• Nenhum resultado encontrado

Soluções cientes de agregação de dados da correlação espaço-temporal e consumo de energia para realizar coleta de dados em redes de sensores sem fio

N/A
N/A
Protected

Academic year: 2017

Share "Soluções cientes de agregação de dados da correlação espaço-temporal e consumo de energia para realizar coleta de dados em redes de sensores sem fio"

Copied!
136
0
0

Texto

(1)

DADOS, DA CORRELAÇO ESPAÇO-TEMPORAL

E CONSUMO DE ENERGIA PARA REALIZAR

(2)
(3)

SOLUÇÕES CIENTES DE AGREGAÇO DE

DADOS, DA CORRELAÇO ESPAÇO-TEMPORAL

E CONSUMO DE ENERGIA PARA REALIZAR

COLETA DE DADOS EM REDES DE SENSORES

SEM FIO

Tese apresentada ao Programa de

Pós--GraduaçãoemCiênia daComputaçãodo

Instituto de Ciênias Exatas da

Universi-dade Federal de Minas Gerais omo

requi-sito parial para a obtenção do grau de

Doutor emCiênia daComputação.

Orientador: Antonio Alfredo Ferreira Loureiro

Co-orientadora: Regina Borges de Araujo

(4)
(5)

DATA AGGREGATION, SPATIO-TEMPORAL

CORRELATION AND ENERGY-AWARE

SOLUTIONS TO PERFORM DATA COLLECTION

IN WIRELESS SENSOR NETWORKS

Thesis presented to the Graduate Program

inComputerSiene ofthe Federal

Univer-sityofMinas Geraisinpartialfulllmentof

the requirements for the degree of Dotor

inComputer Siene.

Advisor: Antonio Alfredo Ferreira Loureiro

Co-advisor: Regina Borges de Araujo

(6)
(7)
(8)
(9)

Primeiramente aos meus pais, Antnio Villas Martins e TerezinhaJoana Gonçalves

Villas, peloamor, inentivo e dediação, sempre areditando no meu suesso.

Certamente orgulhosos por mais umimportante passo na minha vida;

À minha irmã,Daiane Villas, que sempre toreu para que tudo desse erto;

À Vernia, minha namorada e possivelmente futura esposa, pelapaiênia nos

momentos mais difíeis;

Ao meu querido sobrinho Geovane Villas, ao qual tenho um amor imenso;

Ao ApareidoGonzales Castilho, meu primo, mesmo não estando presente entre nós,

foi um exemplo de vida para mim e me ensinou que nos estudos eu onseguiria

(10)
(11)

ADeus, aimadetudoetodos,pelaoportunidadedeaperfeiçoamentotantointeletual

quanto moral. Pelapresença onstante emada momento de minhavida, pelafamília

e pelos amigos;

A minha família (Antonio, Terezinha, Daiane e Geovane), pessoas sem as quais

eu não seriaoquesou hoje. Mesmo distantes siamente, permaneerampróximosem

pensamento atravésde suas orações, onversas e onselhos;

Ao meu orientador, Prof. Antonio Alfredo Ferreira Loureiro, pela ajuda,

inen-tivo,eslareimentoe,aimadetudo,exemplo. Aminhao-orientadoraReginaBorges

de Araújo pela motivação, enorajamento, amizade e direionamento. Ao meu

super-visor,Prof. AzzedineBoukerhe pelaoportunidadeedireionamentoduranteoestágio

de sanduíhe realizado na University of Ottawa. Ao Prof. Horáio A. B. Fernandes

de Oliveira pelas disussões e olaborações e ao meu amigo Daniel L. Guidoni pelas

disussõese olaboraçõesem vários trabalhos;

AosamigosdoDCC-UFMG,Alyson,Celso,CésarSoares,DanielGalinkin,Daniel

Guidoni, Eduardo Muelli, Felipe, Fernanda, Fernando, Flávio, Guilherme, Heitor,

Izabela, John Holiver, Laura, Letíia, Marelo, Max, Pedro, Rafael Colares, Rafael

Santin,ThiagoPedpano,TiagoCunhaeZiltonpelaamizade,ompanhiaeajudadiária;

Ao pessoal do laboratório Ubiquitous and Wireless Sensor Networks Lab pelo

ambientedesontraído e,ao mesmotempo,prossional que enontrei no laboratório;

Aos meus amigos do Paradise Laboratory, Aissa, Cristiano, Daniel, Heitor,

Riharde Robsonpelaompanhia,amizadee apoiodesde minhahegada emOttawa;

A todos os meus familiarespelaonança irrestrita;

Aosmeusamigosde infânia,que sempreestiveramaomeu lado,mesmoquando

(12)
(13)

Este trabalhoofereeuma disussãogeralsobre otemade agregaçãode dadose

explo-ração da orrelação espaço-temporal dos dados em redes de sensores sem o(RSSFs)

que permite: (i) a identiação de problemas em aberto e (ii) o entendimento dos

re-quisitos eimpliaçõesdouso de agregação de dadosemRSSFs, alémdaexploraçãoda

orrelação espaço-temporal dos dados.

Esta disussãoéfeitaatravésde umlevantamentobibliográodoestado-da-arte

envolvendo agregação e orrelação espaço-temporalde dados em RSSFs. Como

resul-tado daanálise de arquiteturas, modelos emétodos de agregação e orrelação

espaço-temporal de dados identiados neste levantamento bibliográo, propomos quatro

soluções diferentes para o problema de agregação e exploração da orrelação

espaço-temporalde dadosonsiderandodiferentes enáriosemRSSFs: osalgoritmosDAARP,

DDAARP, DST e EAST. Os algoritmos propostos reduzem o número de mensagens

neessárias para riar uma árvore de roteamento, maximizam o número de rotas

so-brepostas, seleionam as rotas om maior taxa de agregação e realizam transmissões

onáveis de dadosagregados.

Assoluçõespropostasforamamplamenteomparadasomoutrassoluçõesda

lite-raturaemrelaçãoaos ustosdeomuniação,eiêniadeentrega,taxade agregaçãoe

taxade entrega de dadosagregados. Osresultadosmostramqueassoluçõespropostas

podem ser uma boa alternativa para agregar dados e explorar a orrelação

espaço-temporaldos dados durante oroteamento. Diversos experimentossão mostrados para

(14)
(15)

OdoumentodestateseestáredigidoeminglêsomotítuloDataAggregation,

Spatio-TemporalCorrelationandEnergy-AwareSolutionstoperformDataColletion in

Wire-less Sensor Networks. Para atender às normas da Universidade Federal de Minas

Gerais, este resumo em português faz um resumo estendido de ada apítulo desta

tese.

Capítulo 1 Introdução

Os reentes desenvolvimentos nas áreas de omuniação sem o e sensores

multifun-ionaisom apaidadede omuniaçãoeproessamentoimpulsionaramoresimento

dasredesdesensoressemo(RSSFs). AsRSSFsestãoadavezmaispresentesem

apli-açõesomomonitoramentoambiental,vigilâniade amposmilitaresemuitas outras

ondeapresença humananãoépossívelounãodesejada. Umnósensor,porsisó,

apre-senta uma apaidade limitada de deteção de sensoriamento de uma dada grandeza,

mas aapaidadeglobalde deteçãopodeser aumentadadrastiamentequandoosnós

são ombinados formando uma rede de sensores sem o. Logo, nós sensores em uma

RSSF podem monitorar ooperativamente uma determinada área de interesse. Por

exemplo, se oorrer um vazamento de gás em uma sala repleta de botijões de gás e

existir apenas um nó sensor nessa sala, será possível apenas dizer se há ou não

vaza-mento de gás. Por outro lado, se for utilizada uma RSSF adequadamente projetada,

serápossívelnãosódetetarovazamento,masindiarondeovazamentoiniioueomo

ele evoluiu. Um monitoramento dessa forma pode salvarvidas e patrimnio, além de

diminuirustos de seguros.

Osnóssensoressãodispositivostipiamenteomrestriçõesdeenergia. Oonsumo

de energiaé geralmente assoiado àquantidade de dadostransmitidos na rede, pois a

omuniação é a atividade que tende a demandar uma maior quantidade de energia.

Uma soluçãosimplespara esse problemaseria areposição dabateriados nós sensores.

(16)

vulões ou do espaço. Dessa forma, algoritmos e protoolos projetados para uma

RSSF devem onsiderar o onsumo de energia emsua onepção. Além disso, os nós

sensores podemoletaruma grandequantidade dedadosque preisamser proessados

eenaminhadas,muitas vezes usandoomuniação multihop,emdireçãoaumnósink,

oqualfunionaomoumgateway paraumaestaçãode monitoramento. Nesse enário,

oroteamentodesempenha um papelmuitoimportantenoproesso deoleta de dados.

Pararealizaraoletadedadosdeformamaiseienteeeazomumusomínimo

dereursoslimitados,nóssensoresdevemseronguradosparareportardadosdeforma

inteligente tomando deisões loais. Para isso, a agregação de dados e a exploração

da orrelação espaço-temporal de dados são ténias eazes de eonomia de energia

em RSSFs. Devido à redundânia dos dados brutos reolhidos pelos nós sensores, a

agregação de dados e a orrelação espaço-temporalde dados muitas vezes podem ser

usadas para diminuir o usto de omuniação, eliminando a redundânia de dados e

reportando apenas informações agregadas.

A agregação de dados tem sido utilizada em RSSFs om dois propósitos: (i)

tirar proveito da redundânia emelhorara preisão dos dados; e (ii)reduzir otráfego

de dados e eonomizar energia. No entanto, as propostas atuais têm um usto alto

para riar estruturas de roteamento ientes de agregação de dados e muitas delas não

onsideramaorrelaçãoespaço-temporaldedados. Alémdisso,amaioriadaspropostas

não lidaom falhas nos nós e interrupções nas omuniações, o que provoa perda de

dadose não garantea entrega dos dados oletados.

A prinipal ontribuição desta tese é o desenvolvimento de quatro diferentes

soluções ientes de agregação de dados, da orrelação espaço-temporal e onsumo de

energia para oleta de dados emRSSFs, que nos referimos omo DAARP, DDAARP,

DSTe EAST, quaisserão apresentados, respetivamente, nos apítulos3, 4,5 e 6.

Capítulo 2 Fundamentação Teória

Redes de Sensores sem Fio

UmaRededeSensoressem o(RSSF)podeserdenida omoumaredeooperativade

nóssensores semo, operadostipiamenteporbateria,ujoprinipalobjetivoéduplo:

monitoraro ambiente e transmitir os dados reolhidos para um nó sorvedouro (sink)

usando normalmente omuniação multihop. Este nó sorvedouro será responsável por

proessar todos os dados reebidos dos nós fontes e reportá-los para uma estação de

(17)

analisado. Geralmente, ada nó sensor é equipado om vários tiposde sensores omo,

porexemplo, temperatura, pressão, sísmio, aústio, radiação einfravermelho. Esses

nós sensores são onstruídos para serem baratos e normalmente possuem limitações

omputaionais, memória,omuniação e energia.

As RSSFs possibilitamaoleta de informaçõesneessárias emambientes onde o

uso de os ou abeamento não seja possível ou viável. Elaspodem estar inseridas na

estrutura de um prédio, ponte, no interior de máquinas, tubulações, dentro de asas,

orestas, áreas de desastre, plantações, vulões, ampo debatalhaeaté mesmodentro

do orpo humano omo, por exemplo, a retina. O baixo usto dos nós sensores e o

potenialdessa tenologia justiam asua utilizaçãoem diversas áreas, taisomo:

ˆ Saúde: ontrole de doenças ontagiosas; interfae para deientes;

monitora-mento de paientes; diagnóstio de distúrbios; administraçãode drogas em

hos-pitais, monitoramento eloalizaçãode paientes emédiosem hospitais.

ˆ Apliações Militares: monitoramento de tropas; reonheimento de terreno;

deteção de alvos e de ataques biológios,químios ounuleares.

ˆ Meio-ambiente: rastreamento do movimento dos pássaros, pequenos animais;

monitoramentodeondiçõesambientaisqueafetamolheitaseplantio(por

exem-plo,ombateàgeada,deteçãodeomponentesquímiosoubiológios,irrigação);

mapeamentodabio-omplexidadeambiental,estudodapoluiçãoemuitasoutras.

ˆ Monitoramento de estrutura/equipamentos: monitoramento e

identi-ação de falhas em estruturas (pontes, prédios, et); monitoramento da fadiga

de máquinas e equipamentos (motores, dutos de gás, et); diagnóstios de

má-quinas.

ˆ Apliações omeriais: automação de vendas e proesso industriais;

manutenção de inventário, monitoramento de qualidade de produtos; deteção

e vigilânia de veíulose estabeleimentos.

A tendênia é a produção dos nós sensores em larga esala, barateando o seu

ustoeoinvestimentonodesenvolvimentotenológiolevandoanovasmelhorias,omo

aumentode proessamento e armazenamentoe redução do tamanhodos nós sensores.

Portanto,novasapliaçõespodemsurgiraumentandoaabrangêniadeuso dasRSSFs.

A posição de ada nósensor não preisa ser neessariamente pré-determinada, o

(18)

redesde sensores devempossuir a araterístiade auto-organizaçãodos nós.

Agregação de Dados no Roteamento

Agregação de dados durante o roteamento em redes de sensores sem o envolve

dife-rentes formasde transmitirpaotesde dados am de ombinardados provenientes de

fontes diferentes, mas destinado a um nó espeío hamado sink. Um

omponente-have para a agregação de dados em RSSFs é um protoolo de roteamento iente de

agregaçãode dadosbemonebido,quedeterminaondeaagregaçãodeveserrealizada.

Agregaçãodedadosrequerumparadigmadeenaminhamentodiferentedoroteamento

lássio. Protoolosde roteamentolássiotipiamenteusam osaminhos mais urtos

emrelaçãoaalgumamétriaespeía paratransmitirdadosaosink. Emprotoolos

de roteamento iente de agregação de dados, os nós devem enaminhar os paotes de

dados om base no onteúdo do paote e esolher o próximo hop que maximiza a

so-breposiçãoderotasparapromoveraagregaçãodedadosnarededuranteoroteamento.

Para realizar a agregação de dados na rede é neessária alguma forma de

sin-ronizaçãoentre osnós. Tipiamenteosnós não enviam dados,logoque sejapossível.

A espera de informações provenientes de nós vizinhos pode levar a melhores

oportu-nidadesdeagregaçãodedadose,onsequentemente, melhordesempenho. Asprinipais

estratégiasde temporização propostas na literaturasão resumidas a seguir:

ˆ Periodi simple aggregation exige que ada nó espere por um períodode tempo

pré-denido,paraagregartodosospaotesdedadosreebidosduranteessetempo

pré-denido e, em seguida, envia um paote de dados om o resultado da

agre-gação de todos os paotesde dados reebidos;

ˆ Periodi per-hop aggregation é bastante semelhante à abordagem anterior. A

únia diferença é que o paote om os dados agregados é transmitido logo que

o nó reebe um paote de dados de todos os seus lhos. Isto requer que ada

nó onheça os seus lhos. Além disso, um tempo limite é usado em aso de um

paote de dados de algumlho ser perdido durantea transmissão.

ˆ Periodi per-hop adjusted aggregation ajusta o tempo de espera de um nó,

de-pendendo daposiçãodo nóna estrutura de roteamento.

É importante observar que a esolha da estratégia de tempo afeta fortemente a

taxa de agregação em rede e a latênia para relatar os dados oletados. Se o tempo

(19)

menor.

Correlação Espaço-Temporal de Dados

Podemos enontrar atualmente na literatura três ategorias prinipais de protoolos

ientes de orrelação de dados: (i) orrelação espaial; (ii) orrelação temporal e (iii)

orrelação espaço-temporal. A seguir, apresentamos os benefíios da exploração da

orrelação espaial/temporalde dados emRSSFs:

1. Correlação Espaial: nós espaialmente próximos tendem a sensoriar valores

semelhantes. No entanto, essa proximidade depende dos requisitos da apliação

e araterístias do evento. Algumas apliações são mais rítias e são menos

tolerantes a disrepânias nos valores sensoriados sobre o fenmeno observado,

exigindoque nóspróximosreportamosdadossensoriados (regiãodeorrelação é

menor). Poroutrolado,outrasapliaçõespodemsermaistolerantesa

disrepân-ias nos valores sensoriados, não exigindo que nós próximos reportam os dados

sensoriados (região de orrelação é maior).

Região de orrelação: emumaregiãode orrelação,osvalores sensoriados

pe-los nós sensores são onsiderados semelhantes para a apliação e, portanto, uma

únia leitura dentro dessaregiãoé osuiente para representá-la. Otamanho da

região de orrelação varia de apliação para apliação e de evento para evento.

Assim, o tamanho da região de orrelação está diretamente relaionado à

apli-ação.

2. Correlação Temporal: tipiamente, a leitura feita pelos sensores no ambiente é

periódia. Consequentemente, os dados sensoriados onstituem uma série

tem-poral. Devido à natureza do fenmenofísio, háuma orrelação temporal

signi-ativaentre adaobservaçãoonseutivade um nósensore osdadosreolhidos

são geralmentesemelhantes emumurtoperíodode tempo. Assim, nessesasos,

os nós sensores não preisam transmitir suas leituras se a leitura atual estiver

dentrode um limiaraeitávelem relaçãoà última leiturareportada.

Correlação temporal: adanófonte mantéma últimaleiturareportada(

R

old

).

Quando a leitura atual (

R

new

) estiver disponível,

R

new

é omparada om

R

old

.

R

new

de um nó fonte é reportada se um dado limiar é maior que a tolerânia

na oerênia temporal (tt), isto é,

|

(

R

new

R

old

)

|

R

old

×

100

> tct

, onde

tct

é a

por-entagem de tolerânia na oerênia temporal. Caso ontrário o valor

R

new

é

(20)

apresenta tanto a orrelação espaial quanto a temporal, ou seja, nós

espaial-mentepróximostendemasensoriarvaloressemelhanteseosdadosreolhidossão

geralmente semelhantes em um urto períodode tempo. Neste aso, assoluções

que utilizam ambas as orrelações podem tirar proveito da natureza do evento

detetado e reduziro número de dados reportados.

Na literatura existente de algoritmos que exploram a orrelação espaial e/ou

temporaldos dados,amaioriadasabordagens propostas nãoonsideraonívelde

ener-giados nós na seleçãodos nós representativose asaraterístias doevento durante a

oletadedadosparamelhoresolherosnósrepresentantesdeadaregiãodeorrelação.

As abordagens que onsideram o nível de energia dos nós apresentam um alto usto

deontrole egeralmenteresultamemaltos atrasosedados desatualizadossão

enami-nhados para o nó sink. No entanto, elas não exploram a orrelação espaço-temporal

eientemente.

Capítulo 3 DAARP: Um Protoolo de Roteamento

Ciente de Agregação de Dados para RSSFs

É um novo protoolo de roteamento iente de agregação de dados para RSSFs. A

prinipalmotivaçãoparaprojetarumnovoalgoritmoderoteamentoientedeagregação

dedadoséqueassoluçõesdaliteraturaapresentamum altoustoparariarestruturas

deroteamentoientesdeagregaçãodedados. OalgoritmoDAARPonstróiumaárvore

de roteamento om os aminhos mais urtos (em saltos) que oneta todos os nós

fontes ao sink enquanto maximizaa agregaçãode dados,uja prinipalontribuiçãoé

maximizaraagregação de dadosaolongodarota de omuniação,de uma formamais

onável,atravésdeummeanismode enaminhamentotoleranteafalhas. Resultados

de simulações(apresentados naseção3.6)revelam queo DAARP tem algunsaspetos

haves exigidos pela agregação de dados em RSSFs omo um número reduzido de

mensagensparaariaçãodeumaestruturaderoteamento,maximizaonúmeroderotas

(21)

Roteamento Dinâmio e Ciente de Agregação de

Dados para RSSFs

ÉumnovoprotooloderoteamentoientedeagregaçãodedadosdinâmioparaRSSFs,

que usa o nósink para oproessamentoe onguraçãodas rotas ientes de agregação

de dados. A prinipalmotivação para projetaruma abordagemdinâmia,que ria

es-truturas deroteamentodinâmiasientes deagregaçãode dados,équeaqualidadedas

estruturas de roteamentoriadaspeloDAARP etambémpelamaioriados algoritmos

naliteraturadepende daordemde oorrêniados eventos. Assim, umavez riadaessa

estrutura, as rotas são mantidasestátias durantea oorrênia doevento. A prinipal

ontribuiçãodoDDAARPéqueasrotasriadasnãodependemdaordemdeoorrênia

dos eventos e não são mantidas xas durante a oorrênia de eventos. Resultados de

simulações(apresentadosnaseção4.6)revelam queoDDAARP apresenta baixousto

em termos de paotes de ontrole, melhoraa qualidade daestrutura de roteamento e

maximiza a agregação de dados ao longo da rota de omuniação de uma formamais

onável, através de um meanismo de roteamentotolerante afalhas.

Capítulo 5 DST: Um Protoolo de Roteamento

Esalável, Dinâmio e Ciente de Agregação de

Dados para RSSFs

É um novo protoolo de roteamento iente de agregação de dados que leva a uma

so-lução esalável,dinâmiae apresentabaixousto para riarestruturas de roteamento.

Apesar do DDAARP ter mostrado bons resultados, elesofre om problemas de

esal-abilidade e torna-seinviável para redes de larga esala. Alémdisso, onó sink preisa

de onheimento global da rede. DST é uma solução eiente de agregação de dados

que permite o roteamento esalável e dinâmio em RSSFs, que onstrói estruturas de

roteamento om as rotas mais urtas (distânia Eulidiana) que oneta todos os nós

fontes ao nó sink maximizando a agregação de dados e reduzindo a distânia para

onetar ada nó fonte aosink. Resultados de simulações(apresentados naseção 5.6)

revelamqueoDSTapresentabaixoustoemtermosde paotesde ontrole, maximiza

os pontosde agregação e melhoraa qualidade da estrutura de roteamento ofereendo

(22)

Eiente para Coleta de Dados Ciente da Correlação

Espaço-Temporal para RSSFs

ÉumnovoalgoritmoientedeenergiaparaoenaminhamentodedadosemRSSFsque

aproveita os meanismos de orrelação espaiale temporalpara eonomizar energia e

manter o enaminhamento de dados preisos em tempo oportuno para o nó sink. A

prinipalmotivaçãopara aonepção doEAST équeamaioriados algoritmosientes

de orrelação espaial e/ou temporal não onsidera o onsumo de energia durante a

oletade dadosparamelhoresolherosnósrepresentativos. Alémdisso,essassoluções

possuemumgrande númerode mensagensde ontroleenão explorade formaeiente

a orrelação espaço-temporal dos dados, nem a sua dinamiidade. A prinipal

on-tribuiçãoéum meanismo de orrelação espaço-temporalde dados emque osnós que

detetaramo mesmoeventosão dinamiamenteagrupados emregiõesorrelaionadas

eum nórepresentanteéseleionadoemadaregiãodeorrelaçãoparaobservaro

fen-meno. Resultados de simulações(apresentadosnaseção 6.4)mostramlaramenteque,

usandoambas asorrelaçõesespaialetemporal,asinformaçõessobreoeventopodem

ser sentidas om altapreisão eainda eonomizar aenergia residualdos nós.

Capítulo 7 Conlusões

Estatese estudou aimportâniaderealizaragregaçãode dadoseexplorara orrelação

espaço-temporaldos dados duranteo roteamento. Devido à impossibilidade de se ter

umaúniasoluçãoparaumdeterminadoproblemaemRSSFs,nestatesesão propostos

quatro algoritmos diferentes para a agregação de dados e exploração da orrelação

(23)

This work provides a general disussion for data aggregation that exploits

spatio-temporal data orrelation in wireless sensor networks (WSNs), allowing us to

iden-tify open issues and understand the requirementsand the impliationsregarding data

aggregation, and spatio-temporaldata orrelationin WSNs.

In this disussion, we survey the state-of-the-art of data aggregation and

spatio-temporaldataorrelation inWSNs. Byassessingthe arhitetures, models,and

meth-ods of data aggregation and spatio-temporaldata orrelation identied in the survey,

we propose four dierent solutions for the data aggregation and spatio-temporaldata

orrelation that are suitable for dierent senarios in WSNs. The proposed solutions

are alled DAARP, DDAARP, DST and EAST. The proposed algorithms redue the

number of message neessary to set up a routing tree, maximize the number of

over-lapping routes, selet routes with the highest aggregation rate, and perform reliable

data aggregation transmission.

The proposed solutions have been extensively ompared with other solutions in

the literature and the results show that the proposed solutions may be potential

al-ternatives to perform data aggregation and spatio-temporal data orrelation during

the routing proess. We also present an extensive set of experiments to evaluate the

performane of our algorithms. Our results indiate that our proposed solutions are

suitable for implementationin WSNs.

Keywords: WSNs, routing algorithms, data aggregation, spatio-temporal

(24)
(25)

2.1 Data routinginWSNs [Oliveira et al.,2009℄. . . 8

2.2 Data Aggregation Aware Routing . . . 9

2.3 Energy onsumption of nodes during the data olletion when using (a) a

lassialapproah; and when using (b) a spatialorrelation based approah. 17

2.4 (a)The time series and (b) The pieewise linear presentation . . . 19

3.1 Example of establishingnew routesand updatingthe hop tree . . . 27

3.2 Example of path repair . . . 29

3.3 Number of Steiner nodes in the routing tree built by the DAARP, InFRA,

MST, and SPT algorithms . . . 34

3.4 Impat of the Network Size . . . 36

3.5 Impat of the Number of Events . . . 37

3.6 Impat of the Event Duration . . . 38

3.7 Impat of Communiation Failures . . . 39

4.1 Overhead . . . 50

4.2 Eieny . . . 52

4.3 Number of Steinernodes . . . 53

5.1 Examples of routingstruture establishmentfor DST variations . . . 59

5.2 Impat of Event Sale . . . 62

5.3 Impat of Network Sale . . . 63

5.4 Impat of Event Duration . . . 64

6.1 Examples of routingstruture used by the EAST algorithm. . . 69

6.2 SpatialCorrelation Mehanism appliedto the event area . . . 72

6.3 Data olleted fromAmazon rainforest. . . 75

6.4 Number of representative nodes . . . 76

(26)

6.7 Auray in the readingsof min value. . . 80

6.8 Auray in the readingsof max value . . . 80

6.9 Auray in the readingsof mean value . . . 80

6.10 Notiations

×

Readings . . . 83

6.11 Average energy onsumption . . . 84

6.12 Data auray. . . 85

6.13 Average delayin high reporting rate. . . 86

(27)

2.1 Summaryofthebasiharateristisofsomedataaggregationawarerouting

protools . . . 12

2.2 Summary of the basi harateristis of the main proposed spatial and/or

temporaldata orrelations algorithmsfor WSNs . . . 16

3.1 Communiation omplexity of assessed algorithms . . . 30

3.2 Summaryof the basiharateristisof assessed algorithms. . . 31

3.3 Simulationparameters . . . 32

3.4 Senario with 6 events, 256 nodes and density 20 . . . 35

3.5 Senario with 6 events, 256 nodes and density 30 . . . 35

3.6 Senario with 6 events, 2048 nodes and density 20 . . . 35

3.7 Senario with 6 events, 2048 nodes and density 30 . . . 35

4.1 Communiation omplexity of assessed algorithms . . . 48

4.2 Simulationparameters . . . 49

5.1 Communiation omplexity of assessed algorithms . . . 60

5.2 Simulationparameters . . . 61

6.1 Simulationparameters . . . 74

(28)
(29)

1 Buildingthe hop tree . . . 25

2 Cluster formationand leader eletion . . . 26

3 Route formation, hop tree updates and data transmission . . . 27

4 Buildingthe hop tree . . . 43

5 Colleting informationabout nodes' position. . . 44

6 Cluster formationand leader eletion . . . 45

7 Routing formation . . . 46

8 Data Transmissions . . . 47

9 Disovery of neighbors' position . . . 56

10 Cluster formationand leader eletion . . . 57

(30)
(31)

Agradeimentos xi

Resumo xiii

Resumo Estendido xv

Abstrat xxiii

List of Figures xxv

List of Tables xxvii

1 Introdution 1

1.1 Motivation . . . 1

1.2 Objetives . . . 2

1.3 Main Contributions . . . 3

1.4 Organization ofthe Thesis . . . 5

2 Bakground 7

2.1 Wireless Sensor Networks . . . 7

2.2 In-network Data Aggregation . . . 9

2.2.1 Routing Sheme Aware Data Aggregation . . . 11

2.3 Exploiting Spatio-TemporalCorrelation . . . 15

2.3.1 Spatial Correlation . . . 15

2.3.2 TemporalCorrelation . . . 18

2.3.3 Spatio-TemporalCorrelation . . . 20

2.4 Final Remarks. . . 21

3 DAARP: Data Aggregation Aware Routing Protool 23

(32)

3.3 Routing Formation,HopTree Updates and Data Transmission . . . 25

3.4 Route Repair Mehanism . . . 28

3.5 Complexity Analysis . . . 29

3.6 Performane Evaluation . . . 31

3.6.1 Methodology . . . 31

3.7 Final Remarks onDAARP . . . 39

4 DDAARP: Dynami Data Aggregation Aware Routing Protool 41

4.1 Buildingthe Hop Tree and Gathering InformationAbout Nodes' Position 42

4.2 Cluster Formationand Leader Eletion . . . 44

4.3 Routing Formation . . . 45

4.4 Data Transmission . . . 46

4.5 Complexity Analysis . . . 47

4.6 Performane Evaluation . . . 48

4.6.1 Simulation Senario and Metris Used . . . 48

4.6.2 Simulation Results . . . 49

4.7 Final Remarks onDDAARP . . . 54

5 DST: Dynami and Salable Tree 55

5.1 Disovery of Neighbors' and Sink's Positions . . . 56

5.2 Cluster Formationand Leader Eletion . . . 57

5.3 Notiationof a New Event . . . 57

5.4 Routing Tree Creation and DataTransmissions . . . 58

5.5 Complexity Analysis . . . 60

5.6 Performane Evaluation . . . 60

5.6.1 Methodology . . . 60

5.7 Final Remarks onDST . . . 65

6 EAST: Eient Data Colletion Aware of Spatio-Temporal

Corre-lation 67

6.1 Spatial CorrelationModel . . . 67

6.2 TemporalCorrelation Model . . . 68

6.3 Overview of the EAST Algorithm . . . 68

6.3.1 Node Loalization. . . 70

6.3.2 Cluster Formation, Leader Eletion, and Division of the Event

AreaintoCells . . . 70

(33)

6.4.1 Methodology . . . 74

6.4.2 Event Model. . . 74

6.4.3 Performane Evaluationof the SpatialCorrelation Mehanism . 75

6.4.4 Performane Evaluationof TemporalCorrelation Mehanism . . 81

6.5 Final Remarks onEAST . . . 87

7 Final Remarks 89

7.1 Conlusions . . . 89

7.2 Limitations . . . 91

7.3 Diretions for FutureResearh . . . 91

7.4 Comments onPubliations . . . 92

7.4.1 Journals . . . 92

7.4.2 Conferenes . . . 93

(34)
(35)

Introdution

1.1 Motivation

Reent developments in the areas of wireless ommuniation and multifuntional

sen-sors with ommuniation and proessing apability have stimulated the development

and use of wirelesssensornetworks (WSNs) inmany dierentdomainssuhasthe

en-vironmental,medial,industrial,militaryelds andmanyotherwherehumanpresene

is not possible or desired [Boukerhe et al.,2007℄. A sensor node typially presents a

limitedsensingapability,but theoverallsensing apabilityanbeinreasedwhenthe

nodesare ombinedwithmanyother nodesformingaWSN. Forexample, ifagas leak

ours ina roomfull of gas ylinders and there isonly one sensor inthis room, itwill

onlybepossibletosaythatthereisaleakornot. Ontheotherhand,if aWSNisused,

with appropriate protools, it is possible not only to detet the leak, but to indiate

wherethe leakstartedandhowitevolved. A monitoringinthis way ansavelivesand

assets, and redueost insurane.

Sensor nodes are energy-onstrained devies and the energy onsumption is

generally assoiated with the amount of gathered data, sine ommuniation is

often the most expensive ativity in terms of energy. For that reason,

algo-rithms and protools designed for WSNs should onsider the energy onsumption

in their design [Olariuet al.,2004, AbdelSalamand Olariu,2009, Villasetal., 2010a,

Villas etal.,2011℄. Moreover, WSNs are data-driven networks that usually produe

a large amount of information that needs to be routed, often in a multihop fashion,

toward a sink node, whih works as a gateway to a monitoring enter. Given this

senario, routingplays animportantrole in the data gathering proess.

For more eient and eetive data gathering with a minimum use of

(36)

by making loal deisions [Chatzigiannakis etal., 2005, Chatzigiannakis etal., 2006,

Efthymiouetal., 2006, Villas etal.,2010b℄. For this, data aggregation and

spatio-temporaldata orrelation are eetive tehniques for savingenergy in WSNs. Due to

theinherentredundanyinrawdatagathered bysensornodes,in-networking

aggrega-tionandspatio-temporaldataorrelationanoftenbeusedtodereasethe

ommunia-tionostby eliminatingdataredundanyand forwardingonlyaggregatedinformation.

Sineminimalommuniationleads diretlyto energysavings, whih extendsthe

net-work lifetime, in-network data aggregation is a key tehnology to be supported by

WSNs.

Data aggregation has been used in WSNs with two purposes: (i)to take

advan-tage of the redundany and improve data auray [Shmid and Shossmaier, 2001,

Chakrabarty et al.,2002℄, and (ii) to redue the overall data tra and save

en-ergy [Krishnamahari etal., 2002℄. Nevertheless, urrent proposals have a high ost

toreate routing strutures aware of data aggregation and many of them do not

on-sider the spatio-temporal data orrelation. In addition, most proposals do not deal

with node failures and interruptions during a ommuniation, whih ause data loss

and donot guarantee delivery of the senseddata.

One of the main hallenges in routingalgorithms for WSNs ishow to guarantee

the delivery of the sensed data even inthe presene of node failures and interruptions

during ommuniation. These failures beome even more ritial when data

aggrega-tion is performed along the routing paths sine pakets with aggregated data ontain

informationfromvarioussouresand, wheneverone of thesepakets is losta

onsider-able amount of informationwill also be lost. For this reason, data aggregation aware

routingprotools shouldpresent a reliabledata transmission, through a fault-tolerant

routingmehanism.

1.2 Objetives

Themaingoalsofthis workare twofold. First,weprovideageneraldisussion fordata

aggregationandspatio-temporaldata orrelationproblems inWSNs. The seondgoal

istopropose, design, andevaluatethe performaneof dierent types ofalgorithmsfor

the problems of data aggregation and spatio-temporal data orrelation for WSNs. To

ahievethese goals, some seondary objetivesshould be aomplished:

(37)

and spatio-temporal data orrelation in WSNs, the following goals need to be

ahieved:

1.1. survey the state-of-the-art about the use of data aggregation and

spatio-temporal data orrelationin WSNs;

1.2. assess the arhitetures, models, and methods of data aggregation and

spatio-temporaldata orrelation identied inthe survey;

1.3. identify drawbaks ofurrent proposalsto propose new solutionsthat

over-ome the drawbaks of urrent proposals; and

2. For the seondmain goal,to propose dierentsolutionsfor the problems of data

aggregation and spatio-temporal data orrelation that are suitable for dierent

senarios ina WSN,the following goals need tobeahieved:

2.1. speifyanddesignalgorithmsthat onsiderthedatastruture,data

orrela-tions (spatial and temporal), the network topology and appliation

restri-tions;

2.2. propose a solution for the data aggregation problemto be used in medium

sale WSNs;

2.3. proposeasolutionforthe dataaggregationproblemtobeusedinlargesale

WSNs; and

2.4. analyze the performane of the proposed solutions.

1.3 Main Contributions

The main ontributions of this thesis are the designand development of fourdierent

solutions for data aggregation and spatio-temporaldata orrelation for WSNs, whih

we refer to as the DAARP, DDAARP, DST, and EAST algorithms, respetively. In

summary, wehave:

ˆ Data Aggregation Aware Routing Protool for WSNs (DAARP) is a novel

rea-tive data aggregation aware routing protool for WSNs. The main motivation

to design a new data aggregation aware routing protool is that the proposed

solutions in the literature present high ost to reate routing strutures aware

of data aggregation. The DAARP algorithmbuilds arouting struture with the

(38)

maximiz-along the ommuniation route, in a more reliableway, through a routing

fault-tolerant mehanism. Simulation results (presented in Setion 3.6) reveal that

DAARP has some keys aspets requiredby dataaggregation inWSNs suhas a

redued number messages for settingup a routingstruture, maximized number

of overlapping routes, high aggregation rate, and reliable data aggregation and

transmission. This algorithmis fully explainedin Chapter 3.

ˆ Dynami Data-Aggregation Aware Routing Protool for WSNs (DDAARP) is a

noveldynamidata-aggregationaware routingprotoolforWSNs,whihusesthe

sink node for proessing and onguration of routes aware of data aggregation.

The main motivation to design a dynami approah to reate dynami routing

strutures aware of data aggregation is that we have identied that the quality

of routing strutures reated by DAARP and the most algorithms in the

liter-ature depend on the order of events ourrene and one reated, these routes

are heldxed duringthe ourreneof events. Themainontributionisthatthe

routesreated byDDAARPdonotdependonthe orderofeventsourreneand

are not held xed during the ourrene of events suh as the DAARP.

Simula-tion results (presented in Setion4.6) revealthat DDAARP presents lowost in

terms of paket ontrol, improves the quality of the routing struture and

max-imizes data aggregation along the ommuniation route in a more reliable way,

through a routing fault-tolerane mehanism. This algorithm is fully explained

in Chapter 4.

ˆ Dynami and Salable Tree for WSNs (DST) is an eient data aggregation

solution that allows salable and dynami routing in WSNs, whih builds

rout-ing strutures with the shortest routes (inEulidean distane) that onnets all

sourenodes tothe sinknodemaximizingdataaggregationandreduing the

dis-tanetoonneteahsourenodetothesink. Also,theroutingstruturereated

does not depend on the event order. The main motivation to design the DST

was the lak of a solution in the literature salable, dynami and presents low

ost to reate routing strutures aware of data aggregation. DDAARP presents

goodresults, butitsuersfromsalabilityproblemsand beomesimpratialfor

large-salenetworks. Inaddition,thesinknodeneedstohaveaglobalknowledge

of the network. Simulations results (presented in Setion 5.6) reveal that DST

presentsalowostinterms ofpaketontrol, maximizesaggregationpointsand

(39)

ˆ Eient Data Colletion Aware of Spatio-Temporal Correlation for WSNs

(EAST)isanalgorithmforenergy-awaredataforwardinginWSNsthattakesfull

advantage of both spatial and temporal orrelation mehanisms to save energy

while still maintaining real-time, aurate data report towards the sink node.

The main motivation to design the EAST is that most of the urrent spatial

and/or temporal orrelation algorithms do not onsider the energy dissipation

during data olletionto better hoose the representative nodes. Also, these

so-lutions present a high number of ontrolmessages and donot exploit eiently

the spatio-temporal orrelation nor their dynamiity. The main ontribution

is an energy-aware spatio-temporal orrelation mehanism in whih nodes that

deteted the same event are dynamially grouped in orrelated regions and a

representative node is seleted at eah orrelation region for observing the

phe-nomenon. The entire region of sensors per event is eetively a set of

repre-sentative nodes performingthe task of data olletionand temporalorrelation.

Simulationresults(presented inSetion6.4)learlyshowthatbyusingboth

spa-tialandtemporalorrelation,theinformationabouttheeventanbesensedwith

a highauraywhile stillsavingthe residualenergy ofnodes. This algorithmis

fully explained inChapter 6.

1.4 Organization of the Thesis

This thesis is divided into seven hapters. Chapter 2 provides an overview about

wirelesssensornetworks,in-networkaggregationand spatio-temporaldata orrelation.

Thehapterintrodueswirelesssensornetworks,disusses in-networkdataaggregation

andpresentsthemaintehniquestoperformdataaggregation. Inaddition,itdisusses

spatio-temporaldata orrelation and provides an overview of the existing approahes

that exploit spatio-temporaldata orrelation.

In the seond part of this work, omposed of Chapters 3, 4,5 and 6,wepropose

and explain the DAARP, DDAARP, DSTand EAST algorithms,respetively. In eah

hapter,the performane of the proposed solutionis evaluatedthrough simulations.

Finally,inChapter 7,wepresentsome nalremarksabout thestudiedproblems,

(40)
(41)

Bakground

Thishapterpresentsthetheoretialfoundationforthiswork. Thishapterisorganized

as follows: Setion 2.1 introdues wireless sensor networks, Setion 2.2 disusses

in-network data aggregation and presents the related work, and Setion 2.3 disusses

spatio-temporaldata orrelation and provides an overview of the existing approahes

whih exploit spatio-temporaldata orrelation.

2.1 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) [Akyildizet al.,2002, Romer and Mattern,2004,

Boukerhe etal.,2007, Anastasiet al.,2009℄ an be dened as a ooperative network

of small, battery-operated, wireless sensor nodes whose main goal is twofold: to

monitor their surroundings for loal data and to forward the gathered data toward

a sink node using typially multihop ommuniation. This sink node will then be

responsible for proessing all of the reeived data from several soure nodes and

reporting them to a monitoring faility (Figure 2.1). This type of network has

beome popular due to its appliability that inludes several areas suh as

envi-ronment, homeland seurity, industry, domestis, agriulture, meteorology, health,

spae, military and many other appliations that an be ritial to save lives and

assets [Younis etal., 2006, Anastasiet al.,2009, Villaset al.,2010b℄. Several physial

propertiesanbemonitored,inludingtemperature, humidity,pressure, ambientlight,

sound, vibration, and motion.

One of the main limitationsof the WSNsis the battery-operated natureof their

sensor nodes, whih makes this kind of network highly energy-onstrained. A

sim-ple solution to this problem ould be the periodi replaement of the node battery.

(42)

net-Figure 2.1. Data routing inWSNs [Oliveira etal., 2009℄.

work or beause the sensor nodes may be inaessible in some appliations suh as

monitoring volanoes or spae exploration. For that reason, algorithms and

pro-tools designed for WSNs should onsider the energy onsumption in their

onep-tion [Olariu etal., 2004, AbdelSalamand Olariu, 2009, Villaset al.,2011℄.

For more eient data gathering with a minimum use of limited

re-soures, sensors should be ongured to report data more intelligently by

making loal deisions [Chatzigiannakiset al.,2005, Chatzigiannakis etal., 2006,

Efthymiouetal., 2006,Villaset al.,2010b℄. Dataaggregation 1

andspatio-temporal 2

,

3

data orrelation are possible tehniques for loal deision-making, whih will be

pre-sented inthe following setions. Suhstrategies help tomaximize energyonservation

inanappliation-speisensor network.

These tehniques have been exploited in the literature suh as data

aggrega-tion [Krishnamahari et al.,2002, Chandrakasan et al.,2002, Nakamura etal., 2006,

Fanetal., 2006, Nakamura et al.,2009℄, spatial orrelation [Akyildiz etal., 2004,

Yoonand Shahabi, 2005, Liuet al.,2007b, Leet al.,2008, Yuan and Chen, 2009℄and

temporalorrelation [Minand Chung, 2010, Pham et al.,2010℄. Nevertheless, urrent

proposals have a high ost to reate routingstrutures aware of data aggregationand

manyof themdoesnot dealnodesfailures andinterruptionsinommuniations,whih

auses loss of data and does not guarantee delivery of the sensed data. In addition,

these solutions not only introdue delays in data transmissions but also lead to the

reeption ofoutdated informationby the sink node.

1

Data Aggregationeliminates inherentredundany in rawdata gatheredbythe sensornodes

andforwardingonlysmalleraggregatedinformation.

2

Spatial orrelation: the hange pattern of the data sensed by nearby nodes is expeted to

be the same or similar. Thus, exploit the spatial data orrelation an eliminate the similars data

reporting.

3

Temporal orrelation: the hange patternin readings ofasensor nodeand gathereddatais

usuallysimilar overashort-timeperiod. Due tothe natureof thephysial phenomenons, thereis a

(43)

2.2 In-network Data Aggregation

In the ontext of WSNs, in-network data aggregation refers to dierent tehniques

to forward data pakets toward the sink node. During this proess, nodes ombine

data olleted by dierent soures, i.e., by fusing sensor readings related to the same

event or physial quantity, or by loally proessing raw data before its transmission.

A key omponent of in-network data aggregation is the design of a data aggregation

aware routing protool, whih determines where the aggregation shall be performed.

Data aggregation requires a forwarding paradigm that is dierent from the lassi

routing,whihtypiallyinvolvestheshortest path inrelationtosome speimetri

to forward data toward the sink node. Dierently from the lassi approah in data

aggregation aware routing protools, hooses the node as next hop based on their

proximity in the topology that maximizes the overlap of routes in order to promote

in-network data aggregation.

Before lassifying the literature on solutions aware data aggregation, rst we

illustrate the importaneof oupling between routingand data aggregation in WSNs.

As depited in Figure 2.2, assume that the routing struture of data olletion in a

wsn isainvertedmultiasttreerootedatthesink(nodeA).Theonept ofin-network

data aggregation an be illustrated as follow.

Figure 2.2. DataAggregation AwareRouting

Leteahof thenodes in

{

E, G

and

H

}

inthesensingeld1and

{

F, I, J

and

K

}

in the sensing eld2 generate one raw sensory paket of size

r

and

s

bits respetively.

The arrows in the gure indiate the data gathering struture. For example, data

olleted by the sensing nodes

{

E, G

and

H

}

in the sensing eld 1 will be sent to

the sink via nodes

C

and

B

. As olleted data from physially proximate nodes are

(44)

The resultis that the size of the outgoingpaket from

E

,

R

bits, willbe less than the

summation of all the inomingpakets (inluding its own) and often larger than any

ofthe individualinomingpakets. The amount of the redutiondepends onthe data

orrelation as speied by the appliation. For example, in the extreme ase where

there is no data orrelation, we have

R

=

3

r

(inluding the data sensed by node

E

)

asno data redution an beahieved. On the other hand, if the desired result is, say,

simplyaverage of the measurements,

R

=

r

. However, most appliations whih data

hasaertaindegreeoforrelationwillsatisfy

k < K <

3

k

. Thenode

B

aggregatesthe

olleted data in the sensing eld 1 and 2. The result is that the size of the outgoing

paketfrom

B

,

T

bits,willbelessthanthesummationoftheinomingpaketsof

R

and

S

bits and often larger than the lower individual inoming pakets of size

min

(

R, S

)

bits, ie,

min

(

R, S

)

< T < R

+

S

.

Based in the above example, a key fator in the proess of data aggregation is

the routing sheme, whih determines where the aggregation shall be performed. For

in-network data aggregation to be realized, some form of synhronization is needed

among the nodes. Typially, in these algorithms, a node usually does not send data

as soon as it is available sine waiting for data from neighboring nodes may lead to

better data aggregation opportunities. This in turn, will improve the performane of

thealgorithmandsaveenergy. Threemaintimingstrategiesare foundintheliterature

[Solis and Obrazka, 2004, Hu etal.,2005℄:

ˆ Periodi simple aggregation: requires eah node towait for a pre-dened period

of time while aggregating all reeived data paket and, then, forwards a single

paket with the result of the aggregation.

ˆ Periodi per-hop aggregation: quite similar to the previous approah, but the

aggregated data paket is transmitted as soon as the node hears from all of its

hildren. This approah requires eah node to know the number of its hildren.

In addition,a timeout may be used for the ase of some hildren's paket being

lost.

ˆ Periodi per-hop adjusted aggregation: adjusts the transmission time of a node

aording to this node's positionin the gathering tree.

Note that the hoie of the timing strategy strongly aets the aggregation rate

in-networkandlatenytoreportdataolleted. Ifthewaitingtimeinaggregationpoint

(45)

2.2.1 Routing Sheme Aware Data Aggregation

In-networkdataaggregationplaysanimportantroleinenergyonstrainedWSNssine

dataorrelationisexploitedandaggregationisperformedatintermediatenodes

redu-ing size and the number of messages exhanged aross the network. Indata gathering

basedappliations,aonsiderablenumberofommuniationpakets anbereduedby

in-networkaggregation, resultinginalongernetwork lifetime. The problemof

obtain-ing the optimalaggregation tree is known to be

N P −

Hard

[Al-Karaki etal., 2004℄,

whih isequivalent tothe Steiner tree problem[Krishnamahari etal.,2002℄.

Denition 1 (Steiner Tree) given a network represented by a graph

G

= (

V, E

)

,

where

V

=

{

v

1

, v

2

, . . . , v

n}

istheset of sensornodes,

E

istheset of edges representing

theonnetionsamongthenodes,i.e.,

h

i, j

i ∈

E

i

v

i

reahes

v

j

,and

w

(

e

)

istheostof

edge

e

,aminimalosttreeistobebuiltthatspansallsourenodes

S

=

{

s

1

, s

2

, . . . , s

m}

,

S

V

, and the sinknode

s

0

. The ost of the resulting Steiner tree (

W

) is the sum of

the osts of its edges. This problem is a well-known NP-hard problem.

In the literature, there are dierent heuristis to the Steiner tree

prob-lem, some of them present

1

.

598

approximation fator [Hougardy and Prömel,1999,

Robins and Zelikovsky, 2000℄. However, thosesolutionsare not aordableto

resoure-onstrained networks, suh as WSNs, sine their distributed implementation requires

alarge amountofmessages tosetuptheroutingtree,whihonsequentlyleads tohigh

energy onsumption.

Some researh eorts have also been made to develop routing algorithms for

WSNs. Table2.1presentsasummaryofthe basiharateristisofthemain proposed

routing protools for WSNs. In this work, we lassify these proposals into three

at-egories: tree-based, luster-based, and struture-less algorithms. In the next setions,

wewillbriey review these protools and their strutures.

2.2.1.1 Tree-Based Approahes

Protools in this family [Al-Karakiand Kamal,2004, Akkaya and Younis,2005,

Fasoloet al.,2007℄ are usually based on a hierarhial organization of the nodes in

the network. In fat, the simplest way to aggregate data owing from the soures to

the sinknode istoeletsomespeial nodes thatworkasaggregationpointsand dene

a preferred diretiontobe followed when forwarding data.

Intheseprotools,atreestrutureisonstrutedrstandthenusedlatertoeither

(46)

Table 2.1. Summaryofthebasiharateristisofsomedataaggregationaware routing protools Sheme Route Stru-ture Objetive Aggregation Nodes Overhead Salability Drawbak LEACH Cluster-based Maximize life-time

Clusterheads Medium Low

Low

salabil-ity

SPT Tree Shortest-Path

Opportunisti Low High Data redun-dany GIT

Treewithpath

sharing

Minimizetotal

energyost

Intermediate

nodes

VeryHigh VeryLow Highost

CNS Tree

Aggregateloser

tothesink

Aggregatornode High

Medium Only one aggregation point InFRA Tree-based lus-ter Maximize over-laproutes Clusterheads andintermediate nodes

VeryHigh

Low

Low

salabil-ity and high

ost DAARP Tree-based lus-ter Maximize over-laproutes Clusterheads andintermediate nodes

Medium Medium Statiroutes

DDAARP Tree-based lus-ter Maximize over-laproutes Clusterheads andintermediate nodes Low Medium Requires global knowl-edge DST Based on straight line segmentsand luster Maximize

over-lap routes and

minimize

over-head

Clusterheads

andintermediate

nodes

VeryLow VeryHigh

Requires posi-tion informa-tion DAA Anyast Minimize over-head Intermediate nodes

VeryLow VeryHigh

Notallpakets

maybe

aggre-gated

ofthe tree. This nodethenaggregatesallreeived datawithitsowndataandforwards

only one paket to its neighbor that is lower in the tree. However, this approah has

somedrawbaks. Forinstane, whena paketis lostat aertainlevelof the tree (e.g.,

due tohannel impairments), data from the whole sub tree willbelost aswell. Thus,

tree-based approahes require a mehanism for fault tolerane to reliably forward the

aggregateddata.

Despite the potentially high ost of maintaining a hierarhial struture in

dy-nami networks and the sare robustness of the system in ase of link/devie

fail-ures, these approahes are still partiularlysuitablefor designing optimal aggregation

funtions and performing eient energy management. For instane, there are some

proposed solutions [III et al.,2007, Villaset al.,2010a℄ where the sink node organizes

routing paths to evenly and optimally distribute the energy onsumption while still

favoring the aggregation of data atthe intermediate nodes.

Inmost ases,tree-based protools buildatraditionalshortest path routingtree.

For instane, the Shortest Path Tree (SPT) algorithm [Krishnamahari etal., 2002℄

uses a very simple strategy to build a routing tree in a distributed fashion. In this

approah,everynode thatdetets aneventreportsitsolleted informationby usinga

shortest path tothe sink node. Data aggregation ours whenever paths overlap

(47)

In these ases, data an be opportunistially aggregated when they meet at any

intermediate node. Based on Direted Diusion, the Greedy Inremental Tree

(GIT)[Intanagonwiwat etal.,2002℄approahwasproposed. TheGITalgorithm

estab-lishes anenergy-eient pathand greedily attahes other souresontothe established

path. In the GIT strategy, when the rst event is deteted, nodes send their

infor-mation as in the SPT algorithm and, for every new event, the information is routed

using the shortest path to the urrent tree. There is a new aggregation point every

time a new branh is reated. Some pratial issues make GIT not appropriate in

WSNs [Nakamura et al.,2006℄. For example, eah node needs to know the shortest

path toallnodes inthenetwork. Theommuniationosttoreatethisinfrastruture

is

O

(

n

2

)

,where

n

isthe number ofnodes. Furthermore, thespae needed tostore this

information at eah node is

O

(

D n

)

, where

D

is the number of hops in the shortest

path onneting the farthest node

v

V

tothe sink node (network diameter). After

the initialphasethe algorithmneeds

O

(

m n

)

messages tobuildtheroutingtree, where

m

isthe numberof soure nodes.

Another interesting solution is the Center at Nearest Soure (CNS)

algo-rithm [Krishnamahari et al.,2002℄. In CNS, every node that detets an event sends

itsinformationtoaspei node, alledthe aggregator,by usinga shortest path. The

aggregatoristhe losestnode tothe sink(inhops)that detets anevent. CNS redues

the amount of data sent to the sink in relation to the lassial approahes, but the

overhead inCNS is highlydependent onthe events' ourrene positions. In senarios

with many events ourring simultaneously,CNS has ahigh ost to hange the

aggre-gatornode. Inthisalgorithm,data redundanyisonlyreduedwhenitisalreadylose

to the sink node.

2.2.1.2 Cluster-Based Approahes

Similarly to tree-based approahes, luster-based shemes [Chandrakasan etal.,2002,

Nakamura etal., 2006, Villasetal., 2009, Villaset al.,2010a℄ alsoonsist of a

hierar-hial organization of the network. However, in this approah, nodes are subdivided

into lusters. Moreover, speial nodes, referred to as luster-heads, are eleted to

ag-gregate data loallyand transmitthe result of suhan aggregationto the sink node.

In the Low-Energy Adaptive Clustering Hierarhy (LEACH)

algo-rithm [Chandrakasan et al.,2002℄, lustered strutures are exploited to perform

data aggregation. In this algorithm, luster-heads an at as aggregation points and

(48)

LEACH-based algorithms assume that the sink an be reahed by any node in only

onehop, whihlimitsthe size of the networkfor whihsuhprotools an be used. In

addition,in senarios where the data an not be perfetly aggregated, LEACH-based

protools donot neessarily have signiantadvantage sine the luster-heads have to

send many pakets to the sink using ahigh transmission power.

The Information Fusion-based Role Assignment (InFRA)

algo-rithm [Nakamura et al.,2006℄ builds a luster for eah event inluding only those

nodes that were able to detet it. Then, luster-heads merge the data within the

luster and send the result to the sink node. The InFRA algorithm aims to build

the shortest path tree that maximizes the information fusion. One lusters are

formed, luster-heads hoose the shortest path (to the sink node) that maximizes

the informationfusion with already formed paths/lusters [Nakamura et al.,2006℄. A

disadvantage of the InFRA algorithm is that for eah new event that arises in the

network, the informationabout the event must be ooded throughout the network to

inform other nodes about its ourrene and to update the paths from the already

existing luster-headstothe sinknode. This proedurelimitsInFRA's salability.

Another interesting solution is the Data Aggregation Aware Routing Protool

(DAARP) [Villaset al.,2009℄. For eah event this algorithm performs the lustering

ofnodes that deteted the sameevent,as wellas the eletionof aluster-head. Then,

luster-heads merge data within the luster and send the result to the sink node.

Afterthe luster-head formation,routes are reated by seletingnodes in the shortest

path (in hops) to the nearest node that is part of an existing routing infrastruture

in whih this node will be an aggregation point. The DAARP routing infrastruture

tends to maximize the aggregation points and uses fewer ontrolpakets to build the

paths. Dierent fromInFRA,DAARP doesnot ood amessagetothe whole network

whenevera new event ours. DAARP is not feasiblefor senarios with long duration

events beause the routes are stati, whih quikly onsumes the energy of the nodes

that are part of the routingstruture.

The Dynami Data Aggregation Aware Routing Protool

(DDAARP)[Villasetal., 2010a℄adds animprovementoverDAARP.IntheDDAARP

algorithm,the routes are omputed at the sink node and donot depend on the order

of events. Routes reated by DDAARP are not kept xed throughout the duration

of events, i.e., routes may hange when neessary. The drawbak of this proposal

is that pakets ontaining information from nodes tend to inrease their size at the

information olleting stage and this solution beomes impratial for large-sale

(49)

2.2.1.3 Struture-Less Approahes

Few algorithmsfor routing aware of data aggregation have been proposed that use a

struture-lessapproah. The Data-Aware Anyast (DAA)algorithm[Fanetal., 2006℄,

a struture-less data aggregation algorithm, uses anyast to forward pakets to

one-hop neighbors that have pakets to be aggregated. It involvesmehanismsto inrease

the hane of pakets meeting at the same node (spatial aggregation) at the same

time (temporalaggregation). Sinetheapproahdoesnot guarantee aggregationofall

pakets, the ost of transmitting pakets with no aggregation inreases with the size

of the network. In addition,pakets that are unable to be aggregated willnot benet

from the energy savings ahieved by eliminatingthe ontroloverhead.

The Dynami and Salable Tree (DST) algorithm [Villas etal.,2010b℄ aims to

build a routing tree with the shortest routes (in Eulidean distane) that onnets

all soure nodes to the sink node, maximizing data aggregation while reduing the

distane onneting eah oordinator node to the sink. Routes are based on straight

line segments, whih are omputed by the oordinator nodes. The reated paths do

not depend on the event order. Similar to all approahes that do not exploit the

spatial orrelation, DST does not show a good performane in senarios where many

nodes detet the same event, sine nodes that reportinformationabout the event an

onsume their energy quikly.

2.3 Exploiting Spatio-Temporal Correlation

In this setion, we present the benets of exploiting spatio-temporal data orrelation

in WSNs. We also disuss some of the existing approahes and algorithmsthat take

advantage of spatio-temporalorrelation in WSNs. Table 2.2 presents a summary of

thebasiharateristisofthemainproposedspatialand/ortemporaldataorrelations

algorithmsfor WSNs.

In the urrent literature, we an nd three main ategories of data orrelation

protools: (i) spatial orrelation; (ii) temporal orrelation and (iii) spatio-temporal

orrelation. Inthe following,wepresent someof theseprotoolsaswellas thebenets

of exploiting spatial/temporaldata orrelation inWSNs.

2.3.1 Spatial Correlation

(50)

Table 2.2. Summary of the basi harateristis of the main proposed spatial

and/ortemporaldataorrelations algorithms for WSNs

Sheme Route Struture Objetive Spatial Correl. Temporal Correl. Overhead Salability Drawbak EEDC Singlehop Eliminate on-troloverhead Yes No

VeryLow VeryLow

Centralized andsingle-hop network CAG Tree-based luster Eliminatedata redundany Yes No

VeryHigh

Medium Maintenane data-entri GSC Tree-based luster Eliminatedata redundany Yes No High Low

Isnotapplied

to multi-hop

members

SBR Tree-based

Eliminatedata

redundany

No Yes Medium

High Sink node an reeive outdated infor-mation SCCS Tree-based luster Eliminatedata redundany

Yes Yes Medium

High Sink node an reeive outdated infor-mation EAST Based on straightline segments andluster Maximize

over-lap routes and

minimize

on-troloverhead

Yes Yes

VeryLow VeryHigh

Requires

position

infor-mation

Yoonand Shahabi, 2005, Yuan and Chen, 2009, Nakamura etal., 2009,

Villasetal., 2009, Villas etal.,2010a, Villaset al.,2010b, Villaset al.,2011℄. The

eletednodeisthen responsible forreeivingalltheeventnotiationsand forwarding

them toward the sink node. The energy onsumption of the nodes that detet events

isgreaterthanthe othernetworknodes (seeFigure2.3(a)). Thisoursbeausenodes

within the group (nodes that detet events) onsume a great deal of energy reeiving

and forwardingdata pakets from their neighbors, besides their own notiations.

As aninitialmotivation,Figure2.3presents the energy onsumption inthe

pro-ess of data olletion in a WSN of two dierent routing approahes when the sink

node,loatedatposition(0,0),reeivesdatafromadeteted eventthathas aradiusof

70mandisloatedatposition(600,600). Therstapproah(Figure2.3(a))isasimple

methodfordataolletionwhereallnodesthatdetetedtheeventsendthesenseddata

toward the sink node. The seond approah (Figure 2.3(b)) is a more sophistiated

strategythatusesspatialorrelationtosaveenergy. Inthisase,onlyasubsetofnodes

that deteted the event sends sensory data to the sink node. In both senarios, the

notiationofthedetetedeventwasperformedateahseond,andtheeventduration

wasofonly10m. Therstapproah(Figure2.3(a))sends32157notiations,whereas

the seondapproah (Figure2.3(b)) sends only5667 notiations.

The dierenebetween the two approahes is notableand, by using spatial

or-relation,the seondapproahwasable tosavealarge amountofenergy,extendingthe

overall network lifetime.

(51)

0

100

200

300

400

500

600

700

Meters (m)

0

100

200

300

400

500

600

700

Meters (m)

0

20

40

60

80

100

Consumption Energy (J)

(a)

0

100

200

300

400

500

600

700

Meters (m)

0

100

200

300

400

500

600

700

Meters (m)

0

20

40

60

80

100

Consumption Energy (J)

(b)

Figure2.3. Energy onsumptionofnodesduringthedataolletionwhenusing

(a)alassialapproah;andwhenusing(b)aspatialorrelationbasedapproah.

mation. In this ase, instead of having all sensor nodes reporting the same data, it is

more eient to hoose a few representative nodes to notify the sink node about the

detetedevent(seeFigure2.3(b)). Arepresentativenodereportstheeventinformation

of a given area on behalf of a group of nodes that ollets similar information in the

same area.

Akyildiz et al. [Akyildiz etal., 2004℄ studied the relation between reliability of

event detetion and spatial loation of the sensor nodes in the event area. Their

solu-tion estimates the numberof sensor nodes (representative nodes) required tosend the

deteted event to the sink in order to have reliable event information. Eah

represen-tative node represents a spatially orrelated group of nodes. Although their solution

ahieves overall energy gain, it fails to onsider the remaining energy during the

se-letion of the representative nodes an assumption that should not be negleted in a

WSNbeauseofhardwareonstraints. Thus, ifarepresentativenodeworksinthe

or-relation regionfor a long periodof time, itwill spend more energy due tothe number

of transmitted messages omparedto the other nodes.

YoonandShahabi[Yoonand Shahabi, 2005℄proposedanew mehanismfor

spa-tial orrelation in WSNs. The proposed mehanism, alled Clustered Aggregation

Tehnique (CAG), reates lusters of nodes with similar sensing values and only a

node inside the luster noties its reading to the Sink node whereas the other nodes

ignore their readings. The CAG algorithm is divided into two phases: query and

response. Inthe queryphase,the data-entrilustersare reated aordingtoa

(52)

belong to the same luster. In the seond phase (response phase), just one node per

luster (luster-head) sends its sensed value to the sink node notifying the deteted

event. The authorsshowed that the proposed mehanism an reduesigniantly the

number of transmitted messages during the data olletion. However, during the rst

phase, the CAG algorithmuses a ooding-based protooltodisseminate the query to

allsensornodes, whihis not needed inmost senarios. Moreover, the maintenaneof

the data-entri lustersremains adiult problem[Boukerhe etal., 2003℄.

Liu et al. [Liu etal., 2007a℄ proposed another lustering algorithm, named

Energy-Eient Data Colletion framework (EEDC), to exploit spatial data

orre-lation. They onsider that nodes olletdata ontinuously and are one-hop onneted

to the sink node or to a enter node. The algorithm was designed to be exeuted at

thesink node, sinethis node has the entire datanetwork information. Thealgorithm

reateslustersof nodesthatare spatiallyorrelated. Also,the sinknode managesthe

lusterformation dynamiallyinorder to reetenvironmental hanges. The primary

limitation of that sheme is the assumption of the single-hop ommuniation. This

assumption is impratial in a distributed system and diult to have in large-sale

wirelesssensor networks. Anotherdisadvantage isthelustering algorithmthatis

en-tralizedatthesinknode. Beause ofthis, allnetworkdataneeds tobesent tothe sink

node, whih willstore and proess a great amount of data.

Shah etal.[Shahand Bozyigit,2007℄proposed anew mehanism forspatial

or-relation in WSNs, named Gridiron Spatial Correlation (GSC). The GSC is adaptive

toahievetherequired reliabilityby dynamiallyhangingthe orrelationregion. The

orrelation regions are formed as squared retangles and nodes lying in the retangle

areassumed tobespatiallyorrelated. Cluster-headidentiestheredundantandlose

soures in its viinity and turns o the ativity of nodes by onsidering their energy

levelandloseness asriterion. ThelimitationofGSC isthe ontrolmehanismwhih

is not applied to multi-hop members, ie, it only works well for senarios where the

event radius issmaller than the ommuniationradius of the luster-head.

2.3.2 Temporal Correlation

Sensorreadings about the environment are typially periodi; onsequently, the

time-orderedsequene ofsenseddataonstitutesatimeseries(seeFigure2.4(a)). Duetothe

nature of the physialphenomenon, there is a signiant temporal orrelation among

eah onseutive observation of a sensor node and gathered data is usually similar

Imagem

Figure 2.3. Energy 
onsumption of nodes during the data 
olle
tion when using
Figure 2.4. (a) The time series and (b) The pie
ewise linear presentation
Figure 3.1. Example of establishing new routes and updating the hop tree
Figure 3.2. Example of path repair
+7

Referências

Documentos relacionados

Membro_Faculdade (Matrícula: Inteiro, Nome: string[50], Carga: Inteiro, IniContrato: data, Curso: string[30], professor: booleano, aluno: booleano). Membro

Os casos não previstos neste regulamento serão resolvidos em primeira instância pela coorde- nação do Prêmio Morena de Criação Publicitária e, em segunda instância, pelo

(14) use um método de escrileitura calcado na vontade lúcida de estruturar o texto e não na intenção (absurda) de formular juízos de valor; ou seja, não organize o

Dentro do contexto da produção siderúrgica nacional (Quadro 6), a produção brasileira de aço bruto, acumulada no 1º semestre de 2013, totalizou 11,7 milhões de toneladas de

--- ---Prevê-se a participação de cerca de 3000 alunos dos vários pontos do país que ficarão alojados e farão as suas refeições maioritariamente nas escolas de

 Numéricos das das Propriedades Propriedades do do Ar Ar Úmido, Úmido, Cartas Cartas Psicrométricas, Psicrométricas, Processos Processos Psicrométricos, Psicrométricos,

Em relação aos conhecimentos de saúde oral constatou-se que pais/encarregados de educação e crianças estão informados sobre a presença, ou não, de dentes cariados, bem como,

Apesar da integração de serviços através de uma Intranet trazer grandes resultados ao nível da produtividade e de melhoramento dos processos de ensino e aprendizagem, o que