• Nenhum resultado encontrado

ОТРАЖЕНИЕ И ПРЕЛОМЛЕНИЕ ЭЛЕКТРОУПРУГИХ ВОЛН НА ГРАНИЦЕ РАЗДЕЛА ПЬЕЗОЭЛЕКТРИЧЕСКИХ И ПЬЕЗОМАГНИТНЫХ СРЕД

N/A
N/A
Protected

Academic year: 2017

Share "ОТРАЖЕНИЕ И ПРЕЛОМЛЕНИЕ ЭЛЕКТРОУПРУГИХ ВОЛН НА ГРАНИЦЕ РАЗДЕЛА ПЬЕЗОЭЛЕКТРИЧЕСКИХ И ПЬЕЗОМАГНИТНЫХ СРЕД"

Copied!
8
0
0

Texto

(1)

Ա Ա Ա Ի Ի Ո Թ Ո ԻԱ Ա Ի Ա Ա ԻԱ Ի Ղ Ա Ի

59, 14, 2006

539.3

. ., . .

. . , . .

և

և

Ա 6mm 4mm

և

և : ,

`

և

և և `

և

-և :

V.G. Garakov, Z.N. Danoyan

Reflection and refraction of electroelastic waves at the interface of piezoelectric and piezomagnetic solids

In the paper reflection and refraction of plane electroelastic wave is disscussed at the interface of piezoelectric and piezomagnetic solids with symmetry 6mm or 4mm. It is shown that the incidend wave interacting with the piezomagnetic medium generates in the piezoelectric a reflected homogeneous electroelastic wave and any attendant nonhomogeneous electro-magnetostatic surface wave and in the piezomagnetic a refracted homogeneous magnetoelastic wave and an attendant nonhomogeneous electromagnetostatic surface wave.

6mm 4mm. ,

, ,

- .

1.

[1-4], – [5-7], [8]

-- .

- .

Ox

1

x

2

x

3

0

2

>

x

,

x

2

=

0

,

x

2

<

0

.

(2)

59

- . ,

6mm ( 4mm),

3

Ox

.

Ox

1

( .1).

[4]. ,

1

x

x

2

t

:

(

,

,

)

,

(

,

,

)

,

(

,

,

)

,

,

0

3 1 2 1 2 1 2

2

1

u

u

u

x

x

t

x

x

t

x

x

t

u

=

=

ϕ

=

ϕ

ψ

=

ψ

(1.1)

ϕ

ψ

– :

grad ,

grad

E

r

= −

ϕ

H

r

= −

ψ

(1.2)

E

r

– ,

H

r

.

[4,8], (1.2),

:

1.

x

2

>

0

( ):

2 1

1 1 1 2 1 1

1 1 1 1

1

0

4

0

0

u

c u

e

t

e u

∆ − ρ

+ ∆ϕ =

π ∆ − ε ∆ϕ =

∆ψ =

(1.3)

,

:

µ

1

,

e

1

,

c

1

,

ρ

1

,

ε

1

L

6

(

L

4

)

x

3

x

1

x

2 Cьеƒ%м=г…е2,*

(6mm ,л, 4mm)

Cьеƒ%.ле*2!,*

(6mm ,л, 4mm)

t,г.1

(3)

( ) ( ) ( ) 1 1 11 1 1 15 1 1 44

1

,

=

,

=

,

ε

=

ε

ρ

c

c

e

e

(1.4)

2.

x

2

<

0

( ):

2 2

2 2 2 2 2 2

2 2 2 2

2

0

4

0

0,

u

c

u

b

t

b u

∆ − ρ

+ ∆ψ =

π ∆ − µ ∆ψ =

∆ϕ =

(1.5)

,

:

( ) ( ) ( )

2 2 22 2 2 15 2 2 44

2

,

=

,

=

,

µ

=

µ

ρ

c

c

b

b

(1.6)

3.

x

2

=

0

:

1 2 1 2 1 2

1 1 2

1 1 2

2 2 2

2 2 1

2 2 1

2 2 2

1 1 2 2

1 1 2 2

2 2 2 2

,

,

4

4

u

u

u

e

x

x

x

u

b

x

x

x

u

u

c

e

c

b

x

x

x

x

=

ϕ = ϕ ψ = ψ

∂ϕ

∂ϕ

−ε

+ π

= −ε

∂ψ

∂ψ

−µ

+ π

= −µ

+

∂ϕ

=

+

∂ψ

(1.7)

:

( ) ( ) 1 1 11 2 2

11

=

ε

,

µ

=

µ

ε

(1.8)

«1» , «2» –

.

2. (1.3), (1.5), (1.7) .

:

1 1 1 1 1 1 1

2 2 2 2 2 2 2

,

4

,

4

e u

e

e

b u

b

b

ϕ = ϕ −

= π ε

ψ = ψ −

= π

µ

(2.1)

1

u

ϕ′

1

u

2

ψ′

2

:

2 1

1 2 1 1

,

1

0,

1

0

u

c u

t

ρ

= ∆

∆ϕ =

∆ψ =

(2.2)

:

(

2

)

2

1 1

1

1

,

1 1 1 1

c

=

c

+ χ

χ =

e e c

(2.3)

2 2

2 2 2 2

,

2

0,

2

0

u

c

u

t

ρ

= ∆

∆ψ =

∆ϕ =

(2.4)

:

(

2

)

2

2 2

1

2

,

2 2 2 2

c

=

c

+ χ

χ =

b b c

(2.5)

1

(4)

61

1 1 2 2

1 2 1 1 2 2

2 2 2 2

1 1 1 2 1 2 2 2

1 2 2 1

1 2 2 1

2 2 2 2

,

,

,

u

u

u

u

c

e

c

b

x

x

x

x

e u

b u

x

x

x

x

∂ϕ

∂ψ

=

+

=

+

ϕ +

= ϕ ψ = ψ +

∂ϕ

∂ϕ

∂ψ

∂ψ

ε

= ε

µ

= µ

(2.6)

(2.2)

( 1 1 2 ) ( 1 2 2 ) ( 1 3 2 )

1 1

,

1 1

,

1 1

i px q x t i px q x t i px q x t

u

=

u e

%

+ −ω

ϕ = ϕ

%

e

+ −ω

ψ = ψ

%

e

+ −ω (2.7) :

(

)

(

)

(

)

2 2 2

1 1 1

2 2 2 2

1 1

0

0,

0

c

p

q

u

p

q

p

q

+

− ρ ω

=

+

ϕ =

+

ψ =

%

%

%

(2.8)

p

q

– ,

ω

. (2.8) :

2

2 2 2 2 2 2

1 2 2 3

1

,

,

q

p

q

p

q

p

s

ω

=

= −

= −

(2.9)

:

(

)

1 2 1 1

1 1 2

1 2 1

1

ρ

χ

+

=

ρ

=

⎟⎟

⎜⎜

⎛ ω

=

c

c

k

s

(2.10)

ρ

ω

, ,

x

2

=

0

t

. ,

s

1

. ( ) :

2 2 1 2

10

1

p

s

q

q

=

m

=

m

ω

(2.11)

1

θ

, . .

( )

p

q

k

r

1

,

Ox

1 ( .2).

1

cos

1

,

1 1

sin

1

tg

1 10

p

=

k

θ

q

= −

k

θ = −

p

θ = −

q

(2.12)

2 1 2

1

p

q

k

=

+

– ,

q

10 (2.11). ,

10

1

q

q

=

– ,

q

1

=

q

10

(5)

(2.9)

2

,

3

q

= ±

i p

q

= ±

i p

(2.13)

,

1

Ox

.

(2.13)

(

). ,

,

.

( ) [4]. ,

- . ,

:

(

)

1 10 11

,

1 1 1 10 11

,

1 1

u

=

u

+

u

ϕ = ϕ +

e u

+

u

ψ = ψ

(2.14)

( ) ( )

( ) ( )

1 10 2 1 10 2

2 2

1 1

10 10 11 11

1 1 1 1

,

,

i px q x t i px q x t

p x p x

i px t i px t

u

u e

u

u e

e

e

e

e

+ −ω − −ω

− −

−ω −ω

=

=

ϕ = ϕ

ψ = ψ

%

%

%

%

(2.15)

(2.14) ,

,

.

(

0

2

<

x

).

-:

t

,

г

.

2

θ

1

ϕ′

1

,

ψ

1

x

1

x

2

Cьеƒ%м=г…е2,* (2)

Cьеƒ%.ле*2!,* (1)

θ

2

θ

1

u

21

u

11

ϕ

2

,

ψ

2

(6)

63

2 21

,

2 2 2 21

,

2 2

u

=

u

ψ = ψ +

b u

ϕ = ϕ

(2.16)

( )

( )

( ) 1 20 2

2 1 2 1 21 21 2 2 2 2

i px q x t

p x i px t

p x i px t

u

u e

e

e

e

e

+ −ω −ω −ω

=

ψ = ψ

ϕ = ϕ

%

%

%

(2.17) 2 2 2 2 2 2 2 2 2 2

20

=

ρ

⎛ ω

=

ω

=

c

k

s

p

s

q

(2.18)

2 2 2 2 2 2 20

2 2 2

2 2

cos

,

sin

tg

p

k

q

k

p

q

k

p

q

=

θ

= −

θ = −

θ = −

=

+

2

s

,

k

2– o ,

θ

2

. (2.16), . 2 2 21 1 1 11

~

,

~

,

~

,

~

,

~

,

~

ϕ′

ψ

u

ψ′

ϕ

u

( 21 2 21 11 1 11 10 1 10

~

~

,

~

~

,

~

~

=

e

u

ϕ

=

e

u

ψ

=

b

u

ϕ

)

(2.6):

(

)

(

)

10 11 21 1 2 2 21

1 10 11 10 1 1 2 20 21 2 2

1 1 10 11 2

1 1 2 2 1 1 2 2

,

,

u

u

u

b u

ic q

u

u

e p

ic q u

b p

e u

u

+

=

ψ = ψ +

+

ϕ =

ψ

ϕ +

+

= ϕ

ε ϕ = −ε ϕ µ ψ = −µ ψ

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

(2.19)

(2.19) (2.12) (2.18), :

1 2 1

11

10 1 2 1

21 1

10 1 2 1

2 1 2 2

1 10 1 10

1 2 1 2

1 1 1 2

2 10 2 10

1 2 1 2

sin

sin

cos

sin

sin

cos

2 sin

1

sin

sin

cos

,

,

r

i

u

R

u

r

i

u

T

R

u

r

i

e

b

Tu

Tu

e

b

Tu

Tu

θ −

θ + χ

θ

=

=

θ +

θ − χ

θ

θ

=

= + =

θ +

θ − χ

θ

ε

µ

ϕ = −

ψ =

ε + ε

µ + µ

ε

µ

ϕ =

ψ = −

ε + ε

µ + µ

(7)

(

)

(

)

2 2 2 2

1 1 1 1

2 1 1 1 2 2

1 2 1 1 2 1

c k

c

r

c k

c

e e

b b

c

c

ρ

=

=

ρ

ε

µ

χ =

+

ε + ε

µ + µ

(2.21)

21 11 10

,

ϕ

,

ψ

ϕ

:

10 1 10 11 1 11 1 10

21 2 21 2 10

,

e u

e u

e Ru

b u

b Tu

ϕ =

ϕ =

=

ψ =

=

%

%

%

%

%

%

%

%

(2.22)

,

: –

, –

, ,

– .

. :

1

2 2 1 1

cos

θ =

s s

cos

θ

(2.23)

1 2

s

s

.

θ

2

=

0

, :

2 1 1

cos

s

s

=

θ

2 1 1

arccos

s

s

=

θ

(2.24)

θ

1

cos

,

s

1

<

s

2.

, ,

, . .

R

e

. (2.24),

θ

1 ,

.

,

– ,

θ

1. ,

. ,

,

R

.

.

,

,

x

2

>

0

,

x

2

=

0

. , ,

(8)

65

1. . .

. // . . . . 1985. .38. N1. .12-19.

2. . ., . . ,

. // . .

. 1994. .47. N3-4. .78-82.

3. . ., . ., . .

. //

. . . : 1991. .49-54.

4. . ., . . . :

. 1982. 240 .

5. . ., . ., . .

. // III .

« ». : . .

1984. .22-25.

6. . ., . ., . .

.

// II . - - « ,

». : . . 1984. .1. .92-96.

7. . ., . ., . .

. // , . . . . . 5. . 1986. .102-109.

8. . ., . .

- . // IV

« ». : . . 1989. .67-72.

Referências

Documentos relacionados

On the illustrative task, the propagation of wave signals is considered in a single layer waveguide with a rough surface free of electromechanical surfaces it is shown that the

Observando a Tabela 2, nota-se que o teste de condutividade elétrica com 50 sementes imersas em 30 mL de água destilada, foi eficiente para a separação dos lotes

É oportuno anotar que, na medida em que as aparições, ou seja, os perfis perceptivos daquilo que aparece, não são aparências, mas a própria mostração da coisa que se apresenta,

Nussenzveig, it was possible to show that evanescent wave tunneling, a universal wave phenomenon which is present both in the quantum and classical realm, occurring in light

shown in Table 1. Piezoelectric pressure transducers were used for measuring the reservoir pressure and the incident shock wave speed in driven section. These data were used

16 (2–3):103–114) it was shown that a medium consisting of a periodic sequence of layers is, in the long-wavelength approximation, equivalent to a homogeneous compound medium

means to analyzed the recording we used in our study, that is, the rare stimulus wave subtracted from the frequent... stimulus wave in derivations CZA 1 and

Por outro lado, o aumento do número de divórcios, no contexto de uma cultura fortemente monógama, em conjunto com uma crescente cultura visual do corpo – que trouxe