• Nenhum resultado encontrado

Determination of the Width of the Top Quark

N/A
N/A
Protected

Academic year: 2017

Share "Determination of the Width of the Top Quark"

Copied!
7
0
0

Texto

(1)

Determination of the Width of the Top Quark

V. M. Abazov,35B. Abbott,73M. Abolins,62B. S. Acharya,29M. Adams,48T. Adams,46G. D. Alexeev,35G. Alkhazov,39 A. Alton,61,*G. Alverson,60G. A. Alves,2L. S. Ancu,34M. Aoki,47Y. Arnoud,14M. Arov,57A. Askew,46B. A˚ sman,40

O. Atramentov,65C. Avila,8J. BackusMayes,80F. Badaud,13L. Bagby,47B. Baldin,47D. V. Bandurin,46S. Banerjee,29 E. Barberis,60P. Baringer,55J. Barreto,2J. F. Bartlett,47U. Bassler,18V. Bazterra,48S. Beale,6A. Bean,55M. Begalli,3

M. Begel,71C. Belanger-Champagne,40L. Bellantoni,47S. B. Beri,27G. Bernardi,17R. Bernhard,22I. Bertram,41 M. Besanc¸on,18R. Beuselinck,42V. A. Bezzubov,38P. C. Bhat,47V. Bhatnagar,27G. Blazey,49S. Blessing,46K. Bloom,64 A. Boehnlein,47D. Boline,70T. A. Bolton,56E. E. Boos,37G. Borissov,41T. Bose,59A. Brandt,76O. Brandt,23R. Brock,62

G. Brooijmans,68A. Bross,47D. Brown,17J. Brown,17X. B. Bu,7D. Buchholz,50M. Buehler,79V. Buescher,24 V. Bunichev,37S. Burdin,41,†T. H. Burnett,80C. P. Buszello,42B. Calpas,15E. Camacho-Pe´rez,32

M. A. Carrasco-Lizarraga,32B. C. K. Casey,47H. Castilla-Valdez,32S. Chakrabarti,70D. Chakraborty,49K. M. Chan,53 A. Chandra,78G. Chen,55S. Chevalier-The´ry,18D. K. Cho,75S. W. Cho,31S. Choi,31B. Choudhary,28T. Christoudias,42

S. Cihangir,47D. Claes,64J. Clutter,55M. Cooke,47W. E. Cooper,47M. Corcoran,78F. Couderc,18M.-C. Cousinou,15 A. Croc,18D. Cutts,75M. C´ wiok,30A. Das,44G. Davies,42K. De,76S. J. de Jong,34E. De La Cruz-Burelo,32F. De´liot,18 M. Demarteau,47R. Demina,69D. Denisov,47S. P. Denisov,38S. Desai,47K. DeVaughan,64H. T. Diehl,47M. Diesburg,47

A. Dominguez,64T. Dorland,80A. Dubey,28L. V. Dudko,37D. Duggan,65A. Duperrin,15S. Dutt,27A. Dyshkant,49 M. Eads,64D. Edmunds,62J. Ellison,45V. D. Elvira,47Y. Enari,17S. Eno,58H. Evans,51A. Evdokimov,71 V. N. Evdokimov,38G. Facini,60T. Ferbel,58,69F. Fiedler,24F. Filthaut,34W. Fisher,62H. E. Fisk,47M. Fortner,49H. Fox,41

S. Fuess,47T. Gadfort,71A. Garcia-Bellido,69V. Gavrilov,36P. Gay,13W. Geist,19W. Geng,15,62D. Gerbaudo,66 C. E. Gerber,48Y. Gershtein,65G. Ginther,47,69G. Golovanov,35A. Goussiou,80P. D. Grannis,70S. Greder,19H. Greenlee,47

Z. D. Greenwood,57E. M. Gregores,4G. Grenier,20Ph. Gris,13J.-F. Grivaz,16A. Grohsjean,18S. Gru¨nendahl,47 M. W. Gru¨newald,30F. Guo,70J. Guo,70G. Gutierrez,47P. Gutierrez,73A. Haas,68,‡S. Hagopian,46J. Haley,60L. Han,7 K. Harder,43A. Harel,69J. M. Hauptman,54J. Hays,42T. Head,43T. Hebbeker,21D. Hedin,49H. Hegab,74A. P. Heinson,45 U. Heintz,75C. Hensel,23I. Heredia-De La Cruz,32K. Herner,61G. Hesketh,60M. D. Hildreth,53R. Hirosky,79T. Hoang,46

J. D. Hobbs,70B. Hoeneisen,12M. Hohlfeld,24S. Hossain,73Z. Hubacek,10N. Huske,17V. Hynek,10I. Iashvili,67 R. Illingworth,47A. S. Ito,47S. Jabeen,75M. Jaffre´,16S. Jain,67D. Jamin,15R. Jesik,42K. Johns,44M. Johnson,47 D. Johnston,64A. Jonckheere,47P. Jonsson,42J. Joshi,27A. Juste,47,xK. Kaadze,56E. Kajfasz,15D. Karmanov,37

P. A. Kasper,47I. Katsanos,64R. Kehoe,77S. Kermiche,15N. Khalatyan,47A. Khanov,74A. Kharchilava,67 Y. N. Kharzheev,35D. Khatidze,75M. H. Kirby,50J. M. Kohli,27A. V. Kozelov,38J. Kraus,62A. Kumar,67A. Kupco,11 T. Kurcˇa,20V. A. Kuzmin,37J. Kvita,9S. Lammers,51G. Landsberg,75P. Lebrun,20H. S. Lee,31S. W. Lee,54W. M. Lee,47

J. Lellouch,17L. Li,45Q. Z. Li,47S. M. Lietti,5J. K. Lim,31D. Lincoln,47J. Linnemann,62V. V. Lipaev,38R. Lipton,47 Y. Liu,7Z. Liu,6A. Lobodenko,39M. Lokajicek,11P. Love,41H. J. Lubatti,80R. Luna-Garcia,32,kA. L. Lyon,47 A. K. A. Maciel,2D. Mackin,78R. Madar,18R. Magan˜a-Villalba,32S. Malik,64V. L. Malyshev,35Y. Maravin,56

J. Martı´nez-Ortega,32R. McCarthy,70C. L. McGivern,55M. M. Meijer,34A. Melnitchouk,63D. Menezes,49 P. G. Mercadante,4M. Merkin,37A. Meyer,21J. Meyer,23N. K. Mondal,29G. S. Muanza,15M. Mulhearn,79E. Nagy,15 M. Naimuddin,28M. Narain,75R. Nayyar,28H. A. Neal,61J. P. Negret,8P. Neustroev,39S. F. Novaes,5T. Nunnemann,25

G. Obrant,39J. Orduna,32N. Osman,42J. Osta,53G. J. Otero y Garzo´n,1M. Owen,43M. Padilla,45M. Pangilinan,75 N. Parashar,52V. Parihar,75S. K. Park,31J. Parsons,68R. Partridge,75,‡N. Parua,51A. Patwa,71B. Penning,47M. Perfilov,37

K. Peters,43Y. Peters,43G. Petrillo,69P. Pe´troff,16R. Piegaia,1J. Piper,62M.-A. Pleier,71P. L. M. Podesta-Lerma,32,{ V. M. Podstavkov,47M.-E. Pol,2P. Polozov,36A. V. Popov,38M. Prewitt,78D. Price,51S. Protopopescu,71J. Qian,61 A. Quadt,23B. Quinn,63M. S. Rangel,2K. Ranjan,28P. N. Ratoff,41I. Razumov,38P. Renkel,77P. Rich,43M. Rijssenbeek,70

I. Ripp-Baudot,19F. Rizatdinova,74M. Rominsky,47C. Royon,18P. Rubinov,47R. Ruchti,53G. Safronov,36G. Sajot,14 A. Sa´nchez-Herna´ndez,32M. P. Sanders,25B. Sanghi,47A. S. Santos,5G. Savage,47L. Sawyer,57T. Scanlon,42 R. D. Schamberger,70Y. Scheglov,39H. Schellman,50T. Schliephake,26S. Schlobohm,80C. Schwanenberger,43 R. Schwienhorst,62J. Sekaric,55H. Severini,73E. Shabalina,23V. Shary,18A. A. Shchukin,38R. K. Shivpuri,28V. Simak,10

V. Sirotenko,47P. Skubic,73P. Slattery,69D. Smirnov,53K. J. Smith,67G. R. Snow,64J. Snow,72S. Snyder,71 S. So¨ldner-Rembold,43L. Sonnenschein,21A. Sopczak,41M. Sosebee,76K. Soustruznik,9B. Spurlock,76J. Stark,14

(2)

L. Uvarov,39S. Uvarov,39S. Uzunyan,49R. Van Kooten,51W. M. van Leeuwen,33N. Varelas,48E. W. Varnes,44 I. A. Vasilyev,38P. Verdier,20L. S. Vertogradov,35M. Verzocchi,47M. Vesterinen,43D. Vilanova,18P. Vint,42P. Vokac,10

H. D. Wahl,46M. H. L. S. Wang,69J. Warchol,53G. Watts,80M. Wayne,53M. Weber,47,**L. Welty-Rieger,50 M. Wetstein,58A. White,76D. Wicke,24M. R. J. Williams,41G. W. Wilson,55S. J. Wimpenny,45M. Wobisch,57

D. R. Wood,60T. R. Wyatt,43Y. Xie,47C. Xu,61S. Yacoob,50R. Yamada,47W.-C. Yang,43T. Yasuda,47 Y. A. Yatsunenko,35Z. Ye,47H. Yin,7K. Yip,71H. D. Yoo,75S. W. Youn,47J. Yu,76S. Zelitch,79T. Zhao,80B. Zhou,61

J. Zhu,61M. Zielinski,69D. Zieminska,51and L. Zivkovic68

(The D0 Collaboration)

1Universidad de Buenos Aires, Buenos Aires, Argentina

2

LAFEX, Centro Brasileiro de Pesquisas Fı´sicas, Rio de Janeiro, Brazil 3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

4

Universidade Federal do ABC, Santo Andre´, Brazil

5Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Sa˜o Paulo, Brazil

6Simon Fraser University, Vancouver, British Columbia, and York University, Toronto, Ontario, Canada

7University of Science and Technology of China, Hefei, People’s Republic of China

8Universidad de los Andes, Bogota´, Colombia

9

Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic 10Czech Technical University in Prague, Prague, Czech Republic

11

Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic 12Universidad San Francisco de Quito, Quito, Ecuador

13LPC, Universite´ Blaise Pascal, CNRS/IN2P3, Clermont, France

14LPSC, Universite´ Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France

15CPPM, Aix-Marseille Universite´, CNRS/IN2P3, Marseille, France

16

LAL, Universite´ Paris-Sud, CNRS/IN2P3, Orsay, France 17LPNHE, Universite´s Paris VI and VII, CNRS/IN2P3, Paris, France

18

CEA, Irfu, SPP, Saclay, France

19IPHC, Universite´ de Strasbourg, CNRS/IN2P3, Strasbourg, France

20

IPNL, Universite´ Lyon 1, CNRS/IN2P3, Villeurbanne, France and Universite´ de Lyon, Lyon, France 21III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany

22Physikalisches Institut, Universita¨t Freiburg, Freiburg, Germany

23II. Physikalisches Institut, Georg-August-Universita¨t Go¨ttingen, Go¨ttingen, Germany

24Institut fu¨r Physik, Universita¨t Mainz, Mainz, Germany

25

Ludwig-Maximilians-Universita¨t Mu¨nchen, Mu¨nchen, Germany 26Fachbereich Physik, Bergische Universita¨t Wuppertal, Wuppertal, Germany

27

Panjab University, Chandigarh, India 28Delhi University, Delhi, India

29

Tata Institute of Fundamental Research, Mumbai, India 30University College Dublin, Dublin, Ireland

31Korea Detector Laboratory, Korea University, Seoul, Korea

32CINVESTAV, Mexico City, Mexico

33FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

34

Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands 35Joint Institute for Nuclear Research, Dubna, Russia

36

Institute for Theoretical and Experimental Physics, Moscow, Russia 37Moscow State University, Moscow, Russia

38Institute for High Energy Physics, Protvino, Russia

39Petersburg Nuclear Physics Institute, St. Petersburg, Russia

40Stockholm University, Stockholm and Uppsala University, Uppsala, Sweden

41

Lancaster University, Lancaster LA1 4YB, United Kingdom 42Imperial College London, London SW7 2AZ, United Kingdom

43

The University of Manchester, Manchester M13 9PL, United Kingdom 44University of Arizona, Tucson, Arizona 85721, USA

45

University of California Riverside, Riverside, California 92521, USA 46Florida State University, Tallahassee, Florida 32306, USA

47Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

48University of Illinois at Chicago, Chicago, Illinois 60607, USA

(3)

50Northwestern University, Evanston, Illinois 60208, USA

51Indiana University, Bloomington, Indiana 47405, USA

52Purdue University Calumet, Hammond, Indiana 46323, USA

53University of Notre Dame, Notre Dame, Indiana 46556, USA

54

Iowa State University, Ames, Iowa 50011, USA 55University of Kansas, Lawrence, Kansas 66045, USA

56

Kansas State University, Manhattan, Kansas 66506, USA 57Louisiana Tech University, Ruston, Louisiana 71272, USA

58

University of Maryland, College Park, Maryland 20742, USA 59Boston University, Boston, Massachusetts 02215, USA

60Northeastern University, Boston, Massachusetts 02115, USA

61

University of Michigan, Ann Arbor, Michigan 48109, USA 62Michigan State University, East Lansing, Michigan 48824, USA

63

University of Mississippi, University, Mississippi 38677, USA 64University of Nebraska, Lincoln, Nebraska 68588, USA

65

Rutgers University, Piscataway, New Jersey 08855, USA 66Princeton University, Princeton, New Jersey 08544, USA

67State University of New York, Buffalo, New York 14260, USA

68Columbia University, New York, New York 10027, USA

69University of Rochester, Rochester, New York 14627, USA

70

State University of New York, Stony Brook, New York 11794, USA 71Brookhaven National Laboratory, Upton, New York 11973, USA

72

Langston University, Langston, Oklahoma 73050, USA 73University of Oklahoma, Norman, Oklahoma 73019, USA

74

Oklahoma State University, Stillwater, Oklahoma 74078, USA 75Brown University, Providence, Rhode Island 02912, USA

76University of Texas, Arlington, Texas 76019, USA

77

Southern Methodist University, Dallas, Texas 75275, USA 78Rice University, Houston, Texas 77005, USA

79

University of Virginia, Charlottesville, Virginia 22901, USA 80University of Washington, Seattle, Washington 98195, USA

(Received 2 October 2010; published 11 January 2011)

We extract the total width of the top quark,t, from the partial decay widthðt!WbÞmeasured using thet-channel cross section for single top-quark production and from the branching fractionBðt!WbÞ

measured inttevents using up to 2:3 fb 1 of integrated luminosity collected by the D0 Collaboration

at the Tevatronpp Collider. The result ist¼1:99þ00::6955GeV, which translates to a top-quark lifetime

oft¼ ð3:3þ01::39Þ 10 25 s. Assuming a high mass fourth generationb0quark and unitarity of the

four-generation quark-mixing matrix, we set the first upper limit onjVtb0j<0:63at 95% C.L.

DOI:10.1103/PhysRevLett.106.022001 PACS numbers: 14.65.Ha, 12.15.Hh, 14.65.Jk

The total width, or lifetime, of the top quark is a funda-mental property that has not been measured precisely so far. The top quark, like other fermions in the standard model (SM), decays through the electroweak interaction. But unlikebandcquarks, which form long-lived hadrons that can be observed through the reconstruction of dis-placed vertices in a tracking detector, the top quark has an extremely short lifetime.

In the SM, the total decay width of the top quark,t, is dominated by the partial decay widthðt!WbÞwhich, at next-to-leading order (NLO) in quantum chromodynamics (QCD), depends on the top quark mass mt, the W boson massMW, thebquark massmb, the Fermi coupling constant GF, the strong coupling constants, and the strength of the left-handed Wtb coupling, Vtb. Neglecting higher order electroweak corrections [1] and terms of order m2

b=m2t, 2

s, andðs=ÞM2W=m2t, the partial width becomes [2]

ðt!WbÞ ¼GFm 3 t 8p jffiffiffi2 Vtbj

21 M 2 W m2 t

2

1þ2M 2 W m2 t

1 2s 3

22

3 5 2

; (1)

where the mass corrections and the NLO QCD corrections account for a reduction of the width of about 13% and 10%, respectively. The electroweak corrections are less than 2%. Setting sðMZÞ ¼0:118, GF ¼1:166 3710 5 GeV 2, MW ¼80:399 GeV, jVtbj ¼1, and mt¼170 GeV leads to ðt!WbÞSM¼1:26 GeV. Equation (1) can be ex-tended to include non-SMWtbcouplings [3].

(4)

experimental resolution, the analysis of the invariant mass distribution yields only an upper limit ontthat is limited by the uncertainty on the detector resolution. The first such direct upper bound oft<13:1 GeVwas set by the CDF Collaboration at 95% C.L. [4].

Following a suggestion in Ref. [5], we determine the partial widthðt!WbÞof the top quark indirectly from the single top t channel (pp !tqbþX) cross section measurement [6], assuming that the coupling in the pro-duction of top quarks is identical to the coupling in their decays. Electroweak single top quark production proceeds vias-channel production and decay of a virtualW boson, or through exchange of a virtualW boson in thetchannel [7,8]. We measured cross sections of3:14þ0:940:80 pbfor the t channel and 1:050:81 pb for the s channel. Our measured t-channel cross section is consistent with the standard model prediction [6].

As in the decay of top quarks, both processes involve the Wtb vertex and are therefore proportional to the partial widthðt!WbÞ. Since contributions outside the SM have different effects on thes-channel andt-channel cross sec-tions, the partial width is determined focusing on the single most sensitive channel in single top quark production, thet channel, which is illustrated in Fig.1.

From the partial decay width and the branching fraction Bðt!WbÞ[9], we form the total decay width

ðt!WbÞ

Bðt!WbÞ: (2)

In addition to the experimental measurements, this method relies on the validity of the NLO QCD calculations of the single top-quark cross section and of the top-quark partial decay width. In these calculations only the contributions from SM processes are considered. Any deviation of the measured total width from the theoretical prediction would therefore indicate physics beyond the SM. Examples are the presence of anomalousWtb couplings [10], hadroni-cally decaying charged Higgs bosons as predicted in some supersymmetric extensions of the SM [11] or a fourth generation b0 quark. We discuss the latter scenario in

detail below.

To extract the partial width ðt!WbÞ, we use the measurement of the inclusivet-channel cross section ob-tained from data corresponding to 2:3 fb 1 of integrated

luminosity [6]. Without assuming Bðt!WbÞ ¼1 as in that publication, the cross section measurement can be expressed as

ðt channelÞBðt!WbÞ ¼3:14þ0:94

0:80 pb: (3)

Given the linear dependence of the cross section on the partial width, we derive the partial width as

ðt!WbÞ ¼ðt channelÞðt!WbÞSM ðt channelÞSM

: (4)

For the predicted SM t-channel cross section, we use a calculation in NLO QCD that yields ðt channelÞSM¼ 2:140:18 pb [12] for mt¼170 GeV summing up the single top and single antitop-quark production cross sec-tions. For the partial width in the SM, we use the NLO result of ðt!WbÞSM¼1:26 GeV from Eq. (1). Using Eqs. (2) and (4), the total width becomes

ðt channelÞðt!WbÞSM

Bðt!WbÞðt channelÞSM: (5)

The branching fraction Bðt!WbÞ is determined repeating our previous analysis [9] assuming mt¼

170 GeVto be consistent with ourt-channel cross section measurement. This correctly takes into account the mass dependence of the signal efficiency, yielding

Bðt!WbÞ ¼0:962þ0:068

0:066ðstatÞþ0:0640:052ðsystÞ: (6)

The Bðt!WbÞ measurement [Eq. (6)] is used twice: to obtain the partial width in Eqs. (3) and (4), and to derive the total width in Eq. (5).

The analysis starts with the same Bayesian Neural Network discriminants trained to measure the t-channel cross section [6] in 24 independent analysis channels, separated according to the data-taking period, lepton flavor (e or ), jet multiplicity (2, 3, or 4), and number of b-tagged jets (1 or 2). We then form a Bayesian probability density [13] for the partial width based on Eq. (4). This is combined with the measurement of Bðt!WbÞ which is performed selecting 3 and 4 jets, and 0, 1, or 2btags for the eand channels. In combining the probability densities we assume that all the values ofðt!WbÞare equiprob-able, which corresponds to assuming a uniform probability density for thet-channel cross section and fort.

Systematic uncertainties are treated in the same way as for the combination [14] of the CDF [15] and D0 [16] single top-quark cross section measurements. Each inde-pendent source is modeled as a Gaussian probability density function with zero mean and width corresponding to 1 standard deviation of the parameter representing the systematic uncertainty. The terms included in the uncer-tainty calculation are: (i) Unceruncer-tainty on the integrated luminosity of 6.1%. (ii) Uncertainties on modeling the single top-quark signal, which applies only to the t-channel cross section and includes uncertainties from

(5)

initial- and final-state radiation, scale uncertainties, and parton distribution functions. (iii) Uncertainties in the modeling of the tt pair production signal for the Bðt! WbÞmeasurement, which include uncertainties from par-ton distribution functions, different event generators, and hadronization models. They are correlated with the tt background yield uncertainty in the t-channel measure-ment. (iv) Uncertainties on the background Monte Carlo (MC) simulation, including the tt normalization uncer-tainty in the t-channel measurement obtained from theo-retical calculations taking into account the uncertainty on mt, and for Bðt!WbÞ the uncertainty on the Wþjets and heavy-flavor samples normalization. (v) Detector simulation uncertainty arising from the modeling of parti-cle identification in MC calculations. (vi) Uncertainties arising from the modeling of the different background sources that are obtained using data-driven methods. (vii) Uncertainty on b-jet identification involving b, c, and light-flavor jet tagging rates and the calorimeter re-sponse tobjets. (viii) Jet energy scale uncertainty from the calorimeter response to light jets, uncertainties from jet energy scale corrections dependent on pseudorapidity and transverse momentum and other smaller contributions.

All systematic uncertainties of thet-channel cross sec-tion and theBðt!WbÞmeasurement are assumed to be either fully correlated or uncorrelated. Table I shows the relative systematic uncertainties used in thet-channel and Bðt!WbÞmeasurements, and displays how the correla-tions are treated.

The expected and observed Bayesian probability den-sities for the partial widthðt!WbÞare shown in Fig.2. The most probable value for the partial width is defined by the peak of the probability density function and corre-sponds to

ðt!WbÞ ¼1:92þ0:580:51 GeV: (7)

The measurement of the partial width alone can be used to set a lower limit on the total width. From the observed partial width probability density in Fig.2, we obtain that ðt!WbÞ>1:21 GeV at 95% C.L. This is the lowest value of the partial width that bounds 95% of the area of the probability density. Since the total width must be larger than the partial width, it also must satisfy

t>1:21 GeV at95%C:L: (8)

Calculating the lifetimetas the inverse of the total width, we determine an upper limit oft<5:410 25 s. Models including an additional chiral-tensorial Wtb coupling

TABLE I. Sources of systematic uncertainties affecting the determination of t, including sources that affect both the normalization and the shape of the final discriminant. For some uncertainties we quote the range across the different channels. In thet-channel cross section measurement the top pair production modeling uncertainty is included in the ‘‘Other Background from MC’’ modeling category. It is taken as fully correlated to the ‘‘Top Pair Production Signal Modeling’’ uncertainty in the Bðt!WbÞ measurement. The sources are 100% correlated between the two measurements for rows with an ‘‘X’’ in the correlations column, and are uncorrelated otherwise.

Sources ðt channelÞ, % Bðt!WbÞ, % Correlations

Components for Normalization

Luminosity 6.1 0.0

Single Top Quark Signal Modeling 3.5–13.6 0.0

Top Pair Production Signal Modeling - 1.0 X

Other Background from MC 15.1 0.6 X

Detector Modeling 7.1 0.1 X

Components for Normalization and Shape

Background from Data 13.7–54 1.7 X

b-Jet Identification 2–30 6.3 X

Jet Energy Scale 0.1–13.1 0.0

Wb) [GeV]

(t Γ

0 0.5 1 1.5 2 2.5 3 3.5 4

]

-1

Posterior density [GeV

0 0.2 0.4 0.6 0.8 1 1.2

Wb) [GeV]

(t Γ

0 0.5 1 1.5 2 2.5 3 3.5 4

]

-1

Posterior density [GeV

0 0.2 0.4 0.6 0.8 1

1.2 GeV

-0.44 +0.53 Wb) = 1.32(t Γ Expected

GeV -0.51 +0.58 Wb) = 1.92(t Γ Observed

-1 DØ 2.3 fb

(6)

leading to non-SM helicity amplitudes of the top quark can be excluded by this result because they predict a partial widthðt!WbÞ ¼0:66 GeV [17].

Combining the partial width [Eq. (7)] withBðt!WbÞ as in Eq. (2), we obtain the expected and observed proba-bility densities for the total widthtshown in Fig.3. The total top-quark width is found to be

t¼1:99þ0:690:55 GeV; (9)

which can be expressed as a top-quark lifetime of

t¼ ð3:3þ1:30:9Þ 10 25 s: (10)

The determination of the top-quark width is used to set constraints on the coupling of a fourth generationb0quark

to the top quark. Assumingmb0> mt mW, a small

proba-bility density for theb0 quark in protons and antiprotons,

and unitarity of the quark-mixing matrix, including the fourth quark generation (jVtbj2þ jVtb0j2¼1, and jVtdj,

jVtsj 1), the measurement of the total top-quark width can be used to extract a limit on the mixing matrix element jVtb0j. Using a flat prior for 0 jVtbj 1 yieldsjVtb0j<

0:63at 95% C.L. This is the first limit on the W boson coupling to the top quark and a fourth generationb0quark.

In summary, we have presented the most precise deter-mination of the width of the top quark. It is based on the measurement of two quantities, the partial decay width of the top quark into Wb and the branching fraction Bðt!WbÞ. It is assumed that the coupling leading to t-channel single top-quark production is identical to the coupling leading to top-quark decay. The total top-quark width is determined to be t¼1:99þ0:690:55 GeV for mt¼ 170 GeV, which corresponds to a top-quark lifetime of t¼ ð3:3þ1:3

0:9Þ 10 25 s. In addition, we set the first limit

on a fourth generation b0 quark coupling to the top quark

ofjVtb0j<0:63at 95% C.L.

We wish to thank C.-P. Yuan for fruitful discussions regarding this analysis. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

*Visitor from Augustana College, Sioux Falls, SD, USA

Visitor from The University of Liverpool, Liverpool, UK

Visitor from SLAC, Menlo Park, CA, USA

xVisitor from ICREA/IFAE, Barcelona, Spain

kVisitor from Centro de Investigacion en

Computacion-IPN, Mexico City, Mexico

{Visitor from ECFM, Universidad Autonoma de Sinaloa,

Culiaca´n, Mexico

**Visitor from Universita¨t Bern, Bern, Switzerland. [1] A. Denner and T. Sack,Nucl. Phys.B358, 46 (1991). [2] M. Jezabek and J. H. Ku¨hn,Nucl. Phys.B314, 1 (1989). [3] C. R. Chen, F. Larios, and C.-P. Yuan,Phys. Lett. B631,

126 (2005).

[4] T. Aaltonenet al.(CDF Collaboration), Phys. Rev. Lett. 102, 042001 (2009).

[5] D. O. Carlson and C.-P. Yuan inProceedings of Particle Theory and Phenomenology, International Warsaw— Kazimierz Meeting on Particle Physics and Madison Phenomenology Symposium, Ames, Iowa (World Scientific, Singapore, 1995) p. 172.

[6] V. M. Abazovet al.(D0 Collaboration),Phys. Lett. B682, 363 (2010).

[7] S. S. D. Willenbrock and D. A. Dicus, Phys. Rev. D34, 155 (1986).

[8] C.-P. Yuan,Phys. Rev. D41, 42 (1990).

[9] V. M. Abazovet al.(D0 Collaboration),Phys. Rev. Lett. 100, 192003 (2008). Although the original publication used a top-quark mass of 175 GeV, theBðt!WbÞvalue used in this Letter is derived for mt¼170 GeV to be consistent with thet-channel cross section measurement. [10] V. M. Abazovet al.(D0 Collaboration),Phys. Rev. Lett.

101, 221801 (2008).

[11] Y. Grossman,Nucl. Phys.B426, 355 (1994).

[12] N. Kidonakis, Phys. Rev. D 74, 114012 (2006); N. Kidonakis (private communication) (2010). The uncer-tainty on the cross section includes a component which accounts for the variation of the assumed value of the top-quark mass.

[13] V. M. Abazovet al.(D0 Collaboration),Phys. Rev. D78, 012005 (2008).

[GeV] t

Γ

0 0.5 1 1.5 2 2.5 3 3.5 4

]

-1

Posterior density [GeV

0 0.2 0.4 0.6 0.8 1 1.2 [GeV] t Γ

0 0.5 1 1.5 2 2.5 3 3.5 4

]

-1

Posterior density [GeV

0 0.2 0.4 0.6 0.8 1 1.2 GeV -0.44 +0.53 = 1.32 t Γ Expected GeV -0.55 +0.69 = 1.99 t Γ Observed -1 DØ 2.3 fb

(7)

[14] The Tevatron Electroweak Working Group for the CDF and D0 Collaborations,arXiv:0908.2171.

[15] T. Aaltonen et al.(CDF Collaboration),Phys. Rev. Lett. 103, 092002 (2009).

[16] V. M. Abazovet al.(D0 Collaboration),Phys. Rev. Lett. 103, 092001 (2009).

Referências

Documentos relacionados

As causas externas são definidas pela Classificação Internacional de Doenças (CID- 10) como o conjunto de agravos à saúde do indivíduo, que podem ou não levar ao óbito,

O estudo realizado pelo Programa Internacional de Avaliação de Alunos (PISA) foi lançado pela Organização para o Desenvolvimento e Cooperação Económico (OCDE), em

Apesar de não alterar a classificação do IMC, o presente estudo demostrou que quatro semanas de treinamento com o método flushing levaram a uma diminuição do

O presente trabalho se presta a analisar a utilização dos tributos como forma de implementação do desenvolvimento sustentável, destacando este princípio do Direito Ambiental

For some years we have been concerned with conceptual and empirical relationships between cognitive-developmental and discursive approaches to thinking about human psychological

Esta pesquisa objetivou debater a importância da música no processo de alfabetização, verificar a sua importância no aprendizado, e sua contribuição na

Assistente Social, doutora, docente do Departamento de Serviço Social/UFSC e integrante do Núcleo de Pesquisa Interdisciplinar Sociedade, Família e Políticas Sociais