• Nenhum resultado encontrado

On the construction of explicit exponential based schemes for Stiff SDEs

N/A
N/A
Protected

Academic year: 2017

Share "On the construction of explicit exponential based schemes for Stiff SDEs"

Copied!
40
0
0

Texto

(1)

On the construction of explicit exponential-based

schemes for sti¤ SDEs

Hugo de la Cruz

Escola de Matemática Aplicada (FGV-EMAp)

Rio de Janeiro

(2)

dx

(

t

) =

f

(

t

,

x

(

t

))

dt

+

m

j

=

1

g

j

(

t

,

x

(

t

))

dw

j

t

x

2

R

d

wt

= (

w

1

t

,

. . .,

w

tm

)

m

dimensional Brownian Motion,

f

:

[

0,T

]

R

d

!

R

d

gj

:

[

0,T

]

R

d

!

R

d

(3)

semi-linear SDE

dx

(

t

) = (

Ax

(

t

) +

f

(

x

(

t

)))

dt

+

m

j

=

1

g

j

(

x

(

t

))

dw

t

j

Y. Komori, K. Burrage, A stochastic

Exponential Euler scheme

for simulation of sti¤

biochemical reaction system, BIT, 10.1007/s10543-014-0485-1 (2014)

C. Shi, Y. Xiao, C. Zhang, The convergence and MS stability of

Exponential Euler

(4)

By Ito formula to

f

,L

0

f

,

L

j

f

:

f

(

t,

x

(

t

))

=

f

(

tn,x

(

tn

)) +

t

Z

n+1

tn

L

0

f

(

s,

x

(

s

))

ds

+

m

j=1

t

Z

n+1

tn

L

j

f

(

s,

x

(

s

))

dw

j t

(5)

By Ito formula to

f

,L

0

f

,

L

j

f

:

f

(

t,

x

(

t

))

=

f

(

tn,x

(

tn

)) +

t

Z

n+1

tn

L

0

f

(

s,

x

(

s

))

ds

+

m

j=1

t

Z

n+1

tn

L

j

f

(

s,

x

(

s

))

dw

j t

=

f

(

tn

,x

(

tn

)) +

L

0

f

(

tn

,

x

(

tn

))

t

Z

n+1

tn

ds

+

m

j=1

L

j

f

(

tn

,x

(

tn

))

t

Z

n+1

tn

(6)

By Ito formula to

f

,L

0

f

,

L

j

f

:

f

(

t,

x

(

t

))

=

f

(

tn,x

(

tn

)) +

t

Z

n+1

tn

L

0

f

(

s,

x

(

s

))

ds

+

m

j=1

t

Z

n+1

tn

L

j

f

(

s,

x

(

s

))

dw

j t

=

f

(

tn

,x

(

tn

)) +

L

0

f

(

tn

,

x

(

tn

))

t

Z

n+1

tn

ds

+

m

j=1

L

j

f

(

tn

,x

(

tn

))

t

Z

n+1

tn

dw

tj

+

R

where

L

0

f

=

∂f

∂t

+

Jf

f

+

1

2

m

j=1

(

I

g

|

j

)

fxx

gj

L

j

f

=

Jf

gj

,

(7)

Then

:

f

(

t,

x

(

t

))

=

f

(

tn

,x

(

tn

)) +

"

∂f

∂t

+

Jf

f

+

1

2

m

j=1

(

I

g

|

j

)

fxx

gj

#

(tn,x(tn))

(

t

tn

)

+

m

j=1

[

Jf

gj

]

(t n,x(tn))

(

w

j t

w

(8)

Then

:

f

(

t,

x

(

t

))

=

f

(

tn

,x

(

tn

)) +

"

∂f

∂t

+

Jf

f

+

1

2

m

j=1

(

I

g

|

j

)

fxx

gj

#

(tn,x(tn))

(

t

tn

)

+

m

j=1

[

Jf

gj

]

(t n,x(tn))

(

w

j t

w

j tn

) +

R

1

Also

x

(

t

) =

x

(

tn

) +

f

(

tn

,x

(

tn

))(

t

tn

) +

m

j=1

gj

(

tn

,x

(

tn

))(

w

tj

w

j tn

) +

R

2

thus

,

Jf

(

x

(

t

)

x

(

tn

)) =

Jf

f

(

tn

,

x

(

tn

))(

t

tn

) +

m

j=1

[

Jf

gj

]

(t n,x(tn))

(

w

j t

w

j tn

) +

¯

R

2

(9)

Then

:

f

(

t

,x

(

t

))

f

(

tn,x

(

tn

)) +

J

f

(

x

(

t

)

x

(

tn

)) +

"

∂f

∂t

+

1

2

m

j=1

(

I

g

|

j

)

fxx

gj

#

(10)

dx

(

t

)

=

0

@

Jf

(

x

(

t

)

xn

) +

"

∂f

∂t

+

1

2

m

j=1

(

I

g

|

j

)

fxx

gj

#

(tn,xn)

(

t

tn

) +

f

(

tn,

xn

)

1

A

dt

+

m

j=1

gj

(

t,

xn

)

dw

tj

(11)

dx

(

t

)

=

0

@

Jf

(

x

(

t

)

xn

) +

"

∂f

∂t

+

1

2

m

j=1

(

I

g

|

j

)

fxx

gj

#

(tn,xn)

(

t

tn

) +

f

(

tn,

xn

)

1

A

dt

+

m

j=1

gj

(

t,

xn

)

dw

tj

(12)

Let

Z

(

t

) = (

x

(

t

)

xn

,

t

tn

,

f

(

tn

,xn

)

,

1

)

>

2

R

2d+2

then

d

Z

(

t

) =

M Z

(

t

)

dt

+

0

@

G

(

t

,xn

)

0

0

1

A

dWt

Z

(

tn

) = [

01

d

0

f

(

tn,

xn

)

1

]

>

,

where

M

=

0

B

B

@

A

n

b

n

I

d d

0

d 1

01

d

0

01

d

1

0

d d

0

d 1

0

d d

0

d 1

01

d

0

01

d

0

1

C

C

A

.

(13)

Solution:

Z

(

t

) =

e

M(t tn)

Z

(

tn

) +

t

R

tn

e

M(t s)

0

@

G

(

t,

xn

)

0

0

(14)

Solution:

Z

(

t

) =

e

M(t tn)

Z

(

tn

) +

t

R

tn

e

M(t s)

0

@

G

(

t,

xn

)

0

0

1

A

dWs

-Looking at the …rst component of

Z

(

t

)

, it follows that

x

(

t

)

, can be computed by

x

(

t

) =

xn

+

h

I

d d

0

d (d+2)

i

e

M(t tn)

[

0

d d

0

f

(

tn

,xn

)

1

]

>

+

h

I

d d

0

d (d+2)

i

R

t

tn

e

M(t s)

0

@

G

(

t,

0

xn

)

0

1

A

dWs

=

xn

+

h

I

d d

0

d (d+2)

i

e

M(t tn)

[

0

d d

0

f

(

tn

,xn

)

1

]

>

+

t

R

tn

e

An(t s)

G

(

t

,xn

)

dWs

(15)

Solution:

Z

(

t

) =

e

M(t tn)

Z

(

tn

) +

t

R

tn

e

M(t s)

0

@

G

(

t,

xn

)

0

0

1

A

dWs

-Looking at the …rst component of

Z

(

t

)

, it follows that

x

(

t

)

, can be computed by

x

(

t

) =

xn

+

h

I

d d

0

d (d+2)

i

e

M(t tn)

[

0

d d

0

f

(

tn

,xn

)

1

]

>

+

h

I

d d

0

d (d+2)

i

R

t

tn

e

M(t s)

0

@

G

(

t,

0

xn

)

0

1

A

dWs

=

xn

+

h

I

d d

0

d (d+2)

i

e

M(t tn)

[

0

d d

0

f

(

tn

,xn

)

1

]

>

+

t

R

tn

e

An(t s)

G

(

t

,xn

)

dWs

Thus, in particular

x

(

tn

+1

) =

xn

+

h

I

d d

0

d (d+2)

i

e

Mh

[

0

d d

0

f

(

tn

,xn

)

1

]

>

+

tn

R

+1

tn

(16)

Let

t

R

tn

e

An(t s)

G

(

s,

xn

)

dWs

=

e

Ant

η

(

t

)

where

η

(

t

) =

m

i=1

Z

t

tn

e

Anu

gi

(

u,

xn

)

dw

i

u

is the solution of the SDE

d

η

(

t

) =

m

i=1

e

Ant

gi

(

t,

xn

)

dw

i t

η

(

tn

) =

0

(17)
(18)

- We need to compute

e

Antn+1

η

(

tn

+1

)

- The application of the Ito formula to

U

(

t,

η

) =

ρ

(

t

) =

e

Antn+1

η

(

t

)

yields

d

ρ

(

t

) =

m

i=1

e

An(tn+1 t)

gi

(

t

,xn

)

dw

i

(

t

)

ρ

(

tn

) =

0

(19)

- We need to compute

e

Antn+1

η

(

tn

+1

)

- The application of the Ito formula to

U

(

t,

η

) =

ρ

(

t

) =

e

Antn+1

η

(

t

)

yields

d

ρ

(

t

) =

m

i=1

e

An(tn+1 t)

gi

(

t

,xn

)

dw

i

(

t

)

ρ

(

tn

) =

0

- By the order-1.5 strong Taylor scheme we have the approximation

ρ

(

tn

+1

) =

e

Anh

m

i=1

gi

(

tn

,

xn

)

w

ni

+ (

A

ngi

(

tn

,

xn

)

z

ni

+

dgi

(

tn

,

xn

)

dt

)(

w

i n

h

z

in

)

where

w

i

n

=

w

tin+1

w

i tn

=

p

hu

i

1

and

z

ni

=

R

tn+1

tn

R

s2

tn

dw

i s1

ds

2

=

1 2

h

2 3

(

u

i

(20)

xn

+1

=

xn

+

h

I

d d

0

d (d+2)

i

e

Mh

[

0

d d

0

f

(

tn

,

xn

)

1

]

>

+

e

Anh

m i=1

gi

(

tn

,xn

)

w

ni

+ (

A

ngi

(

tn

,

xn

)

z

ni

+

dgi

(

tn

,xn

)

dt

)(

w

i

n

h

z

in

)

,

(21)

Implementation

The

Padé algorithm with scaling-squaring strategy

for computing

e

C

[Golub-Van Loan]:

1

Determine the minimum integer

k

such that

2Ck

<

12

2

Compute

N

q

(

C

2

k

)

=

q

j=0

(

2q

j

)

!q!

(

2q

)

!j!

(

q

j

)

!

C

j

D

q

(

C

2

k

)

=

q

j=0

(

2q

j

)

!q!

(

2q

)

!j!

(

q

j

)

!

(

C

)

j

.

3

Compute

P

q

(

2Ck

) =

[D

q

(

2Ck

)]

1

N

q

(

2Ck

)

, (solving the system

D

q

(

2Ck

)P

q

(

2Ck

) =

N

q

(

2Ck

)

)

4

Compute

[

P

q

(

2Ck

)]

2 k

(22)

The Adapted Padé algorithm for computing exp(Mh)

C

=

M

h. Denote

A

=

A

n

h

and

b

=

b

n

h, then

C

2

k

=

0

B

B

@

A

b

I

d d

0

d 1

01

d

0

01

d

1

0

d d

0

d 1

0

d d

0

d 1

01

d

0

01

d

0

1

C

C

A

h

2

k

and, for any

j

2

C

2

k j

=

0

B

B

@

A

j

A

j 1

b

A

j 1

A

j 2

b

0

1 d

0

0

1 d

0

0

d d

0

d 1

0

d d

0

d 1

01

d

0

01

d

0

1

C

C

A

h

2

k

j

.

(23)

The Adapted Padé algorithm for computing exp(Mh)

N

q

(

C

2

k

)

=

0

B

B

@

I

+

A

(

α

1

I

+

AS

)

(

α

1

I

+

AS

)

b

(

α

1I

+

AS

)

Sb

0

1 d

1

0

1 d

α

1

0

d d

0

d 1

I

d d

0

d 1

01

d

0

01

d

1

1

C

C

A

,

and

D

q

(

C

2

k

)

=

0

B

B

B

@

I

+

A

α

1

I

+

A^

S

α

1

I

+

A^

S b

α

1

I

+

A^

S

^

Sb

01

d

1

01

d

α

1

0

d d

0

d 1

I

d d

0

d 1

0

1 d

0

0

1 d

1

1

C

C

C

A

,

where

S

=

α

2

I

+

α

3

A

+

...

+

αq

(

A

)

q 2

,

^

S

=

α

2

I

α

3

A

+

...

+ (

1

)

q 2

αq

(

A

)

q 2

,

(24)

The Adapted Padé algorithm for computing exp(Mh)

Padé Approximation

D

q

(

C

2

k

)P

q

(

C

2

k

) =

N

q

(

C

2

k

)

P

q

(

2Ck

)

has the form:

P

q

(

C

2

k

) =

0

B

B

@

U1

U

2

U3

U

4

0

1 d

1

0

1 d

α

1

0

d d

0

d 1

I

d d

0

d 1

01

d

0

01

d

1

1

C

C

A

(25)

The Adapted Padé algorithm for computing exp(Mh)

Padé Approximation

D

q

(

C

2

k

)P

q

(

C

2

k

) =

N

q

(

C

2

k

)

P

q

(

2Ck

)

has the form:

P

q

(

C

2

k

) =

0

B

B

@

U1

U

2

U3

U

4

0

1 d

1

0

1 d

α

1

0

d d

0

d 1

I

d d

0

d 1

01

d

0

01

d

1

1

C

C

A

and

U

1,

U

2,

U

3,

U

4

satisfy:

h

I

+

A

α

1

I

+

A^

S

i

U

1

= [

I

+

A

(

α

1

I

+

AS

)]

h

I

+

A

α

1

I

+

A^

S

i

U

3

= (

α

1

I

+

AS

)

α

1

I

+

A^

S

h

I

+

A

α

1

I

+

A^

S

i

U

4

=

h

S

1

α

1

I

+

A^

S

^

S

i

(26)

Squaring the scaled Padé Approx.

Once we haveU1,U2,U3,U4, we can compute Pq(2Ck)

2k

:

Pq(C

2k)

2k = 0 B B B B B @

(U1)2k 2

k 1

i=0 (U1)i

!

U2 2

k 1

i=0 (U1)i

!

U3 2

k 1

i=0 (U1)i

! U4+α1

2k 2

i=0

(m 1 i)(U1)i !

U2

01 d 1 01 d 2kα1

0d d 0d 1 Id d 0d 1

01 d 0 01 d 1

1 C C C C C A .

(27)

Squaring the scaled Padé Approx.

Once we haveU1,U2,U3,U4, we can compute Pq(2Ck)

2k

:

Pq(C

2k)

2k = 0 B B B B B @

(U1)2k 2

k 1

i=0 (U1)i

!

U2 2

k 1

i=0 (U1)i

!

U3 2

k 1

i=0 (U1)i

! U4+α1

2k 2

i=0

(m 1 i)(U1)i !

U2

01 d 1 01 d 2kα1

0d d 0d 1 Id d 0d 1

01 d 0 01 d 1

1 C C C C C A . Thus,

xn+1 = xn+

h

Id d 0d (d+2)

i Pq(M

h

2k)

2k

[0d d0f(tn,xn)1]>

+ Pq(Anh

2k )

2k m

i=1

gi(tn,xn)∆wni+ ( Angi(tn,xn)∆zni+

dgi(tn,xn)

dt )(∆w

(28)

Squaring the scaled Padé Approx.

Once we haveU1,U2,U3,U4, we can compute Pq(2Ck)

2k

:

Pq(C

2k)

2k = 0 B B B B B @

(U1)2k 2

k 1

i=0 (U1)i

!

U2 2

k 1

i=0 (U1)i

!

U3 2

k 1

i=0 (U1)i

! U4+α1

2k 2

i=0

(m 1 i)(U1)i !

U2

01 d 1 01 d 2kα1

0d d 0d 1 Id d 0d 1

01 d 0 01 d 1

1 C C C C C A . Thus,

xn+1 = xn+

h

Id d 0d (d+2)

i Pq(M

h

2k)

2k

[0d d0f(tn,xn)1]>

+ Pq(Anh

2k )

2k m

i=1

gi(tn,xn)∆wni+ ( Angi(tn,xn)∆zni+

dgi(tn,xn)

dt )(∆w

i nh ∆zin)

= xn+Lf(tn,xn)+Q

+R

m

i=1

gi(tn,xn)∆wni+ ( Angi(tn,xn)∆zni+

dgi(tn,xn)

dt )(∆w

i nh ∆zin)

(29)

The Proposed Integrator

xn

+1

=

xn

+

L

f

(

tn

,xn

)+

Q

+

R

m

i=1

gi

(

tn

,xn

)

w

ni

+ (

A

ngi

(

tn

,

xn

)

z

ni

+

dgi

(

tn

,

xn

)

dt

)(

w

i n

h

z

in

)

where

L

=

2

k 1

i=0

(U1)

i

!

U3

,

Q

=

2

k 1

i=0

(U1)

i

!

U

4

+

α

1

2k 2

i=0

(

m

1

i

)

(U1)

i

!

(U

3

)

b

(30)

Convergence and Stability

(31)

Let

xn+1=xn+φ(tn,xn;h) +ξ(tn,xn;h)

the order-γmethod, and

e

xn+1=exn+φ(etn,xen;h) +eξ(tn,exn;h)

anumerical implementationofxn+1, whereφeandeξdenotenumerical algorithms to computeφandξ. And suppose that

E

0 B

@φ(tn,exn;h) φ(etn,exn;h)

j

Ftn

1 C

A K1(1+jexnj2)1/2hk1

(E

0 B

@φ(tn,exn;h) φ(etn,exn;h)2

j

Ftn 1 C A)1/2 K

1(1+jexnj2)1/2hk2+1/2

E

0 B

@ξ(tn,exn;h) ξ(etn,exn;h)

j

Ftn

1 C

A K2(1+jexnj2)1/2hp1

(E

0 B

@ξ(tn,xen;h) eξ(tn,exn;h)2

j

Ftn

1 C A)1/2 K

2(1+jexnj2)1/2hp2+1/2

for some positive numbersk2,p2 1/2,k1 k2+1,p1 p2+1,then

0 B @E

0 B

@jx(tn) xenj2

j

Ft0 1 C A 1 C A 1 2

(32)

Note that we have

e

φ(tn,exn;h) = h

Id d 0d (d+2)

i Pq(M

h

2k)

2k

[0d d0f(tn,xn)1]>

eξ(tn,eyn;h) = Pq(Anh

2k )

2k m

i=1

gi(tn,xn)∆wni+ ( Angi(tn,xn)∆zni+

dgi(tn,xn)

dt )(∆w

i nh ∆zin)

(33)

Note that we have

e

φ(tn,exn;h) = h

Id d 0d (d+2)

i Pq(M

h

2k)

2k

[0d d0f(tn,xn)1]>

eξ(tn,eyn;h) = Pq(Anh

2k )

2k m

i=1

gi(tn,xn)∆wni+ ( Angi(tn,xn)∆zni+

dgi(tn,xn)

dt )(∆w

i nh ∆zin)

and by using that

eX (Pq(2 kX))2 k

cq(k,jXj)jXjp+q+1,

(34)

Note that we have

e

φ(tn,exn;h) = h

Id d 0d (d+2)

i Pq(M

h

2k)

2k

[0d d0f(tn,xn)1]>

eξ(tn,eyn;h) = Pq(Anh

2k )

2k m

i=1

gi(tn,xn)∆wni+ ( Angi(tn,xn)∆zni+

dgi(tn,xn)

dt )(∆w

i nh ∆zin)

and by using that

eX (Pq(2 kX))2 k

cq(k,jXj)jXjp+q+1,

wherecq(k,jXj) =α2 k(2q)+3e(1+ǫp,q)jXjandα=(2q)(!q(2!)q2+1)!,ǫq=α(12)2q 3

The scheme

e

xn+1=exn+φ(etn,xen;h) +eξ(tn,exn;h)

satis…es 0 B @E 0 B

@jx(tn) exnj2

j

Ft0

1 C A 1 C A 1 2

=O(hminf12,q 1g)

(35)

Numerical Experiments

Example

Two connected oscillators

dx1=x2

dx2= (12x2(1 x12) x1+0.1x3)dt+10 3x1dw1

dx3=x4

dx4=(5x4(1 x32) x3+0.1x1)dt+10 3x 3dw2

(36)

phase space second V. der Pol oscillator

Click me!

(37)

Numerical Experiments

Example

Stochastic Van der Pol equat.

dx1 = x2dt,

dx2 = E 1 x1 2 x2 x1 dt+σdWt

(38)

σ

=

200

- 10 - 5 0 5 10 0

1000 2000 3000

LL

- 10 - 5 0 5 10 - 200 - 100 0 100 L L R Kb

- 10 - 5 0 5 10 - 500

0 500 1000

- 10 - 5 0 5 10 - 200

- 100 0 100

- 10 - 5 0 5 10 - 200

- 100 0 100

- 10 - 5 0 5 10 - 200

- 100 0 100 - 30 - 20 - 10 0 10

0 1000 2000 3000 R Kb

- 10 - 5 0 5 10 - 500

0 500

- 10 - 5 0 5 10 - 200

- 100 0 100 h = 2-6 h = 2-7 h = 2-11

H. de la Cruz (FGV-EMAp) Sept/2015 25 / 27

RK1

LL

(39)

σ

1

=

100

,

σ

2

=

200

,

σ

3

=

400

- 5 0 5 - 100 0 100 S ol uc ió n E x ac ta

- 5 0 5 - 100

0 100

LL

- 5 0 5 - 100 0 100 L L R Kb

- 10 - 5 0 5 10 - 200

- 100 0 100

- 10 - 5 0 5 10 - 500

0 500 1000

- 10 - 5 0 5 10 - 200

- 100 0 100

- 10 - 5 0 5 10 - 200

0 200

0 200 400 600 800 0

2 4 6 8x 10

5

- 10 - 5 0 5 10 - 200

0 200 - 5 0 5

- 100 0 100

R

Kb

- 10 - 5 0 5 10 - 200

- 100 0 100

(40)

References

H. de la Cruz, R.J. Biscay, J.C. Jimenez, F. Carbonell, HOLL methods: An approach for

constructing A-stable explicit schemes for SDEs with additive noise, BIT, 50 (2010)

509-539.

J.C. Jimenez, H. de la Cruz, Convergence rate of strong local linearization schemes for

SDEs with additive noise, BIT, 52 (2012) 357–382.

D. Higham, X. Mao, C. Yuan, Almost sure and moment exponential stability in the

numerical simulation of SDEs, SIAM J. Numer. Anal., 45 (2) (2010) 592-609.

Y. Komori, K. Burrage, A stochastic exponential Euler scheme for simulation of sti¤

biochemical reaction system, BIT, 10.1007/s10543-014-0485-1 (2014)

G.N. Milstein , M.V. Tretyakov, Stochastic Numerics for Mathematical Physics, Springer,

2004.

C. Shi, Y. Xiao, C. Zhang, The convergence and MS stability of Exponential Euler method

for semilinear SDEs, Abstract and Applied Analysis, 10.1155/2012/350407 (2012)

Referências

Documentos relacionados

Dúvida não pode haver, portanto, de que nas modernas parcerias do Estado com o Terceiro Setor, assemelhadas que são a contratos de prestação de serviços, a prestadora — uma

Esse resultado justifica de certa forma a anemia, que pode estar não só relacionada ao quadro de má digestão causado pela IPE, como também estar sendo causada pelo

“A função do professor não é “destruir” a relação da criança com a música (que se possa considerar errónea por comparação ao adulto), mas proporcionar um constante

A infestação da praga foi medida mediante a contagem de castanhas com orificio de saída do adulto, aberto pela larva no final do seu desenvolvimento, na parte distal da castanha,

ou seja, é possível que a secessão ocorra concretamente nas hipó- teses em que um povo é oprimido pelo Estado no qual o mesmo vive. De qualquer forma, devem existir vários

Com base nas etapas a serem desenvolvidas, com vistas ao alcance do objetivo geral, foram delimitados os seguintes objetivos específicos para esta investigação: - Elaborar um

Era esperado que, no caso do Setor dos Serviços, onde o Trabalho Temporário já está amplamente consolidado e onde é mais comum que os seus trabalhadores