• Nenhum resultado encontrado

THERMAL SIMILARITY OF SPACE OBJECTS OF STANDARD CONFIGURATIONS

N/A
N/A
Protected

Academic year: 2017

Share "THERMAL SIMILARITY OF SPACE OBJECTS OF STANDARD CONFIGURATIONS"

Copied!
7
0
0

Texto

(1)

6

ЕХ ИЧЕ ИЕ

ENGINEERING AND TECHNOLOGIES

И Е Ы

И

ЕХ

ГИИ

520.224.2. 224.4

.

.

, . .

- А. . , - , , dzitoi8@gmail.com

,

-. , .

,

-.

-, .

, . Э

.

,

. 200 40000

– .

.

: , ,

-, ,

-, .

THERMAL SIMILARITY OF SPACE OBJECTS

OF STANDARD CONFIGURATIONS

A.M. Dzitoev , S.I. Khankov

Mozhaisky Military Space Academy, Saint Petersburg, Russia, dzitoi8@gmail.com

Thermal similarity of objects of various configuration is defined by equality of their stationary surface average temperatures in the Earth shadow that is equivalent to equality of their effective irradiance coefficients by own thermal radiation of the Earth. Cone, cylinder and sphere are chosen among standard configurations. Unlike two last figures, calculation of irradiance coefficient for conic object is the most difficult and contains a number of uncertainties. The method of calculation for inte-grated and effective irradiance coefficients of space object with a conic form is stated which is typical for fragments of spacecrafts. Integrated irradiance coefficients define the average thermal balance on a lateral surface of the cylinder and cone, and also full power balance on a sphere surface. Effective irradiance coefficients define a full falling specific stream of the Earth’s radiation on the whole surface of cylindrical or conic object taking into account their bases. By data about effective irradiance coefficients, the average stationary temperatures of space objects in the Earth shadow are defined, as well as on the trajectory part illuminated by the Sun taking into account two additional components of power balance – direct sunlight and reflected by the Earth. Researches were conducted in the height change range for an orbit from 200 to 40000 km depending on a tilt angle of the cylinder and cone axis relative to zenith-nadir line. Similarity conditions for the cylinder and cone are defined at equal ratio sizes of the figure height to base diameter.

Keywords: space object of the conic, cylindrical and spherical form, effective irradiance coefficient of space object, specific thermal stream of the Earth’s radiation, thermal balance of space object, thermal similarity of space objects.

(

)

[1–4]

,

.

Э

(

) [5–10]

.

[1, 6],

[6–10].

,

,

(

),

(

Э

)

[5].

Э

(

)

-.

А

-,

(2)

Э

,

(

,

).

-[5, 6, 9].

,

Э

[6],

,

-,

Э

,

239

/

2

[11, 12].

Э

-,

,

Э

,

.

Э

-,

.

. 1

-–

(ZN).

. 1. – (ZN)

( ): – ;

– ,

; – .

ψk – ; α – ,

;  – ; ψb – ;

θ0 – , . АВ

,

ψ

k

-,

.

,

,

.

. 1, ,

,

,

,

α

= 0.

,

ψ

k

,

ψ

k

.

. 1, ,

,

.

,

α

,

АВ

.

0 =

α

+

.

ψ

b

,

АС

.

. 1, ,

,

,

ZN

α

= 90º.

,

ZN,

ψ

b = 90º.

Э

0

α

180º.

[1, 6]

-.

N N N

A O

C

 

 k

b

k

k

Z Z Z

B

(3)

φ

ψ

:

0x

  

0

ψ

/2 –

0;

φ

= 0

/2 +

0 <

ψ

,

(1)

ψ

/2 –

0 <

ψ



/2 +

0

0

0 2

2

1

1

1

arcsin

arcsin

1

2

1

x

Z

Y

Z

x

 

 

  

,

(2)

Y Z –

,

2 0 1 1 1 x Y x   

;

Y

1

;

2 0

Z

  

x

;

Z0

. (3)

,

ψ

,

0

-,

,

0,

,

cos sin cos k sin cos

x       

;

 arccosx

;

2

0

R

R

h

  

;

 0 arcsin 0

,

(4)

;

-

;

ψ

k

,

,

; R = 6371

; h –

.

1

Y

Z < 0

(2)

Y =

1 Z = 0.

(4)

x

.

1.

= 0

=

х

ψ

ψ

k

,

,

.

1.

= 0 (

)

xx0 sinβ

0

0,

(2).

2.

=

(

)

xxsinβ

0

0,

(2),

0

/2

,

(1):

0x 0sin

     

.

1.

=

/2 (

)

x

x

g

cos cos

k

.

1.

,

0

/2 –

0,

ψ

.

,

:

0

ψ

/2 –

0

,

(1),

0

x

g 0

cos cos

k

  

 

;

(5)

/2 –

0

ψ

/2 +

0

(2);

/2 +

0 <

ψ

φ

= 0.

,

(2) (5),

.

2.

/2 –

0

/2

(2)

ψ

0

ψ

2

,

2

.

(

= 0

=

)

= 0

-,

n

(

),

.

[6]

0 0 0

1

arcsin

1

n

 

   

 

(4)

=

/2,

n

-,

0,

(4).

0

(4).

(

=

/2)

(6)

.

Э

,

[5],

,

,

-

.

Э

-

int

(

)

-.

0

θ

0 +

(2)

2

,

2

.

θ

0 +

<

<

θ

0 –

φ

1

φ

2

(1) (2)

,

.

θ

0 –

(2)

2

,

2

.

Э

[6]

sin

sin 1

b int

k

   

 

 

.

(7)

b

int

h

,

int

.

Э

int

,

b

,

(1)

(2)

(

),

-

h.

int

200

h

40000

, 0º <

45º.

. 2

h

.

= 0º

= 180º

.

. 2.  = 15°

( ),  = 30° ( )  = 45° ( ).

200, 2000 10000

. 2

,

int

= 180º

= 0º

.

95º

110º

, . .

.

int

(

)

,

int

0,7

0,6

0,5

0,4

0,3

0,2

0,1

(5)

.

,

,

.

Э

,

k

(

)

-

k

(

= 90º),

k

(

= 0º) =

k

(

= 180º).

. 3

k

(

)

h = 600

.

Э

.

k

,

.

. 3

:

=57º

=123º,

= 1

= (

– 1)

,

(

);

;

k

;

= 90º

(

-);

< 15º

Э

= 90º,

k

= 0º

= 180º.

. 3. Э h = 600

 = 5° ( ),  = 15° ( ),  = 30° ( )

 = 45° ( - )

,

.

. 4

Э

,

.

,

, . .

,

-0,5ctg

n 

.

(8)

,

. 4,

,

:

11º

Э

(

3%)

Э

,

(8);

18º

21º

k

(

)

(

,

0º, 40º, 90º, 140º 180º),

k

180º

4,

;

11º (

n,

2,8

n <

),

18º

21º;

= 57º

= 123º

-,

.

k

0,35

0,34

0,33

0,32

0,31

0,30

0,29

0,28

0,27

0,26

(6)

. 4. Э ( )

( ), ( 4) 600 .

: 1 –  = 5º; 2 –  = 10º; 3 –  = 19º; 4 –

Э

,

[6]:

0

0, 5 1 1

s

    

.

,

2000

,

-,

,

-,

.

(1)–(4),

-.

(1)

(2)

,

,

.

Э

(7).

(3),

,

Э

-

.

Y =

1

Z = 0.

,

(

)

0 <

11º

200 < h < 2000

,

3%.

18º

21º

-.

= 57º

= 123º

-,

.

,

,

[5],

-,

.

,

-,

,

-,

.

,

-,

.

.

i

20 40 60 80 100 120 140 160  0,31

0,30

0,29

0,28

0,27

4

3

2

(7)

Reference

1. Modelirovanie teplovykh rezhimov kosmicheskogo apparata i okruzhayushchei ego sredy [Modeling of the thermal re-gimes of the spacecraft and its environment]. Ed. G.P. Petrov. Moscow, Mashinostroenie Publ, 1971, 382 p.

2. Duboshin G.N. Nebesnaya mekhanika. Osnovnye zadachi i metody [Celestial mechanics. The main tasks and methods]. Moscow, Nauka Publ., 1968, 800 p.

3. Chebotarev G.A. Analiticheskie i chislennye metody nebesnoi mekhaniki [Analytical and numerical methods of celestial mechanics]. Moscow–Leningrad, Nauka Publ., 1965, 367 p.

4. Smart W.M. Celestial Mechanics. NY, John Wiley, 1961, 381 p. (Russ. ed.: Smart U.M. Nebesnaya mekhanika. Moscow, Mir Publ., 1965, 502 p.)

5. Dzitoev A.M., Hankov S.I. Metodika rascheta koeffitsientov obluchennosti tsilindricheskogo kosmicheskogo obˊekta podsvetkoi Zemli [Calculation methods for irradiance coefficients of cylindrical space object by the Earth radiation]. Sci-entific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 1 (89), pp. 145–150.

6. Kamenev A.A., Lapovok Ye.V., Khankov S.I. Analiticheskie metody rascheta teplovykh rezhimov i kharakteristik sobstvennogo teplovogo izlucheniya ob"ektov v okolozemnom kosmicheskom prostranstve [Analytical methods for calcu-lating the thermal conditions and the characteristics of the intrinsic thermal radiation of objects in near-Earth space]. St. Petersburg, L.T. Tuchkov Scientific Technical Center, 2006, 186 p.

7. Bayova Yu.V., Lapovok Ye.V., Hankov S.I. Metodika rascheta nestatsionarnykh temperatur kosmicheskogo ob’ekta na krugovykh orbitakh [A method for calculation of non-stationary temperature of space object on a circular orbit]. Izv. vuzov. Priborostroenie, 2013, vol. 56, no. №12, pp. 51–56.

8. Bayova Yu.V., Lapovok Ye.V., Hankov S.I. Metodika rascheta nestatsionarnykh temperatur kosmicheskogo ob"ekta, dvizhushchegosya po ellipticheskoi orbite [Calculation method of the transient temperatures for moving space object on the el-liptical orbit]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 6 (88), pp. 67–72. 9. Bayova Yu.V., Lapovok Ye.V., Hankov S.I.Analytical technique for calculating the heat flexes in near-Earth space that

form the thermal regime of space telescopes. Journal of Optical Technology, 2013, vol. 80, no 5, pp. 283–288. doi: 10.1364/JOT.80.000283

10.Bayova Yu.V., Lapovok Ye.V., Khankov S.I. Metod podderzhaniya zadannogo temperaturnogo diapazona kosmicheskogo apparata, dvizhushchegosya po krugovoi orbite s zakhodom v ten' Zemli [Method of maintaining the specified tempera-ture range of the spacecraft moving in a circular orbit with entering the Earth's shadow]. Izv. vuzov. Priborostroenie, 2013, vol. 56, no. 7, pp. 56–61.

11.Keihl J.T., Trenberth K.E. Earth’s annual global mean energy budget. Bulletin of the American Meteorological Society, 1997, vol. 78, no. 2, pp. 197–208.

12.Trenberth K.E., Fasullo J.T., Keihl J. Earth's global energy budget. Bulletin of the American Meteorological Society, 2009, vol. 90, no. 3, pp. 311–323.

Д т е А а атМ р ч – , - А. . ,

-, , dzitoi8@gmail.com

Ха Сер е И а ч – , ,

-А. . , - , ,

Leva0007@rambler.ru

Azamat M. Dzitoev – postgraduate, Mozhaisky Military Space Academy, Saint Petersburg, Russia,

dzitoi8@gmail.com

Sergey I. Khankov – D.Sc., chief staff scientist, Mozhaisky Military Space Academy, Saint

Peters-burg, Russia, Leva0007@rambler.ru

Referências

Documentos relacionados

revelaram que estes são encorajados a educar-se sobre as siglas online comuns e sites de controlo parental, promover discussões sobre o comportamento online aceitável, entender as

In view of the above, several studies have already been carried out, but without a categorical proof of the superiority of efficacy of these simplified materials in the

• Follicular growth rates and the sizes of the dominant follicle at the onset of estrus and at ovulation are detailed in single and multiple ovulations. • The total

This method is used for thermal insulation materials, EN 12090 (2013), normally not very resistant to shear, when compared for instance with balsa wood. The procedure is not

Nome - Titulacao - Instituicao Professor (a).. Em primeiro lugar, a Deus, que permitiu minha existencia, ajudando-me a enfrentar todos os obstaculos do dia-dia, em especial, por

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

The main goal of our study was to identify the preoperative risk factors and to develop and validate risk- prediction models which could be used as instruments to provide information

Such a museum, ( in the physical sense ), which in ultimate analysis is always a support to the object, a particularly evident situation when Daniel Buren exhibits as an