• Nenhum resultado encontrado

Removal of organic load and suspended solids from water by electrocoagulation method

N/A
N/A
Protected

Academic year: 2016

Share "Removal of organic load and suspended solids from water by electrocoagulation method"

Copied!
7
0
0

Texto

(1)

AES BI OFLUX

Ad va n ce s in En vir on m e n t a l Scie n ce s -

I n t e r n a t ion a l Jou r n a l of t h e Biof lu x Socie t y

Re m ov a l of or ga n ic loa d a n d su spe n de d solids

fr om w a t e r by e le ct r ocoa gu la t ion m e t h od

1

I lie Pisoi,

2

Crist ian Danielescu,

3

Florica Manea,

4

Sm aranda Masu,

2

Cecilia Savii, and

3

Georget a Burt ic

ă

1

SECOM Com pany , Dr obet a- Tur nu Sev er in, Rom ania; 2I nst it ut e of Chem ist r y Tim isoar a of Rom anian Academ y , Tim isoar a, Rom ania; 3” Polit ehnica” Univ er sit y of Tim isoara, Tim isoar a, Rom ania; 4Nat ional Resear ch and Dev elopm ent I nst it ut e for I ndust r ial

Ecology - ECOI ND, Tim isoar a, Rom ania. Cor r esponding aut hor : F. Manea, florica. m anea@chim . upt . r o

Abst r a ct . Elect r ocoagulat ion ( EC) is an elect r ochem ical t echnique inv olv ing in- sit u gener at ion of coagulat ion agent s fr om sacr ificial anodes by t y pe of alum inium and ir on. I n t he pr esent st udy EC has been ev aluat ed as a t r eat m ent t echnology for or ganic load and suspended solids r em ov al fr om a r eal wast ewat er pr oceeded fr om pulp and p aper indust r y , which was char act er ized by high cont ent of or ganic load and suspended solids. The efficiency of t he elect r ocoagulat ion pr ocess was assessed by m onit or ing Chem ical Ox y gen Dem and ( COD) and suspended solids ( s. s.) par am et er s. Labor at or y- scale ex per im ent s wer e conduct ed wit h alum inum anode t o assess it s efficiency under galv anost at ic r egim e. To est ablish t he opt im um oper at ional par am et er select ed as cur r ent densit y , t he elect r oly sis was carr ied out at 50, 100 and 20 0 Am- 2. The elect r ocoagulat ion pr ocess per for m ance was assessed based on t he efficiencies of

COD and s. s. r em ov al corr elat ed wit h t he specific elect r ical ener gy consum pt ion. Applying EC pr ocess allowed t o achiev e t he COD r em ov al ef ficiencies r anged bet ween 83. 8 0 and 94. 0 0 % and s. s. r em ov al efficiencies bet ween 87. 77 and 9 5. 47 % .

Ke y W or ds: wast ewat er , pulp and paper indust r y , elect r ocoagulat ion, alum inium an odes.

I n t r odu ct ion. Pulp and paper indust r y is sev erely pollut ing t he env ir onm ent , especial

because of lar ge v olum es of w ast ew at er dischar ged int o t he aquat ic environm ent s. This k ind of pulp and paper w ast ew at er , cont aining m ainly t oxic or ganic subst ances, is char act er ized by a high lev el of chem ical ox y gen dem and ( COD) and suspended solids ( s. s. ) . Thus, t he w ast ew at er t r eat m ent t o r educe any possible im pact s on t he aquat ic env ir onm ent is r equir ed ( Gav rilescu & Puit el 2007; Gav r ilescu & Bobu 2 00 9; Pat el & Sur esh 2 008 ; Wang et al 2006ab) . I n gener al, t he w ast ew at er t r eat m ent is a r eal challenge for m any of t he indust r ies t o com ply wit h applicable effluent st andar ds, w hich ar e est ablished in r elat ion w it h t he r eceiv er envir onm ent .

Ther e ar e sev er al conv ent ional w ast ew at er t r eat m ent m et hods, including phy sical, chem ical and biological m et hods ( Babu et al 200 7; Budiy ono et al 2010; Car neir o et al 200 3; I nan et al 200 4; Mouli et al 2004; Raghu & Basha 2 007 ) . End- of- pipe t r eat m ent of w ast ew at ers can be accom plished by int egr at ion of t r adit ional biological t r eat m ent pr ocesses wit h phy sical- chem ical applicat ions. The biological m et hods ar e v er y effect iv e for t he t r eat m ent of w ast ew at er w it h a high v alue of biological ox y gen dem and ( BOD) , but t hey ar e ineffect iv e if r ecalcit r ant or ganic com pounds ar e pr esent because t hey m ust be suppor t ed by a phy sical- chem ical t r eat m ent . Coagulat ion is one of t he m ost com m only used t echniques. I n coagulat ion oper at ions, a coagulat ion agent is added t o a colloidal suspension t o cause it s dest abilizat ion and flocculat ion. How ev er , t his t echnology usually needs addit ional chem icals w hich pr oduce a hu ge v olum e of sludge ( Raghu & Basha 200 7) .

(2)

Coagulant s ar e pr oduced by t he elect r oly t ic oxidat ion of appr opr iat e anode m at erials, such as st ainless st eel and alum inum elect r odes, w hich r esult in for m at ion of highly char ged poly m eric m et al hy dr ox yl species. These species neut r alize t he elect r ost at ic char ges on t he suspended solids and facilit at e agglom er at ion r esult ing in separ at ion fr om t he aqueous phase ( Cior ba et al 2000; Cior ba et al 2002) .

I n com par ison w it h t he t r adit ional conv ent ional coagulat ion pr ocess, v arious adv ant ages of elect r ocoagulat ion pr ocess hav e been r epor t ed ( Mollah et al 2001; Raj eshw ar & I banez 19 96) . Thus, t he elect r ocoagulat ion pr ocess can be r egar ded as a gr een t echnology in r elat ion wit h bot h t he clean r eagent t hat is t he elect r on and no adding any chem icals t o pr oduce secondar y pollut ion. Anot her im por t ant adv ant age is given by t he sim plicit y and com pact ness of t he t r eat m ent facilit y and t her e is a possibilit y of com plet e aut om at ion. Elect r ocoagulat ion pr ocess has t he adv ant age of r em ov ing t he sm allest colloidal par t icles, t he flocs for m ed dur ing t he elect r o coagulat ion pr ocess t ends t o be m uch lar ger, t her efor e can be separ at ed by filt r at ion. I t is a low sludge pr oducing pr ocess, and t he sludge for m ed dur ing t he pr ocess t ends t o be r eadily set t able and easy t o dew at er .

I n t his paper ar e present ed som e r esult s r egar ding t he assessm ent of t he elect r ocoagulat ion applicat ion on a r eal w ast ewat er pr oceeded fr om pulp and paper indust r y. The opt im um oper at ing condit ions under galv anost at ic r egim e w er e est ablished based on t he cur r ent densit y, elect r oly sis t im e and t he specific elect rical ener gy consum pt ion. The elect r ocoagulat ion per for m ance assessed in r elat ion wit h chem ical ox y gen dem and ( COD) and suspended solids ( s.s. ) r em ov al w as com par ed wit h sim ple conv ent ional coagulat ion using t he opt im um dose of alum inium sulphat e.

M a t e r ia l a n d M e t h od. A r eal r aw w ast ew at er proceeded fr om a pulp and paper fact or y

w as used for t he labor at or y ex perim ent s. The qualit y of t he r aw and t r eat ed w ast ew at er s w as m onit or ed in t er m s of COD ( for or ganic load) and s. s. ( suspended solids) par am et er s. The quant it at iv e det er m inat ions of COD and s. s. par am et er s w er e m ade in accor ding wit h Am er ican St andar d Met hods ( Fr anson 19 95) .

The r em ov al of pollut ant s by elect r oflot ocoagulat ion and separ at ion w as car ried out in t he elect r olysis cell at galv anost at ic condit ion. The schem at ic pr esent at ion of t he ex perim ent al set - up w as pr esent ed in our pr evious st udy ( Bebeselea et al 2006) . The char act er ist ics of r aw w ast ew at er ar e gat her ed in Table 1. The elect r oflot ocoagulat ion pr ocess w as oper at ed at differ ent cur r ent densit ies t o det er m ine t he opt im um oper at ing v ar iables in t er m s of cur r ent densit y and t he elect r oly sis t im e. The assessm ent of t he elect r ocoagulat ion pr ocess w as based on bot h t he r em ov al pr ocess efficiency and t he ener gy consum pt ion.

Table 1 The char act er ist ics of r aw w ast ew at er pr oceeded

fr om pulp and paper indust r y

Param et er pH COD ( m gO2L- 1) s.s. ( m gL- 1) Cl- ( m gL- 1) SO42- ( m gL- 1)

Value 6.73 2285 3600 350 525

The r em ov al pr ocess efficiency in r elat ion wit h suspended solids and chem ical oxy gen dem and aft er elect r ocoagulat ion t r eat m ent w as det er m ined based on t he equat ion ( 1) : Rem ov al efficiency ( % ) = [ ( C0 – C) / C0] x 100 ( 1) The specific ener gy consum pt ion, Wsp, w as calculat ed wit h t he r elat ion ( 2) :

( k Wh dm- 3) ( 2 )

1000 * 1

U V Q

Wsp

(3)

Al2( SO4)3* 18H2O r eagent pr ov ided by Chim opar Bucur est i w as used for t he coagulat ion

ex perim ent s. Coagulat ion ex perim ent s w er e car r ied out using Degr em ont Jar Test m et hod in bat ches of 1L. Aft er t he addit ion of t he coagulant s, t he sam ples w ere subj ect ed t o r apid m ixing for t w o m inut es at 250 r pm , t hen for 1 0 m inut es at 25 r pm and last set t ling for 30 m inut es, wit hout pH cor r ect ion. The super nat ant w as analy zed. Opt im al dose for coagulant agent w as det er m ined also accor ding t o COD and s. s.

Re su lt s a n d D iscu ssion. Taking int o account t he char act er ist ics of r aw w at er in r elat ion

w it h t he pr esence of chlor ide and sulphat e, t he elect r oly sis experim ent s wer e car ried out w it hout any adding of supplem ent ar y salt s, w hich are usually necessar y for elect r ochem ical t r eat m ent . Based on our pr ev ious st udy ( Bebeselea et al 2006) t he ex perim ent s wer e conduct ed at t hr ee cur r ent densit ies, i. e., 50, 100 and r espect iv e, 200 Am- 2.

Table 2 pr esent s w or k ing condit ion and t he assessm ent of pr ocess cont r ol par am et er s, i. e., COD and s. s. r em ov al efficiency and specific elect rical ener gy consum pt ion. The used quant it y of elect ricit y ( char ge consum ed) is ex pr essed as Ah/ dm3 for bat ches of 50 0 cm3.

Table 2 Ev olut ion of t he elect r oflot ocoagulat ion pr ocess

under cur r ent densit y of 50 A/ m2

Q/ V ( Ah/ dm3)

t im e ( m inut es)

U ( V)

Wsp

( k Wh/ m3)

pHf COD

( m gO2L- 1)

s. s. ( m gL- 1)

0. 1 15 8. 7 0. 87 7. 74 177. 0 440

0. 4 60 11. 7 4. 68 7. 77 151. 0 240

0. 8 120 14. 6 11. 68 7. 90 146. 0 230

1. 0 150 15. 0 15. 00 8. 11 142. 0 220

1. 2 180 15. 3 18. 36 8. 18 137. 0 163

The m ain elect r ochem ical r eact ions t hat occur dur ing t he elect r oly sis at galv anost at ic condit ions can be described by act iv e dissolut ion of anode ( alum inium ) , cat hodic hy dr ogen ev olut ion, leading t o t he pH incr easing and alum inium hy dr oxicom plex es species for m at ion. I ncr easing local pH fav our ed t he gener at ion of t he alum inium hy dr ox icom plex es, w hich can be adsor bed on t he colloids and cr eat es bridges bet w een t he par t icles. I n addit ion, t he am or phous solid alum inium hy dr ox ide flocs t hat for m s at elev at ed pH, set t le dow n causing sw eep flocculat ion. The elect r ocoagulat ion pr ocess inv olv es t hr ee successiv e st ages ( Mollah et al 2001) , e. g. , for m at ion of coagulant s by elect r oly t ic oxidat ion of t he sacr ificial anode elect r odes, dest abilizat ion of t he cont am inant s, par t iculat e suspension, and t he aggr egat ion of t he dest abilized phases t o for m flocs.

The m ain r eact ions t hat occur during t he elect r oly sis under galv anost at ic condit ions can be described by act iv e dissolut ion of anode ( alum inium ) , cat hodic hy dr ogen ev olut ion, a pH incr ease and alum inium hy dr ox icom plex es species for m at ion, as follow s:

Al anode r eact ions:

Al Al3 ++ 3e- ( 3)

H2 + OH-2H2O + 2e- ( 4)

4OH-O2+ 2H2O + 4e- ( 5)

St ainless st eel cat hode r eact ions:

2H2O + 2e-H2+ 2OH- ( 6)

O2+ 2H2O + 4 e-  4 OH- ( 7)

Bulk solut ion:

Al3 + + 3H2O  Al( OH)3 + 3H+ ( 8)

pH affect ed t he elect r ocoagulat ion m echanism , especial in bulk solut ion. At low pH v alues of 2–3, cat ionic m onom er ic species Al3 + and Al( OH)2+ pr edom inat e. When pH is

bet w een 4–9, t he Al3 + and OH- ions gener at ed by t he elect r odes r eact t o for m v ar ious

(4)

Al6( OH)1 53 +, Al7( OH)1 74 + and Al1 3( OH)3 45 + t hat finally t r ansfor m int o insoluble am or phous

Al( OH)3( s) t hr ough com plex poly m erizat ion/ pr ecipit at ion kinet ics [ 26] . When pH is higher

t han 10, t he m on om er ic Al( OH)4- anion concent r at ion incr eases t o Al( OH)3( s) det rim ent .

Tw o m ain m echanism s ar e gener ally consider ed for elect r ocoagulat ion in t he bulk solut ion: pr ecipit at ion for pH low er t han 4 and adsor pt ion for higher pH. Adsor pt ion m ay pr oceed on Al( OH)3 or on t he m onom er ic Al( OH)4- anion depending on t he pollut ant

chem ical st r uct ur e. The for m at ion of Al( OH)3( s) is opt im al in t he 4–9 pH r ange, and t his

pH w as used in t his w or k.

The m ain elect r ode pr ocesses can be par t ially act iv at es or inhibit s on t he pr esence of or ganic and suspended m at t er by adsor pt ion on elect r ode and inv olv em ent in sur face film for m at ion. Also, t he pr esence of Cl-, SO42 - anions influences t he alum inium

dissolut ion, wit h fur t her inv olv em ent in t he elect r ocoagulat ion pr ocess.

The t heor et ical doses of elect r ochem ical dissolv ed alum inium w er e calculat ed based on t he Far aday ’s law pr esent ed in equat ion ( 9) :

w = it M/ ZF ( 9)

w her e: w = alum inium dissolving ( g) , i = cur r ent ( A) ,

t = t im e ( s) ,

M = m olecular weight of Al

Z = num ber of elect r ons inv olv ed in t he r edox r eact ions and F= Far aday ’s const ant = 96500 C/ m ol

Also, t he ex perim ent al dissolv ed alum inium doses w er e det er m ined by elect r ode w eighing befor e and aft er elect r oly sis. Under st udied condit ions, t he ov er- Far aday s dissolut ion behaviour of alum inium anode w as achieved, w hich r epr esent s t he com m on aspect for alum inium . This infor m s t hat no inhibit ion of t he alum inium dissolut ion occur r ed under t he condit ions of 350 m gL- 1 Cl- and 525 m gL- 1 SO42 -.

Figur es 1 and 2 pr esent t he t echnical r esult s of t he elect r ocoagulat ion applicat ion on t he r eal w ast ew at er pr oceeded fr om pulp and paper indust ry at t he t hr ee cur r ent densit ies Under all cur r ent densit ies, t he qualit y of t he t r eat ed w ast ew at er is suit able for dischar ging int o t he sew er age and not int o t he n at ur al r eceiv er. How ev er , t he v er y good efficiencies higher t han 90 % w er e r eached for t he cur r ent densit y of 50 Am- 2. For com par ison, t he classical coagulat ion using alum inium sulphat e w as st udied by Jar- t est m et hod and t he opt im um dose of alum inium sulphat e w as 22. 5 m g Al L- 1 ( t he r esult s ar e not show n her e) . For t his opt im um dose, t he coagulat ion efficiency w as w or se t han t he elect r ocoagulat ion one.

Figur e 1. Ev olut ion of COD r em ov al efficiency v er sus char ge consum ed dur ing elect r ocoagulat ion pr ocess at differ ent cur r ent densit ies.

0.1 0.2 0.3 0 .4 0.5 0.6 0 .7 0.8 0.9 1.0 1 .1 1.2 1.3 8 4

8 6 8 8 9 0 9 2 9 4 9 6 9 8 10 0

C

O

D

r

e

m

o

va

l

e

ff

ici

e

n

cy

(%

)

Q (Ahdm-3)

(5)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 85

90 95 100

s

.s

.

re

m

o

v

a

l

e

ff

ic

ie

n

c

y

(

%

)

Q(Ahdm-3) i=50 Am-2 i= 100 Am-2 i=200 Am-2

Figur e 2. Ev olut ion of s. s. r em ov al efficiency v er sus char ge consum ed dur ing elect r ocoagulat ion pr ocess at differ ent cur r ent densit ies.

A m aj or aspect r egar ding t he assessm ent of t he elect r ochem ical per for m ance is t he specific elect rical ener gy consum pt ion, w hich has t o be cor r elat ed wit h t he best t r eat m ent per for m ance. The r esult s r elat ed t o elect rical ener gy consum pt ion for elect r ocoagulat ion pr ocess ar e show ed in Figur e 3. As w e expect ed, t he lowest specific elect rical ener gy consum pt ion w as r eached under t he condit ions of t he cur r ent densit y of 50 Am- 2. To det er m ine t he dur at ion of t he elect r ocoagulat ion applicat ion, t he dependence of t he elect r oly sis t im e at each cur r ent densit y ver sus t he char ge consum ed dur ing t he elect r oly sis is show n in Figur e 4. Based on t he t echnical- econom ical point of v iew, t he assessm ent of t he elect r ocoagulat ion pr ocess on t he w ast ew at er wit h t he specific char act er ist ics, t he oper at ing condit ions w as est ablished as t he cur r ent densit y of 50Am- 2 for t he elect r oly sis t im e of 60 m inut es wit h t he specific elect rical ener gy consum pt ion of 4 k Whm- 3.

Figur e 3. Ev olut ion of specific elect rical ener gy consum pt ion v er sus char ge consum ed dur ing elect r ocoagulat ion pr ocess at differ ent cur r ent densit ies.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0

4 8 12 16 20 24 28 32

W

s

p

(k

W

h

m

-3 )

Q (Ah/dm3)

(6)

Figur e 4. Dependence of t he elect r oly sis t im e v er sus char ge consum ed dur ing elect r ocoagulat ion pr ocess at differ ent cur r ent densit ies.

Con clusion s. The applicat ion of elect r ocoagulat ion pr ocess in t he r em ov al of or ganic

load and suspended solids fr om a r eal w ast ewat er pr oceeded fr om pulp and paper indust r y giv en good r esult s, t he r em ov al efficiency of COD r eached 94 % and t he r em ov al efficiency of suspended solids r eached 95. 5 % for t he cur r ent densit y of 50 Am- 2 aft er 180 m inut es of t he elect r oly sis t im e. The elect r ocoagulat ion r esult s w er e bet t er v er sus sim ple coagulat ion using alum inium sulphat e at opt im um dose. The r eal w ast ew at er com posit ion allow ed t he applicat ion of elect r ocoagulat ion pr ocess wit hout a supplem ent ary adding of suppor t ing elect r oly t e ( chlor ide and sulphat e) . The opt im um w or k ing condit ions should be select ed based on a cer t ain r em ov al efficiency t aking int o account t he dependence bet w een t he specific elect r ical ener gy consum pt ion, t he cur r ent densit y and t he elect r oly sis t im e.

Ack n ow le dge m e n t s. This w or k w as suppor t ed by Rom anian Nat ional Resear ch Pr ogr am s – PNI I no. 3 2- 1 25/ 20 08- STEDI WAT and PNI I no. 72- 15 6/ 2 00 8- NANO-ZEOREZI D.

Re fe r e n ce s

Babu R. R., Bhadr inar ay ana N. S., Begum Sheriffa Meer a K. M., Anant har am an N. , 2007 Tr eat m ent of t anner y w ast ew at er by elect r ocoagulat ion. Jour nal of t he Univ er sit y of Chem ical Technology and Met allur gy 4 2 : 201- 206.

Bebeselea A., Pop A., Or ha C., Danielescu C., Manea F. , Bur t ica G. , 2006 Aspect s r egar ding t he w ast ew at er t r eat m ent by elect r oflot ocoagulat ion. Envir on Eng Manage J 5 : 1 07 1- 1 077.

Belk acem M. , Khodir M. , Abdelk rim S., 2008 Tr eat m ent char act erist ics of t ex t ile w ast ew at er and r em ov al of heav y m et al using t he elect r oflot at ion t echnique, Desalinat ion 2 2 8 : 2 45- 254.

Budiy ono, Widiasa I . N. , Johari S., 2010 St udy of t r eat m ent of slaught er house w ast ew at er by elect r o- coagulat ion t ehnique. I nt J Eng Sci 1 : 25- 28.

Car neir o P. A. , Fugiv ar a C. S., Nogueir a F. P. , Bor alle N., Zanoni V. B. , 2003 A com par at iv e on chem ical and elect r ochem ical degr adat ion of React iv e Blue 4 dy e. Por t ugaliae Elect r ochim ica Act a 2 1 : 49- 67.

Cior ba G. A., Radov an C., Vlaicu I ., Pit ulice L. , 2000 Cor r elat ion beet w en or ganic com ponent and elect r ode m at erial. Consequences on elect r ochem ical r em ov al of sur fact ant s fr om w ast ew at er. Elect r ochim Act a 4 6 : 297- 30 3.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0 20 40 60 80 100 120 140 160 180 200

50 Am-2 100 Am-2 200 Am-2

e

le

c

tr

o

ly

s

is

t

ime

/mi

n

u

te

s

(7)

Cior ba G. A. , Radov an C. , Vlaicu I . , Masu S. , 20 02 Rem ov al of nony lphenol et hox ylat es by elect r ochem ically - gener at ed coagulant s. J Appl Elect r ochem 3 2 : 561- 56 6.

Fr anson M. A. H. ( ed. ) , 199 5 St andar d Met hods for t he Ex am inat ion of Wat er and Wast w at er. 19t h Edit ion A. P. H. A. , Washingt on.

Gav r ilescu D. , Bobu E. , 2009 Dr iving for ces and bar r ier s for suit able use of r ecov er ed paper in paper m aking. Env ir on Eng Manage J 8 : 1 129- 11 34.

Gav r ilescu D., Puit el A. , 2007 Zer o dischar ge: Technological pr ogr ess t ow ar ds elim inat ing pulp m ill effluent . Envir on Eng Manage J 6 : 434- 43 9.

I nan H. , Dim onglo A., Sim r ek H., Kar puzcu M., 2004 Oliv e m ill w ast ew at er t r eat m ent by m eans of elect r o- coagulat ion. Sep Pur if Technol 3 6 : 23 - 31.

Mollah M. Y. A. , Schennach R. , Par ga J. P. , Cock e D. L. , 2001 Elect r ocoagulat ion ( EC) science and applicat ions. J Hazar d Mat er 8 4 : 29- 4 1.

Mouli P. C., Mohan S. V. , Reddy S. J., 2004 Elect r ochem ical pr ocesses for t he r em ediat ion of w ast ew at er and cont am inat ed soil: em er ging t echnology . J Sci I nd Res I ndia

6 3 : 1 1- 1 9.

Pat el U. D. , Sur esh S. , 2008 Elect r ochem ical t r eat m ent of pent achlor ophenol in w at er and pulp bleaching effluent . Sep Pur if Technol 6 1 : 115–12 2.

Raghu S. , Basha A. A. , 20 07 Chem ical or elect rochem ical t echniques, follow ed by ion ex change, for r ecy cle of t ext ile dy e w ast ew at er . J Hazar d Mat er 1 4 9 : 324–3 30. Raj eshw ar K. , I banez J. G. , 1996 Env ir onm ent al Elect r ochem ist r y, pp. 100- 11 0,

Academ ic Pr ess, London.

Wang B. , Kong W., Ma H. , 2006a Elect r ochem ical t r eat m ent of paper m ill w ast ew at er using t hr ee- dim ensional elect r odes wit h Ti/ Co/ SnO2- Sb2O2 anode. J Hazar d Mat er 1 4 6 : 29 5– 301.

Wang B. , Gu L. , Ma H., 2006b Elect r ochem ical ox idat ion of pulp and paper m aking w ast ew at er assist ed by t r ansit ion m et al m odified k aolin. J Hazar d Mat er 1 4 3 : 198– 205.

Zahar ia C. , Sur pat eanu M. , Cr et escu I . , Maconeanu M. , Br au nst ein H. , 2005 Elect r ocoagulat ion/ elect r oflot at ion m et hods applied for w ast ew at er t r eat m ent . Env ir on Eng Manage J 4 : 46 3- 4 72.

Receiv ed: 12 Mar ch 20 11. Accept ed: 24 July 2011. Published online: 25 July 20 11. Aut hor s:

I lie Pisoi, SECOM Com pany , st r eet Car ol I , n o. 53, Dr obet a- Tur nu Sev er in, Rom ania.

Cr ist ian Danielescu, I nst it ut e of Chem ist r y Tim isoar a of Rom an ian Academ y , 24 Mihai Vit eazu Av e. , 30 022, Tim isoar a, Rom ania.

Flor ica Manea, ” Polit ehnica” Univ er sit y of Tim isoar a, P- t a Vict oriei, no. 2, 300 006, Tim isoar a, Rom ania; e- m ail: flor ica. m anea@chim . upt . r o

Sm ar anda Masu,Nat ional Resear ch and Dev elopm ent I nst it ut e for I ndust r ial Ecology - ECOI ND, Tim isoar a, Rom ania.

Cecilia Sav ii,I nst it ut e of Chem ist r y Tim isoar a of Rom anian Academ y , 24 Mihai Vit eazu Av e. , 300 22, Tim isoar a, Rom ania.

Geor get a Bur t ică,” Polit ehnica” Univ er sit y of Tim isoar a, P- t a Vict or iei, no. 2, 3000 06, Tim isoar a, Rom ania. How t o cit e t his ar t icle:

Referências

Documentos relacionados

Prim ary prevent ion of OSCC should focus on t he prevent ion of cancer by avoiding known car cinogens ( e.g., heav y t obacco consum pt ion) 2. Secondary cancer prevent ion

The differ ent st eps of t he Edit or ial Boar d ev aluat ion and peer r ev iew pr ocess w ill also becom e fully elect r onic... Mar

Ther e is lim it ed under st anding of t he fact or s t hat enable nur ses’ w r it ing for publicat ion, but an educat ional pr ogr am m e on publicat ions skills developm ent at

The adult ’s chronic healt h condit ion was present ed by t he char act er ist ics of per m anence, ir r ever sibilit y, r esidual handicap, incur able and degener at ive as essent

The philosophical r efer ent ial fr om Mar t in Heidegger w as used for t he com pr ehensiv e analy sis of t he st at em ent in quest ion... (

An inver se st at ist ically significant cor r elat ion ( p< 0.001) is obser v ed bet w een pat ient s’ sat isfact ion w it h infor m at ion and physical, psychological and

This st udy aim ed t o evaluat e t he alcohol consum pt ion phenom enon in public schools in Coim br a, Por t ugal ( 7t h, 8t h and 9t h gr ades) for t he im plem ent at ion of a

t he Or gan Pr ocur em ent Or ganizat ion of t he Univ er sit y of São Paulo Medical School Hospit al das Clínicas... Cuando la fam ilia