

Direct estimates

In this section we give some direct theorems and asymptotic formula using our operators(2).

Theorem 3.1.

Let fCB[0,∞)and0<q<1.Then for all x∈[0,∞)and nN,there exists an absolute constant C>0such that

|Mnq,α,β(f;x)f(x)| ≤2 f,

v u

tx(x+q[2]q q([n]q+β)

!

.

Proof. LetgW2 andx,t∈∈[0,), then by Taylor’s expansion

g(t) =g(x) + (tx)g′(x) + Z t

x

(tw)g′′(w)d w.

From Lemma2.5and Remark2.1

Mnq,α,β(g(t);x)−g(x) =g′(x)Mnq,α,β(tx;x) +Mnq,α,β Z t

x

(tw)g′′(w)d w;x

.

UsingRt

x(tw)g′′(w)d w≤(tx)

2kg′′k, we have

|Mnq,α,β(g(t);x)−g(x)|=Mnq,α,β(tx;x)g′(x) +Mnq,α,β((tx)2;x)kg′′k

x(x+q[2]q) q([n]q+β)kg

′′k.

Also from(2)

|Mnq,α,β(f;x)|= [n]q ∞ X

v=1

pnq,v(x)

Z q/(1−qn)

0

qvsnq,v1(t) f

qv

[

n]qt+α [n]q+β

dqt

+pnq,0(x) f

α [n]q+β

≤ kfk. Hence we can have

|Mnq,α,β(f(t);x)f(x)| ≤ |Mnq,α,β(fg;x)(fg)(x)|+|Mnq,α,β(g;x)g(x)|

≤ kfgk+x(x+q[2]q) q([n]q+β)kg

′′k.

Taking infimum overallgW2 and then from Peetre’sK-function, we get

|Mnq,α,β(f(t);x)−f(x)| ≤2 f,

v u

tx(x+q[2]q q([n]q+β)

!

.

Hence the required theorem.

Theorem 3.2.

Let fCx2,q∈(0, 1)andω(a+1(f,δ))be its modulus of continuity on the finite interval[0,a+1]⊂[0,∞),∀a>0.Then for every n>2,we have

kMnq,α,β(f)−f)k ≤6Mfa(1+a

2)(a+2)

q([n]q+β) +2ω(f, v u

ta(a+q[2]q) q([n]q+β).

(8)

Proof. Forx∈[0,a]andt>a+1, astx>1, we have

|f(t)−f(x)| ≤Mf(2+x2+t2) ≤Mf(2+3x2+ (tx)2)

≤6Mf(1+a2)(tx)2. (7)

Forx∈[0,a]andta+1, we have

|f(t)f(x)| ≤ωa+1(f,|tx|)≤



1+|tx| δ

‹

ωa+1(f,δ), δ >0 (8)

From(7)and(8), forx∈[0,a]andt≥0, we have

|f(t)−f(x)| ≤6Mf(1+a2)(tx)2+ 

1+|tx| δ

‹

ωa+1(f,δ). (9)

Hence

|Mnq,α,β(f;x)−f(x)| ≤Mnq,α,β(|f(t)−f(x)|;x)

≤6Mf(1+a2)M q

n,α,β((tx)2;x) +ωa+1(f,δ)



1+1 δM

q

n,α,β((tx)2;x)1 /.

Therefor by using Schwarz inequality and Remark 1,

|Mnq,α,β(f;x)−f(x)| ≤6Mf(1+a

2)(x(x+q[2]

q)

q([n]q+β) +ωa+1(f,δ) 1+

1

δ v u

tx(x+q[2]q) q([n]q+β)

!

≤6Mfa(1+a

2)(a+2)

q([n]q+β) +ωa+1(f,δ) 1+

1

δ v u

ta(a+q[2]q) q([n]q+β)

!

.

Takingδ= r

a(a+q[2]q)

q([n]q+β), we get the required assertion.

Theorem 3.3.

Let qn ∈(0, 1),then the sequence Mnqn,α,β(f)converges to f uniformly on[0,A],for each fC2∗[0,∞)if and only if limn→∞qn=1.

Its proof is obvious as q,qn∈(0, 1).

Theorem 3.4.

If qn∈(0, 1),qn →1and qnn →1as n→ ∞for any fC2∗[0,∞)such that f′,f′′∈C2∗[0,∞),the following equality

holds

lim

n→∞[n]qn(M

qn

n,α,β(f;x)−f(x)) = (αβx)f′(x) +

1

2x(x+2)f

′′(x).

Proof. Assume thatf,f′,f′′∈C2∗[0,)for allx∈[0,). Therefore by Taylor’s formula

f(t) =f(x) +f′(x)(tx) +1

2f

′′(x)(tx)2+r(t;x)(tx)2, (10)

wherer(t,x)is the Peano form of the remainder andr(t,x)C2∗[0,). Also limtxr(t,x) =0. Now applying the

operatorsMqn

n,α,βin(10), we get [n]qn(Mqn

n,α,β(f;x)−f(x)) =f′(x)[n]qnM

qn

n,α,β(tx;x) +

1 2f

′′(x)[n] qnM

qn

n,α,β((tx)

2;x)

+[n]qnMqn

n,α,β(r(t;x)(tx)

2;x).

By the Cauchy-Schwarz inequality, we have

Mqn

n,α,β(r(t;x)(tx)

2;x)rMqn

n,α,β(r2(t;x);x) r

Mqn

n,α,β(((tx)2;x)) (11)

Asr2(x;x) =0 andr2(.;x)∈C2∗[0,), it follows thatx∈[0,A]

l i mn→∞Mnqn,α,β(r

2(t;x);x) =r2(x;x) =0 (12)

uniformly and so RHS of(11)becomes zero. Therefore we get

l i mn→∞[n]qn(M

qn

n,α,β(f;x)−f(x)) =l i mn→∞f′(x)[n]qnM

qn

n,α,β(tx;x) +

1 2f

′′(x)[n] qnM

qn

n,α,β((tx)

2;x)

+[n]qnMqn

n,α,β(r(t;x)(tx)

2;x)

= (αβx)f′(x) +1

2x(x+2)f

′′(x)

(9)

References

[1] P. N. Agrawal, A. J. Mohammad, Linear combination of a new sequence of linear positive operators, Rev. Uniøsn Mat. Argent. 44(1) (2003) 33-41.

[2] A. Aral, V. Gupta, Generalizedq-Baskakov operators, Math. Slovaca 61(4) (2011) 619-634.

[3] Aral Ali, V. Gupta, On the Durrmeyer type modification of theq-Baskakov type operators, Nonlinear Analysis 72 (2010) 1171-1180.

[4] T. Ernst, The history ofq-calculus and a new method, U.U.D.M Report 16 (2000) ISSN 1101-3591, Department of Mathematics, Upsala University.

[5] Z. Finta, V. Gupta, Approximation properties ofq-Baskakov operators, Cent. Eur. J. Math. 8(1) (2010) 199-211.

[6] V. Gupta, Taekyun Kim, Sang-Hun Lee,q-analogue of a new sequence of linear positive operators, Journal of Inequalities and Applications (2012) 2012-:144.

[7] V. Gupta, Some approximation properties onq-Durrmeyer operators, Applied Math Comp. 197(1) (2008) 172-178.

[8] V. Gupta, C. Radu, Statistical approximation properties ofq-Baskakov-Kantorovich operators, Cent. Eur. J. Math. 7(4) (2009) 809-818.

[9] V. G. Kac, P. Cheung, Quantum Calculus, Universitext. Springer, New York, 2002.

[10] Koornwinder, TH,q-special functions, a tutorial. In: Gerstenhaber, M, Stasheff, J (eds.) Deformation Theory and Quantum Groups with Applications to Mathematical Physics. Contemp. Math. 134 (1992) Am. Math. Soc., Providence.

[11] A. Lupas, Aq-analogue of the Bernstein operator, in Seminar on Numerical and Statistical Calculus (Cluj-Napoca, 1987), 85-92. Preprint, 87-9 Univ. Babes-Bolyai, Cluj. MR0956939 (90b:41026).

[12] P. Maheshwari, S. Garg, Higher order iterates for Szasz Mirakyan Stancu operators, Stud. Univ. Babe¸s-Bolyai Math. 59(1) (2014) 69-76.

[13] G. M. Phillips, Bernstein polynomials based on theq-integers, Ann. Numer. Math. 4 (1987) 511-518.

[14] A. De Sole, V. G. Kac, On Integral representations ofq-Gamma andq-Beta functions, AttiAccad. Naz. Lincei Cl. Sci.Fis. Mat. Natur. Rend. Lincei, (9) Mat. Appl. 16(1) (2005) 11-29.

[15] D. D. Stancu, Approximation of functions by means of new generalized Bernstein operators, Calcolo. 20 (1983) 211-229.

Referências

Documentos relacionados

Apresenta-se um caso de TBL perianal e anal num doente com infec ¸ão VIH cuja histologia não revelou transformac ¸ão maligna e para o qual a terapêu- tica cirúrgica isolada

O presente estudo teve como principal objetivo comparar o nível de disclosure anticorrupção em uma amostra de empresas do ramo empreiteiro que atuam no Brasil, separando-as

A universidade para fortalecer seu processo de expansão e democratização do ensino deve contemplar políticas institucionais de bolsas de pesquisas e mo-

Em termos gerais, esta pesquisa tem como objetivo verificar o padrão de associação existente entre o fator cosmopolita/iocalista e os valores políticos/acadêmicos

Fi- nally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal

Hemibrycon divisorensis is distinguished from all other species of the genus by the presence of a wide black asymmetrical spot covering the base of caudal-fin rays and extending

Trichomycterus castroi , a new species of trichomycterid catfish from the Rio Iguaçu of Southeastern Brazil (Teleostei: Siluriformes). Ichthyological Exploration of Freshwaters,

Dividimos o trabalho em três partes: no primeiro capítulo, trazemos o Brillat-Savarin fora da imagem de gastrônomo mediante a verificação do seu capital social, acumulado através