• Nenhum resultado encontrado

Study of the Dijet Mass Spectrum in pp -> W + jets Events at root s=7 TeV

N/A
N/A
Protected

Academic year: 2017

Share "Study of the Dijet Mass Spectrum in pp -> W + jets Events at root s=7 TeV"

Copied!
16
0
0

Texto

(1)

Study of the Dijet Mass Spectrum in

pp

!

W

þ

jets Events at

ffiffiffi

s

p

¼

7 TeV

S. Chatrchyanet al.* (CMS Collaboration)

(Received 16 August 2012; published 21 December 2012)

We report an investigation of the invariant mass spectrum of the two jets with highest transverse momentum inpp!Wþ2-jet andWþ3-jet events to look for resonant enhancement. The data sample corresponds to an integrated luminosity of5:0 fb 1collected with the CMS detector at ffiffiffi

s

p

¼7 TeV. We find no evidence for the anomalous structure reported by the CDF Collaboration, and establish an upper limit of 5.0 pb at 95% confidence level on the production cross section for a generic Gaussian signal with mass near 150 GeV. Additionally, we exclude two theoretical models that predict a CDF-like dijet resonance near 150 GeV.

DOI:10.1103/PhysRevLett.109.251801 PACS numbers: 12.15.Ji, 12.38.Qk, 13.85.Rm, 14.80. j

The CDF Collaboration reported evidence for an excess in the mass range 120–160 GeV in the invariant mass (mjj) spectrum of the two leading transverse-momentum (pT)

jets produced inpp !Wþ2-jet events with a cross sec-tion of 4 pb [1]. The D0 Collaboration carried out a similar analysis but did not confirm the CDF result, instead setting a 95% confidence level (C.L.) upper limit of 1.9 pb on the cross section [2]. This Letter details the search for a bump-like enhancement in themjjspectrum in events with aW

boson using5:0 fb 1 of data collected from pp collisions

atpffiffiffis

¼7 TeVwith the Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider (LHC) during 2010 and 2011.

We search for a resonance with a width consistent with detector resolution as reported by CDF. We further inves-tigate three representative models, a technicolorT from

the decay of a technicolorT[3], a leptophobicZ0

decay-ing to two jets [4], and the standard model (SM) Higgs boson (mH ¼150 GeV) produced in association with aW

boson (referred to asWH production) and decaying to a pair of jets. For the unknown state with detector resolution, we follow the convention used at the Tevatron of using the conservativeWHsimulation for analysis-dependent quan-tities like efficiencies and acceptances. TheWH produc-tion cross secproduc-tion at the LHC is negligible compared to contributions from other SM processes, which overwhelm any contribution to this analysis fromWH !‘jjdecays formH 125 GeV[5,6].

A detailed description of the CMS experiment can be found in Ref. [7]. The central feature of the CMS detector is a superconducting solenoid, of 6 m internal diameter, that produces an axial magnetic field of 3.8 T. Located

within the field volume is the silicon pixel and strip tracker extending up to jj ¼2:5, as well as a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass and scintillator hadronic calorimeter (HCAL), both extend-ing up tojj ¼3. Outside the field volume in the forward region (3<jj<5) is an iron and quartz-fiber hadronic calorimeter. Muons are measured in gas-ionization detec-tors embedded in the steel return yoke outside the solenoid, in the pseudorapidity range jj<2:4. The CMS coordi-nate system has its origin at the center of the detector, with thezaxis pointing along the direction of the counterclock-wise proton beam. The azimuthal angle is denoted as , the polar angle as , and the pseudorapidity is defined as

¼ ln½tanð=2ފ.

We employ selection criteria similar to those used at the Tevatron [1,2], but modified to adapt to the higher background rates and different experimental conditions at the LHC. We also place more stringent requirements on the jet kinematics, as suggested in Ref. [8], to enhance a signal compared to the irreducible W plus jets background.

Events are selected with one well-identified and isolated lepton (muon or electron), large missing transverse energy

6

ET, and exactly two or exactly three high-pTjets. The data

were collected with a suite of single-lepton triggers, mostly with apTthreshold of 24 GeV for muons and 25–32 GeV

for electrons. The trigger efficiency for the selected muons (electrons) is about 94% (90%). We reconstruct muon candidates in the regionjj<2:1by combining informa-tion from the silicon tracker and the muon detectors by means of a global fit. We identify electron candidates within jj<1:44 and 1:57<jj<2:5 as clustered en-ergy deposits in the electromagnetic calorimeter that are matched to tracks. Muon and electron candidates need to fulfill quality criteria established for the measurement of the inclusive W andZ cross sections [9]. In addition, all leptons must be well-separated from hadronic activity in the event. Jets within an-cone of radius 0.3 around a lepton candidate are removed.

*Full author list given at the end of the article.

(2)

The muon (electron) transverse momentum must exceed 25 (35) GeV, and6ETmust be greater than 25 (30) GeV in

the muon (electron) analysis. The transverse mass MT of

eachW candidate must be greater than 50 GeV, where

MT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p‘

T6ET½1 cosð‘ E6 Tފ

q

andandE6 Tare the azimuthal angles of the lepton and

6

ET, respectively. Events with more than one identified

lepton are vetoed.

We reconstruct jets and6ET[9,10] with the particle-flow algorithm [11], which combines information from several subdetectors. The jet finding uses the anti-kT clustering

algorithm [12] with a distance parameter of 0.5. We require

jjetj<2:4 to ensure that they lie within the tracker

acceptance, and a minimum jet pT of 30 GeV. Jets must

satisfy identification criteria that eliminate jet candidates originating from noisy channels in the hadron calorimeter [13]. Jet-energy corrections are applied to account for the nonlinear response of the calorimeters to the particle ener-gies and other instrumental effects. These corrections are based on in situ measurements using dijet, þjet, and

Zþjet data samples [14]. Overlapping minimum-bias events from other pp collisions (pileup) and the underlying event can contribute additional energy to the reconstructed jets. The median energy density due to pileup is evaluated in each event and the corresponding energy is subtracted from each jet [15]. In addition, tracks that do not originate from the primary vertex are not considered for jet cluster-ing [16]. We verify that the procedures successfully remove the dependence of jet response on the number of interactions in a single event. The jetpTresolution varies

from 15% atpT¼40 GeVto 6% atpT¼400 GeV[14]. We evaluate the mass resolutionjjfor a selected jet pair using simulation and verify it using hadronic W decays in data. We findjj to be 10% ofmjj for masses around

150 GeV.

We requirekp~Tj1þp~

Tj2k>45 GeVandjðj1; j2Þj< 1:2, where the jets are numbered in order of decreasingpT.

We retain events with exactly two or exactly three jets satisfying pT>30 GeV and with the leading jet having pT>40 GeV and pointing more than 0.4 rad in azimuth

from the direction of the E6 T. The selected jets and the

lepton from theWdecay must originate from the same pri-mary vertex. Additionally, we impose0:3< pTj2=m

jj<0:7

to take advantage of the Jacobian nature of resonant dijet production as observed in simulation studies compared with nonresonantW plus jets production.

W production with two or more jets dominates the selected sample. Smaller contributions come from top-pair and single-top decays, Drell-Yan events with two or more jets, multijet production, andWW andWZdiboson production where oneW decays into leptons and the other

W orZdecays into quarks.

The shapes of the mjj distributions for background processes are modeled using samples of simulated events. The MADGRAPH5 1.3.30 [17] event generator produces parton-level events with aWboson and up to four partons on the basis of matrix-element (ME) calculations. (The Tevatron experiments used the ALPGEN generator [18].) The ME-parton shower matching scale is taken to be 20 GeV [19], and the factorization and renormalization scales are set to q2 ¼M2

Wþp2T;W. Samples of tt and

Drell-Yan events are also generated with MADGRAPH.

Single-top production is modeled with POWHEG 1.0 [20]. Multijet and diboson samples (WW, WZ,ZZ) are gener-ated with PYTHIA 6.422 [21]. PYTHIA provides the parton shower simulation in all cases, with parameters of the underlying event set to the Z2 tune [22]. The set of parton distribution functions used is CTEQ6LL [23]. A GEANT4 -based simulation [24] of the CMS detector is used in the production of all Monte Carlo (MC) samples. Multiple proton-proton interactions within a bunch crossing are simulated, and the triggers are emulated. All simulated events are reconstructed and analyzed with the same software as data.

We generate signal samples for the WH model using

PYTHIA, with parameters corresponding a SM Higgs boson with mH ¼150 GeV. We use PYTHIA for technicolor

generation as well. We generate leptophobic Z0 with

MADGRAPH. The authors of Refs. [3,4] provided values for masses and other parameters of the technicolor andZ0

models that would best correspond to the signal observed by CDF.

We determine the contributions of the known SM pro-cesses to the observed mjj spectrum by means of an extended unbinned maximum-likelihood fit in the range between 40 GeV and 400 GeV. We fit separately in four event categories,f ; eg f2-jet;3-jetg, because the back-ground compositions differ. Themjj signal region, 123 to 186 GeV, corresponding to 2jj, is excluded from this fit in order to arrive at an unbiased estimate of a possible resonant enhancement in this region.

TableIlists the SM processes included in the fit. TheW

plus jets normalization is a free fit parameter because it is by far the dominant background. We allow the

TABLE I. Treatment of background mjj shapes and normal-izations in a fit to the data. The background normalnormal-izations are constrained within the fit to Gaussian distributions with the listed central values and widths.

Process Shape Constraint on normalization

W plus jets MC and data Unconstrained

Diboson MC 61:2 pb10%ðNLOÞ[25]

tt MC 163 pb7%ðNLOÞ[26]

(3)

normalizations of the other background components to vary within Gaussian constraints around the central values also listed in Table I. The central values for all proce-sses except multijet come from next-to-leading-order (NLO), leading-log (NNLL), or next-to-NLO (Nnext-to-NLO) calculations, and the constraints reflect the published uncertainties. We derive templates for the mjj

distribution for each background from simulation except for the multijet events, which contribute when jets are misidentified as leptons. In a separate fit to events that fail the lepton isolation requirements, we determine the central value of the multijet normalization, the con-straint on the normalization and the template for the

mjj distribution [9]. The fit to data determines the

correla-tions among the various fit parameters.

The default CMSMADGRAPHsample of the dominantW

plus jets background does not describe well themjj spec-trum in themjj sidebands. Four alternative samples ofW

events, with the scales andqincreased and reduced by a factor two with respect to those of the default, fail to provide significant improvement. Thus, we employ an empirically driven combination of three shapes to describe this component in the fit model,

FWþjets¼FWþjetsð 20; q02Þ þFWþjetsð 02; q20Þ

þ ð1 ÞFWþjetsð 2 0; q20Þ;

where FWþjets denotes the mjj shape from simulation.

The parameters 0 ( 0) and q0 (q0) correspond to the

default (alternative) values of andq, respectively, while fractional contributionsandare free to vary between 0 and 1. We take 0¼2 0 or0:5 0 (q0¼2q0or0:5q0),

depending on which alternative sample provides a better fit to data. Furthermore, we verify, via pseudoexperiment

simulations generated with an alternate shape, that the function in the above equation has sufficient freedom to describe theW plus jets shape.

Figure1(a) shows the observed mjj distribution for all

four event categories combined, together with the fitted projections of the contributions of various SM processes. Figure1(b)shows the same distribution after subtraction of all SM contributions from data except electroweak diboson

WW=WZevents. No peak is visible in the spectrum except that near 80 GeV due to diboson events. Figure1(c)shows the bin-by-bin pull. TableIIpresents the yields of the SM components obtained from the fit. The sum of all the contributions is compared to the number of observed events. All numbers except those in the last two rows are for the mjj range of 40 to 400 GeV. The last two rows compare the observed number of events and the number predicted by the fit in themjjrange of 123 to 186 GeV. The data agree with the SM expectations, and we find no significant excess in the signal region. We observe a sizable deficit in the muon 2-jet data with respect to the prediction from our model. We do not observe similar deviations in the other three categories, suggesting it is a fluctuation and not a systematic bias.

We validate the fit procedure by performing pseudo-experiments. In each experiment, we generate the mjj

pseudodata of the SM processes, including the correlations taken from the fit to data, and then fit each pseudodata sample. The results indicate that the bias on the total yield is below 0.2% and that the fit underestimates the total yield uncertainty by about 30%. These effects are corrected for in the final result. Uncertainties in the jet energy are estimated using a sample of W bosons decaying hadroni-cally in a pure sample of semileptonicttevents. The mean and resolution of the reconstructed dijet mass distribution

(a) (b) (c)

(4)

in data agree within 0.6% with the expectation from simu-lation. A small difference in 6ET resolution [10] between data and simulation affects the signal acceptance for the new physics models under consideration at the 0.5% level. Further systematic uncertainties are due to the uncertainty of the trigger efficiency estimates (1%) and the estimate of lepton reconstruction and selection efficiency (2%) [9]. The uncertainty on the integrated luminosity is 2.2% [31]. We scrutinize the dijet mass spectrum near 150 GeV, searching for a technicolor, leptophobic Z0, orWH

reso-nant enhancement. We also use a generic signal model obtained by convolving a delta function centered at

mjj¼150 GeV with a Gaussian function having width equal tojj. Figure1(b)shows this generic signal shape. The expected number of signal events at the LHC for a given cross section at the Tevatron can be estimated by considering the ratio of the predicted cross sections for our reference process, WH production withMH ¼150 GeV. This process is dominated by quark-antiquark (qq) anni-hilation. As qq processes have the smallest increase in

parton luminosity from the Tevatron to the LHC, this choice provides a conservative limit. We therefore assume

dijet resonanceLHC ¼dijet resonanceTevatron

WH

LHC WH

Tevatron ;

whereWH

LHC¼300:1 fb[32] andWHTevatron¼71:8 fb[33].

A generic Gaussian signal normalized to Tevatron¼4 pb

corresponds to LHC¼16:7 pb. Table III contains the

values ofLHCtimes the branching fraction to jets and of

the overall efficiency times acceptance"Afor the models considered.

Since we observe no resonant enhancement, we proceed to set exclusion limits using a modified frequentist CLS

method [34,35] with profile likelihood as the test statistic. Inputs to the limit-setting procedure are the mjj distribu-tion obtained by combining the SM components from the fit, the observed distribution in data, the expectation from the dijet resonance model under consideration, and the uncertainties associated with these quantities. Figure 2(a)

shows the observed and expectedCLSvalues versus cross

section for a generic Gaussian signal, after combining the results of all four event categories. We set a 95% C.L. upper limit of 5.0 pb and a 99.9% C.L. upper limit of 8.5 pb on the dijet production cross section for a generic reso-nance withWH-like"A.

Figure2(b)compares the 95% C.L. upper limits with the expected cross sections for technicolor, leptophobicZ0, and

WH (MH ¼150 GeV) signals. The technicolor and Z0

models are excluded. Because we have minimal sensitivity toWH, we compare the limit in Fig.2(b)to 100 times the SM cross section as an illustration.

In summary, we have studied the invariant mass spec-trum of the two jets with highest transverse momentum in

TABLE II. Event yields determined from maximum-likelihood fits to the data. The total fit yields are corrected for bias. The total fit uncertainties include the correlations among the various yields, as determined by the fit, and the corrections derived from the fit validation described in the text. The2 probability uses the residuals and the data and MC statistical errors.

Muons Electrons

Process 2-jet 3-jet 2-jet 3-jet

Wplus jets 58 919530 13 069366 29 7871153 8397292

Dibosons 1236114 33332 68565 18418

tt 4570307 9049382 2556174 4265253

Single-top 176587 100150 91646 52126

Drell-Yan plus jets 183779 56124 106146 36416

Multijet (QCD) 29284 090 39441133 324160

Fit2probability 0.454 0.729 0.969 0.991

Total from fit 68 294307 24 013193 38 949228 14 055143

Data 67 900 24 046 38 973 14 145

In the signal region123< mjj<186 GeV(excluded from the fit)

Total predicted 14 511125 773995 794492 434770

Data 14 050 7751 8023 4438

TABLE III. ThePYTHIAcross sections at 7 TeV times branch-ing fraction to jets (B) and overall efficiency times acceptance ("A) for various signal models. The relative un-certainties in " measurements are 1–2%. The uncertainty on

Ais negligible.

"A

Muons Electrons Signal model BðpbÞ 2-jet 3-jet 2-jet 3-jet

(5)

pp!Wþ2-jet andWþ3-jet events, with theW decay-ing leptonically to a muon or electron. The analyzed data sample corresponds to an integrated luminosity of

5:0 fb 1 at pffiffiffis

¼7 TeV. We find no evidence for a reso-nant enhancement near a dijet mass of 150 GeV, as reported by the CDF Collaboration, and set upper limits on the dijet production cross section of 5.0 pb at 95% C.L. and 8.5 pb at 99.9% C.L. Two theoretical models, lepto-phobicZ0 and technicolor, which predict the presence of

a resonant enhancement near 150 GeV, are excluded. We thank Adam Martin and Matthew Buckley for help with simulation of technicolor andZ0models, respectively.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge sup-port from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China);

COLCIENCIAS (Colombia); MSES (Croatia); RPF

(Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and

CNRS/IN2P3 (France); BMBF, DFG, and HGF

(Germany); GSRT (Greece); OTKA and NKTH

(Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS

(Lithuania); CINVESTAV, CONACYT, SEP, and

UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

[1] T. Aaltonenet al.(CDF Collaboration), Phys. Rev. Lett.

106, 171801 (2011).

[2] V. M. Abazov (D0 Collaboration), Phys. Rev. Lett.107, 011804 (2011).

[3] E. J. Eichten, K. Lane, and A. Martin,Phys. Rev. Lett.106, 251803 (2011).

[4] M. R. Buckley, D. Hooper, J. Kopp, and E. T. Neil,Phys. Rev. D83, 115013 (2011).

[5] S. Chatrchyanet al.(CMS Collaboration), Phys. Lett. B

716, 30 (2012).

[6] G. Aadet al.(ATLAS Collaboration),Phys. Lett. B716, 1 (2012).

[7] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[8] E. Eichten, K. Lane, and A. Martin,arXiv:1107.4075. [9] S. Chatrchyanet al.(CMS Collaboration),J. High Energy

Phys. 10 (2011) 132.

[10] S. Chatrchyan et al. (CMS Collaboration), JINST 6, P09001 (2011).

[11] CMS Collaboration, Report No. CMS-PAS-PFT-09- 001, 2009.

[12] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[13] S. Chatrchyan et al. (CMS Collaboration), JINST 5, T03014 (2010).

[14] S. Chatrchyan et al. (CMS Collaboration), JINST 6, P11002 (2011).

[15] M. Cacciari and G. P. Salam,Phys. Lett. B659, 119 (2008). [16] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy

Phys. 04 (2008) 005.

[17] F. Maltoni and T. Stelzer,J. High Energy Phys. 02 (2003) 027.

[18] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa,J. High Energy Phys. 07 (2003) 001. [19] S. Hoeche, F. Krauss, N. Lavesson, L. Lonnblad, M.

Mangano, A. Schaelicke, and S. Schumann, arXiv:hep-ph/0602031.

[20] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[21] T. Sjostrand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

(a)

(b)

FIG. 2 (color online). (a) The observed and expected values of theCLS statistic for a generic Gaussian signal hypothesis with

M¼150 GeV and jj¼15 GeV, as a function of the dijet signal cross section. (b) Observed and expected 95% C.L. upper limits, with one- and two-sigma error bands, on the cross section divided by the expected values for various signal models. The limits are calculated using the CLS method. A value of the

(6)

[22] S. Chatrchyanet al.(CMS Collaboration),J. High Energy Phys. 09 (2011) 109.

[23] H.-L. Lai, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, and C.-P. Yuan, Phys. Rev. D 82, 054021 (2010).

[24] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.

Instrum. Methods Phys. Res., Sect. A 506, 250

(2003).

[25] J. M. Campbell, R. K. Ellis, and C. Williams, J. High Energy Phys. 7 (2011) 018.

[26] N. Kidonakis,Phys. Rev. D82, 114030 (2010). [27] N. Kidonakis,Phys. Rev. D81, 054028 (2010). [28] N. Kidonakis,Phys. Rev. D83, 091503 (2011).

[29] N. Kidonakis,Phys. Rev. D82, 054018 (2010).

[30] K. Melnikov and F. Petriello,Phys. Rev. D 74, 114017 (2006).

[31] CMS Collaboration, Report No. CMS-PAS-SMP-12-008, 2012.

[32] S. Dittmaier, C. Mariotti, G. Passarino, and R. Tanaka (LHC Higgs Cross Section Working Group),

arXiv:1101.0593.

[33] M. S. Carena et al. (Higgs Working Group),

arXiv:hep-ph/0010338.

[34] A. L. Read, Report No. CERN-OPEN-2000- 005, 2000. [35] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A434,

435 (1999).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2E. Aguilo,2T. Bergauer,2 M. Dragicevic,2J. Ero¨,2C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2 J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2

M. Pernicka,2,aB. Rahbaran,2C. Rohringer,2H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2 W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3 M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4 B. Roland,4R. Rougny,4M. Selvaggi,4Z. Staykova,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4 A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5 A. Olbrechts,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6

V. Dero,6A. P. R. Gay,6T. Hreus,6A. Le´onard,6P. E. Marage,6T. Reis,6L. Thomas,6G. Vander Marcken,6 C. Vander Velde,6P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7G. Garcia,7

M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7 N. Strobbe,7F. Thyssen,7M. Tytgat,7P. Verwilligen,7S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8 G. Bruno,8R. Castello,8L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,cJ. Hollar,8

V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8 J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10

D. De Jesus Damiao,10T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11 A. Custo´dio,11E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11D. Matos Figueiredo,11 L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11L. Soares Jorge,11A. Sznajder,11 T. S. Anjos,12,dC. A. Bernardes,12,dF. A. Dias,12,eT. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12 F. Marinho,12P. G. Mercadante,12,dS. F. Novaes,12Sandra S. Padula,12V. Genchev,13,fP. Iaydjiev,13,fS. Piperov,13

M. Rodozov,13S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14 R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15 C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15

J. Zang,15Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16S. Guo,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16 S. J. Qian,16H. Teng,16D. Wang,16L. Zhang,16B. Zhu,16W. Zou,16C. Avila,17J. P. Gomez,17B. Gomez Moreno,17

A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,gD. Polic,18I. Puljak,18,f Z. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20S. Morovic,20A. Attikis,21

M. Galanti,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22 M. Finger, Jr.,22Y. Assran,23,hS. Elgammal,23,iA. Ellithi Kamel,23,jS. Khalil,23,iM. A. Mahmoud,23,kA. Radi,23,l,m

M. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25 J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26

S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26 D. Ungaro,26L. Wendland,26K. Banzuzi,27A. Karjalainen,27A. Korpela,27T. Tuuva,27M. Besancon,28 S. Choudhury,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28 P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28 A. Rosowsky,28I. Shreyber,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,n

(7)

M. Haguenauer,29P. Mine´,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29 R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,oJ. Andrea,30D. Bloch,30D. Bodin,30 J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,oF. Drouhin,30,oC. Ferro,30J.-C. Fontaine,30,o

D. Gele´,30U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30F. Fassi,31D. Mercier,31S. Beauceron,32 N. Beaupere,32O. Bondu,32G. Boudoul,32J. Chasserat,32R. Chierici,32,fD. Contardo,32P. Depasse,32 H. El Mamouni,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32 S. Perries,32V. Sordini,32Y. Tschudi,32P. Verdier,32S. Viret,32Z. Tsamalaidze,33,pG. Anagnostou,34S. Beranek,34

M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34K. Klein,34J. Merz,34A. Ostapchuk,34 A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,q M. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Gu¨th,35T. Hebbeker,35

C. Heidemann,35K. Hoepfner,35D. Klingebiel,35P. Kreuzer,35C. Magass,35M. Merschmeyer,35A. Meyer,35 M. Olschewski,35P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35 D. Teyssier,35M. Weber,35M. Bontenackels,36V. Cherepanov,36Y. Erdogan,36G. Flu¨gge,36H. Geenen,36 M. Geisler,36W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36A. Nowack,36L. Perchalla,36

O. Pooth,36P. Sauerland,36A. Stahl,36M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37 M. Bergholz,37,rA. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37E. Castro,37

F. Costanza,37D. Dammann,37C. Diez Pardos,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37 I. Glushkov,37P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37H. Jung,37M. Kasemann,37P. Katsas,37

C. Kleinwort,37H. Kluge,37A. Knutsson,37M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37 W. Lohmann,37,rB. Lutz,37R. Mankel,37I. Marfin,37M. Marienfeld,37I.-A. Melzer-Pellmann,37A. B. Meyer,37

J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37J. Olzem,37H. Perrey,37A. Petrukhin,37D. Pitzl,37 A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37E. Ron,37M. Rosin,37J. Salfeld-Nebgen,37R. Schmidt,37,r

T. Schoerner-Sadenius,37N. Sen,37A. Spiridonov,37M. Stein,37R. Walsh,37C. Wissing,37C. Autermann,38 V. Blobel,38J. Draeger,38H. Enderle,38J. Erfle,38U. Gebbert,38M. Go¨rner,38T. Hermanns,38R. S. Ho¨ing,38 K. Kaschube,38G. Kaussen,38H. Kirschenmann,38R. Klanner,38J. Lange,38B. Mura,38F. Nowak,38T. Peiffer,38 N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schro¨der,38

T. Schum,38M. Seidel,38V. Sola,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38L. Vanelderen,38C. Barth,39 J. Berger,39C. Bo¨ser,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,f C. Hackstein,39F. Hartmann,39T. Hauth,39,fM. Heinrich,39H. Held,39K. H. Hoffmann,39S. Honc,39I. Katkov,39,q

J. R. Komaragiri,39P. Lobelle Pardo,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39 O. Oberst,39A. Oehler,39J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39N. Ratnikova,39S. Ro¨cker,39

A. Scheurer,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39R. Ulrich,39 J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39G. Daskalakis,40T. Geralis,40S. Kesisoglou,40 A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40E. Ntomari,40 L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41I. Evangelou,42C. Foudas,42P. Kokkas,42

N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43P. Hidas,43D. Horvath,43,sF. Sikler,43 V. Veszpremi,43G. Vesztergombi,43,tN. Beni,44S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44J. Karancsi,45

P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46N. Dhingra,46R. Gupta,46M. Kaur,46 M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. Singh,46Ashok Kumar,47Arun Kumar,47S. Ahuja,47 A. Bhardwaj,47B. C. Choudhary,47S. Malhotra,47M. Naimuddin,47K. Ranjan,47V. Sharma,47R. K. Shivpuri,47

S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48Sh. Jain,48R. Khurana,48S. Sarkar,48 M. Sharan,48A. Abdulsalam,49R. K. Choudhury,49D. Dutta,49S. Kailas,49V. Kumar,49P. Mehta,49 A. K. Mohanty,49,fL. M. Pant,49P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,uM. Maity,50,vG. Majumder,50

K. Mazumdar,50G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51S. Dugad,51 H. Arfaei,52H. Bakhshiansohi,52,wS. M. Etesami,52,xA. Fahim,52,wM. Hashemi,52H. Hesari,52A. Jafari,52,w

M. Khakzad,52M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52,yM. Zeinali,52,x M. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53b,fS. S. Chhibra,53a,53bA. Colaleo,53aD. Creanza,53a,53c N. De Filippis,53a,53c,fM. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53bG. Maggi,53a,53cM. Maggi,53a

B. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53bA. Pompili,53a,53bG. Pugliese,53a,53c G. Selvaggi,53a,53bL. Silvestris,53aG. Singh,53a,53bR. Venditti,53aG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54a

(8)

F. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54a,54b,f P. Giacomelli,54aC. Grandi,54aL. Guiducci,54a,54bS. Marcellini,54aG. Masetti,54aM. Meneghelli,54a,54b,f A. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a,54bA. M. Rossi,54a,54b T. Rovelli,54a,54bG. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55bM. Chiorboli,55a,55b S. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55bG. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56a R. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aS. Gonzi,56a,56bM. Meschini,56aS. Paoletti,56a

G. Sguazzoni,56aA. Tropiano,56aL. Benussi,57S. Bianco,57S. Colafranceschi,57,zF. Fabbri,57D. Piccolo,57 P. Fabbricatore,58aR. Musenich,58aS. Tosi,58a,58bA. Benaglia,59a,59b,fF. De Guio,59a,59bL. Di Matteo,59a,59b,f

S. Fiorendi,59a,59bS. Gennai,59a,fA. Ghezzi,59a,59bS. Malvezzi,59aR. A. Manzoni,59a,59bA. Martelli,59a,59b A. Massironi,59a,59b,fD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59aS. Ragazzi,59a,59b N. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60aN. Cavallo,60a,aa

A. De Cosa,60a,60b,fO. Dogangun,60a,60bF. Fabozzi,60a,aaA. O. M. Iorio,60aL. Lista,60aS. Meola,60a,bb M. Merola,60a,60bP. Paolucci,60a,fP. Azzi,61aN. Bacchetta,61a,fD. Bisello,61a,61bA. Branca,61a,61b,fR. Carlin,61a,61b

P. Checchia,61aT. Dorigo,61aU. Dosselli,61aF. Gasparini,61a,61bU. Gasparini,61a,61bA. Gozzelino,61a K. Kanishchev,61a,61cS. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61bA. T. Meneguzzo,61a,61b J. Pazzini,61a,61bN. Pozzobon,61a,61bP. Ronchese,61a,61bF. Simonetto,61a,61bE. Torassa,61aM. Tosi,61a,61b,f

S. Vanini,61a,61bP. Zotto,61a,61bG. Zumerle,61a,61bM. Gabusi,62a,62bS. P. Ratti,62a,62bC. Riccardi,62a,62b P. Torre,62a,62bP. Vitulo,62a,62bM. Biasini,63a,63bG. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63bA. Lucaroni,63a,63b,f

G. Mantovani,63a,63bM. Menichelli,63aA. Nappi,63a,63b,aF. Romeo,63a,63bA. Saha,63aA. Santocchia,63a,63b A. Spiezia,63a,63bS. Taroni,63a,63bP. Azzurri,64a,64cG. Bagliesi,64aT. Boccali,64aG. Broccolo,64a,64cR. Castaldi,64a

R. T. D’Agnolo,64a,64cR. Dell’Orso,64aF. Fiori,64a,64b,fL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64c T. Lomtadze,64aL. Martini,64a,ccA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,ddP. Spagnolo,64a P. Squillacioti,64a,fR. Tenchini,64aG. Tonelli,64a,64b,fA. Venturi,64aP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65a D. Del Re,65a,65bM. Diemoz,65aC. Fanelli,65aM. Grassi,65a,65b,fE. Longo,65a,65bP. Meridiani,65a,fF. Micheli,65a,65b

S. Nourbakhsh,65a,65bG. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65bM. Sigamani,65aL. Soffi,65a,65b N. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aN. Cartiglia,66a M. Costa,66a,66bN. Demaria,66aC. Mariotti,66a,fS. Maselli,66aE. Migliore,66a,66bV. Monaco,66a,66bM. Musich,66a,f

M. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66aA. Potenza,66a,66bA. Romero,66a,66bM. Ruspa,66a,66c R. Sacchi,66a,66bA. Solano,66a,66bA. Staiano,66aA. Vilela Pereira,66aS. Belforte,67aV. Candelise,67a,67b F. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aM. Marone,67a,67b,fD. Montanino,67a,67b,fA. Penzo,67a A. Schizzi,67a,67bS. G. Heo,68T. Y. Kim,68S. K. Nam,68S. Chang,69D. H. Kim,69G. N. Kim,69D. J. Kong,69 H. Park,69S. R. Ro,69D. C. Son,69T. Son,69J. Y. Kim,70Zero J. Kim,70S. Song,70S. Choi,71D. Gyun,71B. Hong,71

M. Jo,71H. Kim,71T. J. Kim,71K. S. Lee,71D. H. Moon,71S. K. Park,71M. Choi,72J. H. Kim,72C. Park,72 I. C. Park,72S. Park,72G. Ryu,72Y. Cho,73Y. Choi,73Y. K. Choi,73J. Goh,73M. S. Kim,73E. Kwon,73B. Lee,73

J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74A. Juodagalvis,74 H. Castilla-Valdez,75E. De La Cruz-Burelo,75I. Heredia-de La Cruz,75R. Lopez-Fernandez,75R. Magan˜a Villalba,75

J. Martı´nez-Ortega,75A. Sa´nchez-Herna´ndez,75L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76 F. Vazquez Valencia,76H. A. Salazar Ibarguen,77E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78

D. Krofcheck,79A. J. Bell,80P. H. Butler,80R. Doesburg,80S. Reucroft,80H. Silverwood,80M. Ahmad,81 M. H. Ansari,81M. I. Asghar,81H. R. Hoorani,81S. Khalid,81W. A. Khan,81T. Khurshid,81S. Qazi,81M. A. Shah,81 M. Shoaib,81H. Bialkowska,82B. Boimska,82T. Frueboes,82R. Gokieli,82M. Go´rski,82M. Kazana,82K. Nawrocki,82 K. Romanowska-Rybinska,82M. Szleper,82G. Wrochna,82P. Zalewski,82G. Brona,83K. Bunkowski,83M. Cwiok,83

W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83J. Krolikowski,83N. Almeida,84P. Bargassa,84 A. David,84P. Faccioli,84P. G. Ferreira Parracho,84M. Gallinaro,84J. Seixas,84J. Varela,84P. Vischia,84 I. Belotelov,85P. Bunin,85M. Gavrilenko,85I. Golutvin,85I. Gorbunov,85V. Karjavin,85V. Konoplyanikov,85 G. Kozlov,85A. Lanev,85A. Malakhov,85P. Moisenz,85V. Palichik,85V. Perelygin,85S. Shmatov,85V. Smirnov,85 A. Volodko,85A. Zarubin,85S. Evstyukhin,86V. Golovtsov,86Y. Ivanov,86V. Kim,86P. Levchenko,86V. Murzin,86 V. Oreshkin,86I. Smirnov,86V. Sulimov,86L. Uvarov,86S. Vavilov,86A. Vorobyev,86An. Vorobyev,86Yu. Andreev,87

A. Dermenev,87S. Gninenko,87N. Golubev,87M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87 D. Tlisov,87A. Toropin,87V. Epshteyn,88M. Erofeeva,88V. Gavrilov,88M. Kossov,88N. Lychkovskaya,88V. Popov,88

(9)

M. Dubinin,89,eL. Dudko,89A. Ershov,89A. Gribushin,89V. Klyukhin,89O. Kodolova,89I. Lokhtin,89A. Markina,89 S. Obraztsov,89M. Perfilov,89A. Popov,89L. Sarycheva,89,aV. Savrin,89A. Snigirev,89V. Andreev,90M. Azarkin,90

I. Dremin,90M. Kirakosyan,90A. Leonidov,90G. Mesyats,90S. V. Rusakov,90A. Vinogradov,90I. Azhgirey,91 I. Bayshev,91S. Bitioukov,91V. Grishin,91,fV. Kachanov,91D. Konstantinov,91A. Korablev,91V. Krychkine,91 V. Petrov,91R. Ryutin,91A. Sobol,91L. Tourtchanovitch,91S. Troshin,91N. Tyurin,91A. Uzunian,91A. Volkov,91

P. Adzic,92,eeM. Djordjevic,92M. Ekmedzic,92D. Krpic,92,eeJ. Milosevic,92M. Aguilar-Benitez,93 J. Alcaraz Maestre,93P. Arce,93C. Battilana,93E. Calvo,93M. Cerrada,93M. Chamizo Llatas,93N. Colino,93 B. De La Cruz,93A. Delgado Peris,93D. Domı´nguez Va´zquez,93C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93 A. Ferrando,93J. Flix,93M. C. Fouz,93P. Garcia-Abia,93O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93 M. I. Josa,93G. Merino,93J. Puerta Pelayo,93A. Quintario Olmeda,93I. Redondo,93L. Romero,93J. Santaolalla,93

M. S. Soares,93C. Willmott,93C. Albajar,94G. Codispoti,94J. F. de Troco´niz,94H. Brun,95J. Cuevas,95 J. Fernandez Menendez,95S. Folgueras,95I. Gonzalez Caballero,95L. Lloret Iglesias,95J. Piedra Gomez,95 J. A. Brochero Cifuentes,96I. J. Cabrillo,96A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,ff

M. Fernandez,96G. Gomez,96J. Gonzalez Sanchez,96A. Graziano,96C. Jorda,96A. Lopez Virto,96J. Marco,96 R. Marco,96C. Martinez Rivero,96F. Matorras,96F. J. Munoz Sanchez,96T. Rodrigo,96A. Y. Rodrı´guez-Marrero,96

A. Ruiz-Jimeno,96L. Scodellaro,96M. Sobron Sanudo,96I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97 E. Auffray,97G. Auzinger,97P. Baillon,97A. H. Ball,97D. Barney,97J. F. Benitez,97C. Bernet,97,gG. Bianchi,97 P. Bloch,97A. Bocci,97A. Bonato,97C. Botta,97H. Breuker,97T. Camporesi,97G. Cerminara,97T. Christiansen,97

J. A. Coarasa Perez,97D. D’Enterria,97A. Dabrowski,97A. De Roeck,97S. Di Guida,97M. Dobson,97 N. Dupont-Sagorin,97A. Elliott-Peisert,97B. Frisch,97W. Funk,97G. Georgiou,97M. Giffels,97D. Gigi,97K. Gill,97

D. Giordano,97M. Giunta,97F. Glege,97R. Gomez-Reino Garrido,97P. Govoni,97S. Gowdy,97R. Guida,97 M. Hansen,97P. Harris,97C. Hartl,97J. Harvey,97B. Hegner,97A. Hinzmann,97V. Innocente,97P. Janot,97 K. Kaadze,97E. Karavakis,97K. Kousouris,97P. Lecoq,97Y.-J. Lee,97P. Lenzi,97C. Lourenc¸o,97N. Magini,97

T. Ma¨ki,97M. Malberti,97L. Malgeri,97M. Mannelli,97L. Masetti,97F. Meijers,97S. Mersi,97E. Meschi,97 R. Moser,97M. U. Mozer,97M. Mulders,97P. Musella,97E. Nesvold,97T. Orimoto,97L. Orsini,97

E. Palencia Cortezon,97E. Perez,97L. Perrozzi,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97M. Pimia¨,97D. Piparo,97 G. Polese,97L. Quertenmont,97A. Racz,97W. Reece,97J. Rodrigues Antunes,97G. Rolandi,97,ggC. Rovelli,97,hh M. Rovere,97H. Sakulin,97F. Santanastasio,97C. Scha¨fer,97C. Schwick,97I. Segoni,97S. Sekmen,97A. Sharma,97

P. Siegrist,97P. Silva,97M. Simon,97P. Sphicas,97,iiD. Spiga,97A. Tsirou,97G. I. Veres,97,tJ. R. Vlimant,97 H. K. Wo¨hri,97S. D. Worm,97,jjW. D. Zeuner,97W. Bertl,98K. Deiters,98W. Erdmann,98K. Gabathuler,98

R. Horisberger,98Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98D. Kotlinski,98U. Langenegger,98F. Meier,98 D. Renker,98T. Rohe,98J. Sibille,98,kkL. Ba¨ni,99P. Bortignon,99M. A. Buchmann,99B. Casal,99N. Chanon,99 A. Deisher,99G. Dissertori,99M. Dittmar,99M. Donega`,99M. Du¨nser,99J. Eugster,99K. Freudenreich,99C. Grab,99 D. Hits,99P. Lecomte,99W. Lustermann,99A. C. Marini,99P. Martinez Ruiz del Arbol,99N. Mohr,99F. Moortgat,99

C. Na¨geli,99,llP. Nef,99F. Nessi-Tedaldi,99F. Pandolfi,99L. Pape,99F. Pauss,99M. Peruzzi,99F. J. Ronga,99 M. Rossini,99L. Sala,99A. K. Sanchez,99A. Starodumov,99,mmB. Stieger,99M. Takahashi,99L. Tauscher,99,a A. Thea,99K. Theofilatos,99D. Treille,99C. Urscheler,99R. Wallny,99H. A. Weber,99L. Wehrli,99C. Amsler,100

V. Chiochia,100S. De Visscher,100C. Favaro,100M. Ivova Rikova,100B. Millan Mejias,100P. Otiougova,100 P. Robmann,100H. Snoek,100S. Tupputi,100M. Verzetti,100Y. H. Chang,101K. H. Chen,101C. M. Kuo,101S. W. Li,101

W. Lin,101Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101A. P. Singh,101R. Volpe,101S. S. Yu,101P. Bartalini,102 P. Chang,102Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102C. Dietz,102U. Grundler,102W.-S. Hou,102

Y. Hsiung,102K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102D. Majumder,102E. Petrakou,102X. Shi,102J. G. Shiu,102 Y. M. Tzeng,102X. Wan,102M. Wang,102A. Adiguzel,103M. N. Bakirci,103,nnS. Cerci,103,ooC. Dozen,103 I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103E. Gurpinar,103I. Hos,103E. E. Kangal,103T. Karaman,103 G. Karapinar,103,ppA. Kayis Topaksu,103G. Onengut,103K. Ozdemir,103S. Ozturk,103,qqA. Polatoz,103K. Sogut,103,rr

D. Sunar Cerci,103,ooB. Tali,103,ooH. Topakli,103,nnL. N. Vergili,103M. Vergili,103I. V. Akin,104T. Aliev,104 B. Bilin,104S. Bilmis,104M. Deniz,104H. Gamsizkan,104A. M. Guler,104K. Ocalan,104A. Ozpineci,104M. Serin,104 R. Sever,104U. E. Surat,104M. Yalvac,104E. Yildirim,104M. Zeyrek,104E. Gu¨lmez,105B. Isildak,105,ssM. Kaya,105,tt O. Kaya,105,ttS. Ozkorucuklu,105,uuN. Sonmez,105,vvK. Cankocak,106L. Levchuk,107F. Bostock,108J. J. Brooke,108

(10)

V. J. Smith,108T. Williams,108L. Basso,109,wwK. W. Bell,109A. Belyaev,109,wwC. Brew,109R. M. Brown,109 D. J. A. Cockerill,109J. A. Coughlan,109K. Harder,109S. Harper,109J. Jackson,109B. W. Kennedy,109E. Olaiya,109

D. Petyt,109B. C. Radburn-Smith,109C. H. Shepherd-Themistocleous,109I. R. Tomalin,109W. J. Womersley,109 R. Bainbridge,110G. Ball,110R. Beuselinck,110O. Buchmuller,110D. Colling,110N. Cripps,110M. Cutajar,110

P. Dauncey,110G. Davies,110M. Della Negra,110W. Ferguson,110J. Fulcher,110D. Futyan,110A. Gilbert,110 A. Guneratne Bryer,110G. Hall,110Z. Hatherell,110J. Hays,110G. Iles,110M. Jarvis,110G. Karapostoli,110 L. Lyons,110A.-M. Magnan,110J. Marrouche,110B. Mathias,110R. Nandi,110J. Nash,110A. Nikitenko,110,mm A. Papageorgiou,110J. Pela,110M. Pesaresi,110K. Petridis,110M. Pioppi,110,xxD. M. Raymond,110S. Rogerson,110 A. Rose,110M. J. Ryan,110C. Seez,110P. Sharp,110,aA. Sparrow,110M. Stoye,110A. Tapper,110M. Vazquez Acosta,110

T. Virdee,110S. Wakefield,110N. Wardle,110T. Whyntie,110M. Chadwick,111J. E. Cole,111P. R. Hobson,111 A. Khan,111P. Kyberd,111D. Leggat,111D. Leslie,111W. Martin,111I. D. Reid,111P. Symonds,111L. Teodorescu,111

M. Turner,111K. Hatakeyama,112H. Liu,112T. Scarborough,112O. Charaf,113C. Henderson,113P. Rumerio,113 A. Avetisyan,114T. Bose,114C. Fantasia,114A. Heister,114J. St. John,114P. Lawson,114D. Lazic,114J. Rohlf,114

D. Sperka,114L. Sulak,114J. Alimena,115S. Bhattacharya,115D. Cutts,115A. Ferapontov,115U. Heintz,115 S. Jabeen,115G. Kukartsev,115E. Laird,115G. Landsberg,115M. Luk,115M. Narain,115D. Nguyen,115M. Segala,115 T. Sinthuprasith,115T. Speer,115K. V. Tsang,115R. Breedon,116G. Breto,116M. Calderon De La Barca Sanchez,116 S. Chauhan,116M. Chertok,116J. Conway,116R. Conway,116P. T. Cox,116J. Dolen,116R. Erbacher,116M. Gardner,116 R. Houtz,116W. Ko,116A. Kopecky,116R. Lander,116T. Miceli,116D. Pellett,116F. Ricci-tam,116B. Rutherford,116

M. Searle,116J. Smith,116M. Squires,116M. Tripathi,116R. Vasquez Sierra,116V. Andreev,117D. Cline,117 R. Cousins,117J. Duris,117S. Erhan,117P. Everaerts,117C. Farrell,117J. Hauser,117M. Ignatenko,117C. Jarvis,117

C. Plager,117G. Rakness,117P. Schlein,117,aP. Traczyk,117V. Valuev,117M. Weber,117J. Babb,118R. Clare,118 M. E. Dinardo,118J. Ellison,118J. W. Gary,118F. Giordano,118G. Hanson,118G. Y. Jeng,118,yyH. Liu,118 O. R. Long,118A. Luthra,118H. Nguyen,118S. Paramesvaran,118J. Sturdy,118S. Sumowidagdo,118R. Wilken,118

S. Wimpenny,118W. Andrews,119J. G. Branson,119G. B. Cerati,119S. Cittolin,119D. Evans,119F. Golf,119 A. Holzner,119R. Kelley,119M. Lebourgeois,119J. Letts,119I. Macneill,119B. Mangano,119S. Padhi,119C. Palmer,119

G. Petrucciani,119M. Pieri,119M. Sani,119V. Sharma,119S. Simon,119E. Sudano,119M. Tadel,119Y. Tu,119 A. Vartak,119S. Wasserbaech,119,zzF. Wu¨rthwein,119A. Yagil,119J. Yoo,119D. Barge,120R. Bellan,120 C. Campagnari,120M. D’Alfonso,120T. Danielson,120K. Flowers,120P. Geffert,120J. Incandela,120C. Justus,120

P. Kalavase,120S. A. Koay,120D. Kovalskyi,120V. Krutelyov,120S. Lowette,120N. Mccoll,120V. Pavlunin,120 F. Rebassoo,120J. Ribnik,120J. Richman,120R. Rossin,120D. Stuart,120W. To,120C. West,120A. Apresyan,121 A. Bornheim,121Y. Chen,121E. Di Marco,121J. Duarte,121M. Gataullin,121Y. Ma,121A. Mott,121H. B. Newman,121

C. Rogan,121M. Spiropulu,121V. Timciuc,121J. Veverka,121R. Wilkinson,121S. Xie,121Y. Yang,121R. Y. Zhu,121 B. Akgun,122V. Azzolini,122A. Calamba,122R. Carroll,122T. Ferguson,122Y. Iiyama,122D. W. Jang,122Y. F. Liu,122

M. Paulini,122H. Vogel,122I. Vorobiev,122J. P. Cumalat,123B. R. Drell,123C. J. Edelmaier,123W. T. Ford,123 A. Gaz,123B. Heyburn,123E. Luiggi Lopez,123J. G. Smith,123K. Stenson,123K. A. Ulmer,123S. R. Wagner,123 J. Alexander,124A. Chatterjee,124N. Eggert,124L. K. Gibbons,124B. Heltsley,124A. Khukhunaishvili,124B. Kreis,124

N. Mirman,124G. Nicolas Kaufman,124J. R. Patterson,124A. Ryd,124E. Salvati,124W. Sun,124W. D. Teo,124 J. Thom,124J. Thompson,124J. Tucker,124J. Vaughan,124Y. Weng,124L. Winstrom,124P. Wittich,124D. Winn,125 S. Abdullin,126M. Albrow,126J. Anderson,126L. A. T. Bauerdick,126A. Beretvas,126J. Berryhill,126P. C. Bhat,126 I. Bloch,126K. Burkett,126J. N. Butler,126V. Chetluru,126H. W. K. Cheung,126F. Chlebana,126V. D. Elvira,126 I. Fisk,126J. Freeman,126Y. Gao,126D. Green,126O. Gutsche,126J. Hanlon,126R. M. Harris,126J. Hirschauer,126

B. Hooberman,126S. Jindariani,126M. Johnson,126U. Joshi,126B. Kilminster,126B. Klima,126S. Kunori,126 S. Kwan,126C. Leonidopoulos,126J. Linacre,126D. Lincoln,126R. Lipton,126J. Lykken,126K. Maeshima,126 J. M. Marraffino,126S. Maruyama,126D. Mason,126P. McBride,126K. Mishra,126S. Mrenna,126Y. Musienko,126,aaa

C. Newman-Holmes,126V. O’Dell,126O. Prokofyev,126E. Sexton-Kennedy,126S. Sharma,126W. J. Spalding,126 L. Spiegel,126P. Tan,126L. Taylor,126S. Tkaczyk,126N. V. Tran,126L. Uplegger,126E. W. Vaandering,126R. Vidal,126

J. Whitmore,126W. Wu,126F. Yang,126F. Yumiceva,126J. C. Yun,126D. Acosta,127P. Avery,127D. Bourilkov,127 M. Chen,127T. Cheng,127S. Das,127M. De Gruttola,127G. P. Di Giovanni,127D. Dobur,127A. Drozdetskiy,127

(11)

M. Snowball,127J. Yelton,127M. Zakaria,127V. Gaultney,128S. Hewamanage,128L. M. Lebolo,128S. Linn,128 P. Markowitz,128G. Martinez,128J. L. Rodriguez,128T. Adams,129A. Askew,129J. Bochenek,129J. Chen,129 B. Diamond,129S. V. Gleyzer,129J. Haas,129S. Hagopian,129V. Hagopian,129M. Jenkins,129K. F. Johnson,129

H. Prosper,129V. Veeraraghavan,129M. Weinberg,129M. M. Baarmand,130B. Dorney,130M. Hohlmann,130 H. Kalakhety,130I. Vodopiyanov,130M. R. Adams,131I. M. Anghel,131L. Apanasevich,131Y. Bai,131 V. E. Bazterra,131R. R. Betts,131I. Bucinskaite,131J. Callner,131R. Cavanaugh,131O. Evdokimov,131L. Gauthier,131

C. E. Gerber,131D. J. Hofman,131S. Khalatyan,131F. Lacroix,131M. Malek,131C. O’Brien,131C. Silkworth,131 D. Strom,131N. Varelas,131U. Akgun,132E. A. Albayrak,132B. Bilki,132,cccW. Clarida,132F. Duru,132S. Griffiths,132

J.-P. Merlo,132H. Mermerkaya,132,dddA. Mestvirishvili,132A. Moeller,132J. Nachtman,132C. R. Newsom,132 E. Norbeck,132Y. Onel,132F. Ozok,132S. Sen,132E. Tiras,132J. Wetzel,132T. Yetkin,132K. Yi,132B. A. Barnett,133

B. Blumenfeld,133S. Bolognesi,133D. Fehling,133G. Giurgiu,133A. V. Gritsan,133Z. J. Guo,133G. Hu,133 P. Maksimovic,133S. Rappoccio,133M. Swartz,133A. Whitbeck,133P. Baringer,134A. Bean,134G. Benelli,134

O. Grachov,134R. P. Kenny Iii,134M. Murray,134D. Noonan,134S. Sanders,134R. Stringer,134G. Tinti,134 J. S. Wood,134V. Zhukova,134A. F. Barfuss,135T. Bolton,135I. Chakaberia,135A. Ivanov,135S. Khalil,135 M. Makouski,135Y. Maravin,135S. Shrestha,135I. Svintradze,135J. Gronberg,136D. Lange,136D. Wright,136 A. Baden,137M. Boutemeur,137B. Calvert,137S. C. Eno,137J. A. Gomez,137N. J. Hadley,137R. G. Kellogg,137 M. Kirn,137T. Kolberg,137Y. Lu,137M. Marionneau,137A. C. Mignerey,137K. Pedro,137A. Peterman,137A. Skuja,137 J. Temple,137M. B. Tonjes,137S. C. Tonwar,137E. Twedt,137A. Apyan,138G. Bauer,138J. Bendavid,138W. Busza,138

E. Butz,138I. A. Cali,138M. Chan,138V. Dutta,138G. Gomez Ceballos,138M. Goncharov,138K. A. Hahn,138 Y. Kim,138M. Klute,138K. Krajczar,138,eeeW. Li,138P. D. Luckey,138T. Ma,138S. Nahn,138C. Paus,138D. Ralph,138

C. Roland,138G. Roland,138M. Rudolph,138G. S. F. Stephans,138F. Sto¨ckli,138K. Sumorok,138K. Sung,138 D. Velicanu,138E. A. Wenger,138R. Wolf,138B. Wyslouch,138M. Yang,138Y. Yilmaz,138A. S. Yoon,138M. Zanetti,138

S. I. Cooper,139B. Dahmes,139A. De Benedetti,139G. Franzoni,139A. Gude,139S. C. Kao,139K. Klapoetke,139 Y. Kubota,139J. Mans,139N. Pastika,139R. Rusack,139M. Sasseville,139A. Singovsky,139N. Tambe,139 J. Turkewitz,139L. M. Cremaldi,140R. Kroeger,140L. Perera,140R. Rahmat,140D. A. Sanders,140E. Avdeeva,141 K. Bloom,141S. Bose,141J. Butt,141D. R. Claes,141A. Dominguez,141M. Eads,141J. Keller,141I. Kravchenko,141

J. Lazo-Flores,141H. Malbouisson,141S. Malik,141G. R. Snow,141U. Baur,142A. Godshalk,142I. Iashvili,142 S. Jain,142A. Kharchilava,142A. Kumar,142S. P. Shipkowski,142K. Smith,142G. Alverson,143E. Barberis,143 D. Baumgartel,143M. Chasco,143J. Haley,143D. Nash,143D. Trocino,143D. Wood,143J. Zhang,143A. Anastassov,144

A. Kubik,144N. Mucia,144N. Odell,144R. A. Ofierzynski,144B. Pollack,144A. Pozdnyakov,144M. Schmitt,144 S. Stoynev,144M. Velasco,144S. Won,144L. Antonelli,145D. Berry,145A. Brinkerhoff,145M. Hildreth,145 C. Jessop,145D. J. Karmgard,145J. Kolb,145K. Lannon,145W. Luo,145S. Lynch,145N. Marinelli,145D. M. Morse,145

T. Pearson,145M. Planer,145R. Ruchti,145J. Slaunwhite,145N. Valls,145M. Wayne,145M. Wolf,145B. Bylsma,146 L. S. Durkin,146C. Hill,146R. Hughes,146R. Hughes,146K. Kotov,146T. Y. Ling,146D. Puigh,146M. Rodenburg,146 C. Vuosalo,146G. Williams,146B. L. Winer,146N. Adam,147E. Berry,147P. Elmer,147D. Gerbaudo,147V. Halyo,147

P. Hebda,147J. Hegeman,147A. Hunt,147P. Jindal,147D. Lopes Pegna,147P. Lujan,147D. Marlow,147 T. Medvedeva,147M. Mooney,147J. Olsen,147P. Piroue´,147X. Quan,147A. Raval,147B. Safdi,147H. Saka,147 D. Stickland,147C. Tully,147J. S. Werner,147A. Zuranski,147J. G. Acosta,148E. Brownson,148X. T. Huang,148

A. Lopez,148H. Mendez,148S. Oliveros,148J. E. Ramirez Vargas,148A. Zatserklyaniy,148E. Alagoz,149 V. E. Barnes,149D. Benedetti,149G. Bolla,149D. Bortoletto,149M. De Mattia,149A. Everett,149Z. Hu,149M. Jones,149

O. Koybasi,149M. Kress,149A. T. Laasanen,149N. Leonardo,149V. Maroussov,149P. Merkel,149D. H. Miller,149 N. Neumeister,149I. Shipsey,149D. Silvers,149A. Svyatkovskiy,149M. Vidal Marono,149H. D. Yoo,149J. Zablocki,149 Y. Zheng,149S. Guragain,150N. Parashar,150A. Adair,151C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151 B. P. Padley,151R. Redjimi,151J. Roberts,151J. Zabel,151B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152

P. de Barbaro,152R. Demina,152Y. Eshaq,152A. Garcia-Bellido,152P. Goldenzweig,152J. Han,152A. Harel,152 D. C. Miner,152D. Vishnevskiy,152M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153K. Goulianos,153

G. Lungu,153S. Malik,153C. Mesropian,153S. Arora,154A. Barker,154J. P. Chou,154C. Contreras-Campana,154 E. Contreras-Campana,154D. Duggan,154D. Ferencek,154Y. Gershtein,154R. Gray,154E. Halkiadakis,154 D. Hidas,154A. Lath,154S. Panwalkar,154M. Park,154R. Patel,154V. Rekovic,154J. Robles,154K. Rose,154S. Salur,154

(12)

V. Khotilovich,156R. Montalvo,156I. Osipenkov,156Y. Pakhotin,156A. Perloff,156J. Roe,156A. Safonov,156 T. Sakuma,156S. Sengupta,156I. Suarez,156A. Tatarinov,156D. Toback,156N. Akchurin,157J. Damgov,157

C. Dragoiu,157P. R. Dudero,157C. Jeong,157K. Kovitanggoon,157S. W. Lee,157T. Libeiro,157Y. Roh,157 I. Volobouev,157E. Appelt,158A. G. Delannoy,158C. Florez,158S. Greene,158A. Gurrola,158W. Johns,158 C. Johnston,158P. Kurt,158C. Maguire,158A. Melo,158M. Sharma,158P. Sheldon,158B. Snook,158S. Tuo,158 J. Velkovska,158M. W. Arenton,159M. Balazs,159S. Boutle,159B. Cox,159B. Francis,159J. Goodell,159R. Hirosky,159

A. Ledovskoy,159C. Lin,159C. Neu,159J. Wood,159R. Yohay,159S. Gollapinni,160R. Harr,160P. E. Karchin,160 C. Kottachchi Kankanamge Don,160P. Lamichhane,160A. Sakharov,160M. Anderson,161M. Bachtis,161 D. Belknap,161L. Borrello,161D. Carlsmith,161M. Cepeda,161S. Dasu,161E. Friis,161L. Gray,161K. S. Grogg,161

M. Grothe,161R. Hall-Wilton,161M. Herndon,161A. Herve´,161P. Klabbers,161J. Klukas,161A. Lanaro,161 C. Lazaridis,161J. Leonard,161R. Loveless,161A. Mohapatra,161I. Ojalvo,161F. Palmonari,161G. A. Pierro,161

I. Ross,161A. Savin,161W. H. Smith,161and J. Swanson161

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium 8

Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15

Institute of High Energy Physics, Beijing, China

16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt 24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

25Department of Physics, University of Helsinki, Helsinki, Finland 26Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France 31

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France 33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37

(13)

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47

University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49

Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research-EHEP, Mumbai, India 51Tata Institute of Fundamental Research-HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53cPolitecnico di Bari, Bari, Italy 54a

INFN Sezione di Bologna, Bologna, Italy 54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58aINFN Sezione di Genova, Genova, Italy

58bUniversita` di Genova, Genova, Italy 59a

INFN Sezione di Milano-Bicocca, Milano, Italy 59bUniversita` di Milano-Bicocca, Milano, Italy

60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62a

INFN Sezione di Pavia, Pavia, Italy 62bUniversita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma ‘‘La Sapienza’’, Roma, Italy

66aINFN Sezione di Torino, Torino, Italy 66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67bUniversita` di Trieste, Trieste, Italy 68Kangwon National University, Chunchon, Korea

69Kyungpook National University, Daegu, Korea 70

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Korea University, Seoul, Korea

72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

79

University of Auckland, Auckland, New Zealand 80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82National Centre for Nuclear Research, Swierk, Poland

(14)

84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia 87Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90

P.N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain

94Universidad Auto´noma de Madrid, Madrid, Spain 95Universidad de Oviedo, Oviedo, Spain

96Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 97CERN, European Organization for Nuclear Research, Geneva, Switzerland

98Paul Scherrer Institut, Villigen, Switzerland 99

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 100Universita¨t Zu¨rich, Zurich, Switzerland

101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

103Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105Bogazici University, Istanbul, Turkey

106Istanbul Technical University, Istanbul, Turkey

107National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 108

University of Bristol, Bristol, United Kingdom 109Rutherford Appleton Laboratory, Didcot, United Kingdom

110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112Baylor University, Waco, Texas USA

113The University of Alabama, Tuscaloosa, Alabama USA 114Boston University, Boston, Massachusetts USA 115

Brown University, Providence, Rhode Island USA 116University of California, Davis, Davis, California USA 117University of California, Los Angeles, Los Angeles, California USA

118University of California, Riverside, Riverside, California USA 119University of California, San Diego, La Jolla, California USA 120University of California, Santa Barbara, Santa Barbara, California USA

121California Institute of Technology, Pasadena, California USA 122Carnegie Mellon University, Pittsburgh, Pennsylvania USA 123University of Colorado at Boulder, Boulder, Colorado USA

124Cornell University, Ithaca, New York USA 125Fairfield University, Fairfield, Connecticut USA 126Fermi National Accelerator Laboratory, Batavia, Illinois USA

127University of Florida, Gainesville, Florida USA 128Florida International University, Miami, Florida USA

129Florida State University, Tallahassee, Florida USA 130Florida Institute of Technology, Melbourne, Florida USA 131

University of Illinois at Chicago (UIC), Chicago, Illinois USA 132The University of Iowa, Iowa City, Iowa USA 133Johns Hopkins University, Baltimore, Maryland USA

134The University of Kansas, Lawrence, Kansas USA 135Kansas State University, Manhattan, Kansas USA

136Lawrence Livermore National Laboratory, Livermore, California USA 137University of Maryland, College Park, Maryland USA 138Massachusetts Institute of Technology, Cambridge, Massachusetts USA

139University of Minnesota, Minneapolis, Minnesota USA 140

University of Mississippi, University, Mississippi USA 141University of Nebraska-Lincoln, Lincoln, Nebraska USA 142State University of New York at Buffalo, Buffalo, New York USA

(15)

145University of Notre Dame, Notre Dame, Indiana USA 146The Ohio State University, Columbus, Ohio USA 147Princeton University, Princeton, New Jersey USA 148University of Puerto Rico, Mayaguez, Puerto Rico USA

149Purdue University, West Lafayette, Indiana USA 150Purdue University Calumet, Hammond, Indiana USA

151

Rice University, Houston, Texas USA 152University of Rochester, Rochester, New York USA 153

The Rockefeller University, New York, New York USA

154Rutgers, the State University of New Jersey, Piscataway, New Jersey USA 155University of Tennessee, Knoxville, Tennessee USA

156Texas A&M University, College Station, Texas USA 157Texas Tech University, Lubbock, Texas USA 158Vanderbilt University, Nashville, Tennessee USA 159University of Virginia, Charlottesville, Virginia USA

160

Wayne State University, Detroit, Michigan USA 161University of Wisconsin, Madison, Wisconsin USA

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.

dAlso at Universidade Federal do ABC, Santo Andre, Brazil. eAlso at California Institute of Technology, Pasadena, USA.

fAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.

hAlso at Suez Canal University, Suez, Egypt.

iAlso at Zewail City of Science and Technology, Zewail, Egypt.

jAlso at Cairo University, Cairo, Egypt.

kAlso at Fayoum University, El-Fayoum, Egypt.

lAlso at British University, Cairo, Egypt.

mNow at Ain Shams University, Cairo, Egypt.

nAlso at National Centre for Nuclear Research, Swierk, Poland.

oAlso at Universite´ de Haute-Alsace, Mulhouse, France.

pNow at Joint Institute for Nuclear Research, Dubna, Russia.

qAlso at Moscow State University, Moscow, Russia.

rAlso at Brandenburg University of Technology, Cottbus, Germany. s

Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. tAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

uAlso at Tata Institute of Fundamental Research—HECR, Mumbai, India.

vAlso at University of Visva-Bharati, Santiniketan, India.

wAlso at Sharif University of Technology, Tehran, Iran.

xAlso at Isfahan University of Technology, Isfahan, Iran.

yAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran.

zAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy.

aaAlso at Universita` della Basilicata, Potenza, Italy.

bbAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy.

ccAlso at Universita` degli studi di Siena, Siena, Italy.

ddAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania.

eeAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

ffAlso at University of California, Los Angeles, Los Angeles, USA.

ggAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

hhAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. ii

Also at University of Athens, Athens, Greece.

jjAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.

kkAlso at The University of Kansas, Lawrence, USA.

llAlso at Paul Scherrer Institut, Villigen, Switzerland.

(16)

nnAlso at Gaziosmanpasa University, Tokat, Turkey.

ooAlso at Adiyaman University, Adiyaman, Turkey.

ppAlso at Izmir Institute of Technology, Izmir, Turkey.

qqAlso at The University of Iowa, Iowa City, USA.

rrAlso at Mersin University, Mersin, Turkey.

ssAlso at Ozyegin University, Istanbul, Turkey.

ttAlso at Kafkas University, Kars, Turkey.

uuAlso at Suleyman Demirel University, Isparta, Turkey.

vvAlso at Ege University, Izmir, Turkey.

wwAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

xxAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

yyAlso at University of Sydney, Sydney, Australia.

zzAlso at Utah Valley University, Orem, USA. aaa

Also at Institute for Nuclear Research, Moscow, Russia.

bbbAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

cccAlso at Argonne National Laboratory, Argonne, USA.

dddAlso at Erzincan University, Erzincan, Turkey.

eeeAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

Imagem

Table I lists the SM processes included in the fit. The W plus jets normalization is a free fit parameter because it is by far the dominant background
FIG. 1 (color online). (a) Distribution of the invariant mass spectrum of the leading two jets observed in data
TABLE III. The PYTHIA cross sections at 7 TeV times branch- branch-ing fraction to jets (  B) and overall efficiency times acceptance (&#34;A) for various signal models
FIG. 2 (color online). (a) The observed and expected values of the CL S statistic for a generic Gaussian signal hypothesis with M ¼ 150 GeV and  jj ¼ 15 GeV, as a function of the dijet signal cross section

Referências

Documentos relacionados

A concentração de alunos Surdos, defendida neste diploma, não abrange somente a sua colocação no mesmo espaço escolar, mas também que o seu percurso, quer ao nível do

A maioria dos estudos que não encontrou diferença quanto ao grau de RRAE entre homens e mulheres, assim como em relação à idade ao início do tratamento ortodôn- tico,

Visto que aprofundar o estudo sobre os processos interativos da comunicação é um trabalho laborioso de multidisciplinaridade e multidimensionalidade, resguardo-me

Facilmente se identifica Lúcia com a Gata Borralheira do conto de fadas, pois ambas são protagonistas das histórias, órfãs, jovens, oriundas de meio economicamente

Considerando a obtenção de maior homogeneidade e percentagem de germinação das sementes no método 1 e, por outro lado, o ganho em eficiência verificada com o período de

O presente estudo teve como objetivo avaliar a conduta de gestantes aten- didas em consultórios médicos de um município do Sul do Estado de Minas Gerais frente ao

Num outro conjunto de perspetivas, sendo estas referentes à integração, Gaddes é um dos autores que considera fundamental a ligação entre neuropsicólogos e educadores,

Já no caso das 24 horas de exposição, observou-se um aumento de Bax (proteína pró-apoptótica da via intrínseca) no controlo irradiado, simultaneamente à diminuição de