• Nenhum resultado encontrado

UNIVERSIDADE POSITIVO DOUTORADO EM ODONTOLOGIA EFEITO DO ALENDRONATO NO DESENVOLVIMENTO DA FACE: UM ESTUDO HISTOMÉTRICO E IMUNOHISTOQUÍMICO

N/A
N/A
Protected

Academic year: 2021

Share "UNIVERSIDADE POSITIVO DOUTORADO EM ODONTOLOGIA EFEITO DO ALENDRONATO NO DESENVOLVIMENTO DA FACE: UM ESTUDO HISTOMÉTRICO E IMUNOHISTOQUÍMICO"

Copied!
57
0
0

Texto

(1)

i

UNIVERSIDADE POSITIVO

DOUTORADO EM ODONTOLOGIA

EFEITO DO ALENDRONATO NO DESENVOLVIMENTO DA FACE: UM

ESTUDO HISTOMÉTRICO E IMUNOHISTOQUÍMICO

SHAIENE PATRICIA GOMES

CURITIBA 2019

(2)

i

UNIVERSIDADE POSITIVO

DOUTORADO EM ODONTOLOGIA

EFEITO DO ALENDRONATO NO DESENVOLVIMENTO DA FACE: UM

ESTUDO HISTOMÉTRICO E IMUNOHISTOQUÍMICO

SHAIENE PATRICIA GOMES

Tese apresentada à Universidade

Positivo como requisito parcial para obtenção do título de Doutor, pelo programa de Doutorado em Odontologia.

Orientador: Prof. Dr. Allan Fernando Giovanini

CURITIBA 2019

(3)

ii

Dados Internacionais de Catalogação na Publicação (CIP) Biblioteca da Universidade Positivo - Curitiba – PR

Elaborada pela Bibliotecária Damaris Cardoso de Oliveira Vieira (CRB-9/201803/P)

G633 Gomes, Shaiene Patricia.

Efeito do alendronato no desenvolvimento da face : um estudo histométrico e imunohistoquímico / Shaiene Patricia Gomes. ― Curitiba : Universidade Positivo, 2019.

57 f. : il.

Tese (Doutorado) – Universidade Positivo, Programa de Pós-graduação em Odontologia, 2019.

Orientador: Prof. Dr. Allan Fernando Giovanini.

1. Odontologia. 2. Alendronato - odontologia. 3. Palato.

I. Giovanini, Allan Fernando. II. Título. CDU 616.315-007(043.2)

(4)
(5)

iv

Este trabalho de pesquisa foi realizado no Laboratório de Histopatologia da Universidade

(6)

iv

DEDICATÓRIA

(7)

v

AGRADECIMENTOS

Primeiramente, agradeço a minha família: meus pais e irmã, que sempre me

apoiaram incondicionalmente, que seguramente são os que mais compartilham da

minha alegria.

Agradeço ao meu grande exemplo de esforço e dedicação, Prof. Allan Giovanini.

Tenho muito orgulho de ter sido sua aluna durante todos esses anos. Obrigada por

acreditar em mim. Jamais esquecerei seus eternos ensinamentos e seus preciosos

conselhos.

Manifesto aqui a minha gratidão a todos os colegas da empresa em que trabalho,

Straumann Group – Neodent.

As minhas amigas Heloisa, Jocieli, Karol e Patricia, que sempre me transmitiam

força para esta caminhada.

(8)

vi

EPÍGRAFE

“Talvez não tenha conseguido fazer o melhor, mas lutei para que o melhor fosse feito.

Não sou o que deveria ser, mas Graças a Deus, não sou o que era antes.”

(9)

vii

Gomes SP. Efeito do alendronato no desenvolvimento da face: um estudo histométrico e imunohistoquímico [Tese de Doutorado]. Curitiba: Universidade Positivo; 2019.

RESUMO

Pouco se sabe sobre os efeitos do alendronato de sódio (ALN) no desenvolvimento da

rafe palatina e da cavidade nasal no período neonatal. Alguns estudos apontam que esse fármaco

pode interferir no crescimento cartilaginoso, favorecendo o desenvolvimento desse tecido. Nessa

perspectiva, o objetivo deste estudo foi avaliar, por meio da imunoexpressão de IHH, o

desenvolvimento e expansão da rafe palatina em ratos neonatos de 2 e 7 dias de vida. Além disso,

foi averiguado a imunopresença de IHH, FGF-23 e Na+K+ATPase no 7o dia de desenvolvimento do septo e das conchas nasais, bem como a imunopresença da bomba Na+K+ATPase no epitélio

do trato respiratório. Foram utilizados 32 ratos neonatos, os quais foram alocados aleatoriamente

em dois grupos, o grupo controle (C) e o teste (ALN). Os grupos foram divididos em dois

subgrupos para eutanásia em 2 e 7 dias de vida. Após a eutanásia, foram realizadas as análises

imunohistoquímicas por meio da expressão das proteínas IHH, FGF-23 e Na+K+ATPase, bem

como foi averiguado o aspeto histológico da topografia anatômica. No segundo dia, os aspectos

histológicos do palato do grupo controle demonstraram a presença de tecido conjuntivo fibroso

circundado por tecido cartilaginoso hialino. Neste mesmo período, o IHH foi expresso em células

escassas no mesênquima da cartilagem, bem como em alguns dos condrócitos. No sétimo dia,

foram observadas células condrocíticas intensas separadas por tecido conjuntivo denso, porém o

IHH era escasso. No segundo dia, os espécimes que receberam ALN revelaram padrões similares

quando comparados ao grupo controle. No entanto, várias células que compõem o mesênquima

conectaram à intensa imunoexpressão do IHH. No sétimo dia, no grupo teste, observou-se área

intensa de condrócitos hipertróficos, formando áreas isogênicas bem caracterizadas, em relação

(10)

viii

seis camadas de cartilagem hialina e um mesênquima em todo o comprimento do palato médio.

Nesse período, a presença de deposição óssea nesses espécimes não foi identificada.

Conclui-se que o alendronato promoveu expansão condroide da rafe palatina em ratos

neonatos, associado ao aumento da imunoexpressão do IHH nas áreas condroides da rafe

palatina. Em conchas nasais, aumentou a imunoexpressão do IHH e aumentou a expansividade,

associado a supressão do FGF-23, o qual é um opositor funcional do IHH. Ainda, os espécimes

que receberam alendronato tiveram a bomba Na+K+ATPase inibida no epitélio respiratório,

tanto no revestimento da cavidade nasal quanto no seio maxilar.

(11)

ix

Gomes SP. Effect of Alendronate on the development of the face: histometric and immunihistochemical study [Tese de Doutorado]. Curitiba: Universidade Positivo; 2019.

ABSTRACT

Little is known about the effects of sodium Alendronate on the development of the palatal

raphe and nasal cavity in the neonatal period. Some studies have indicated that this drug may

interfere with cartilaginous growth and promote the development of cartilage. This study evaluated

the development and expansion of the palatal raphe in newborn rats 2 and 7 days old using HIH

immunoexpression. In addition, on the 7th day of life, the presence of IHH, FGF-23 and

Na+K+ATPase was determined in the nasal concha and cartilage, and the presence of

Na+K+ATPase immunopresence, in the respiratory tract epithelium. Thirty-two neonatal rats were

used, which were randomly assigned to two groups, the control group (C) and the test (ALN). The

groups were divided into two subgroups for euthanasia at 2 and 7 days of age. After euthanasia,

immunohistochemistry was used to analyze the expression of IHH, FGF-23 and Na+K+ATPase

proteins, and histology was used to describe the topography. On the second day, the histological

aspects of the palate in the control group revealed the presence of fibrous connective tissue

surrounded by hyaline cartilaginous tissue. At the same time, HHI was expressed in a few cells in

the mesenchyme of the cartilage, as well as in some of the chondrocytes. On the 7th day, many

chondrocytic cells were separated by dense connective tissue, but IHH was scarce. Specimens of

animals that received ALN had similar patterns when compared to the control group. However,

several cells that make up the mesenchyme were associated with the intense IHH

immunoexpression. On the seventh day, in the test group, chondroid staining revealed that a large

area of hypertrophic chondrocytes formed well-characterized isogenic areas. Circumscribing most

chondrocytes, there were four to six layers of hyaline cartilage and a mesenchyme all along the

(12)

x

It is concluded that alendronate promoted chondroid expansion of palatine raphe in

neonatal rats, associated with the increase of HIH immunoexpression in the chondroid areas of the

palatine raphe. In nasal concha, it increased the immunoexpression of HHI and increased the

expansivity, associated with suppression of FGF-23, which is a functional opponent of IHH. Also,

specimens receiving alendronate had the Na + K + ATPase pump inhibited in the respiratory

epithelium, both in the nasal cavity lining and in the maxillary sinus.

(13)

xi

SUMÁRIO

INTRODUÇÃO GERAL ... 1

PROPOSIÇÃO GERAL ... 7

MANUSCRITOS ... 8

MANUSCRIPT 1...8

MANUSCRIPT 2...18

CONSIDERAÇÕES FINAIS ... 30

REFERÊNCIAS ... 31

APÊNDICE 1 - METODOLOGIA ... 37

ANEXO I ... 43

(14)

1

INTRODUÇÃO GERAL

Entre as descobertas relevantes realizadas nos últimos anos, destacam-se as que lidam

com o desenvolvimento e evolução do crânio e dos tecidos com os quais estão intimamente

associados. Possivelmente, a descoberta predominante entre eles é o reconhecimento gradual,

e agora aceitação generalizada, do papel essencial desempenhado pela crista neural

embrionária, como material fonte de muitos tecidos cranianos adultos, como também da

deformidade craniana [1-4]. De fato, o papel potencialmente predominante das células advindas

da crista neural no desenvolvimento craniano e sua evolução só começou a ser estudado na

década de 1950 e não foi amplamente reconhecido por 30 anos, seguindo com publicação

marcante de Gans & Northcutt [5].

A crista neural é a principal fonte celular das células cartilaginosas do crânio. Isso inclui

maxila, septo nasal e mandíbula [6-9]. No entanto, a embriologia da face, principalmente na

compreensão do desenvolvimento da cavidade nasal, é ainda mal compreendida em estudos

clássicos, nos quais há lacunas e controvérsias encontradas sobre as diferentes origens

embriológicas dos ossos nasais, cartilagens e envelopes de tecidos moles [10, 22, 23].

Estudos abordaram o papel da sinalização do fator de crescimento fibroblástico (FGF)

durante o desenvolvimento inicial do palato por meio da análise de embriões de camundongos

[11,12]. Em geral, as atividades de sinalização estão sujeitas a um rígido controle

espaço-temporal e, em muitos casos, muito ou pouco de uma coisa boa pode ser prejudicial para um

órgão em desenvolvimento. Isso é bem ilustrado em anomalias causadas pela sinalização

desregulada de hedgehogs [13] e FGF [14,15].

Com exceção do membro em desenvolvimento, órgãos constituídos por um epitélio e

um mesênquima expressam os membros da família hedgehog, Sonic Hedgehog (SHH) ou

(15)

2

são encontrados em ambas as camadas de tecido, indicando atividades de SHH e IHH à

distância de suas fontes [16].

A proteína IHH está envolvida na diferenciação, proliferação e maturação dos condrócitos, especialmente durante a ossificação endocondral. Dessa forma, os condrócitos sofrem apoptose e são substituídos por matriz óssea secretada por osteoblastos para formar osso trabecular, devido a osteocalcina positivo, que é um marcador de neoformação óssea, cujas funções incluem uma que tem relação com a ligação do cálcio à matriz óssea, além de determinar o nível de atividade dos osteoblastos e formação óssea [17].

Como grande parte do mesênquima que forma a região craniofacial é derivado das células da crista neural, a proteína Indian hedgehog é responsável pelo crescimento, expansão e migração para o desenvolvimento ósseo e a apoptose de células importantes para o

crescimento craniofacial [18].

Porém, existem alguns fatores que podem comprometer essas atividades celulares:

No que se refere ao processo de formação cartilaginosa, o fator de fibroblástico (FGF)

inibe o crescimento de condrócitos e forma um arcabouço de tecido conjuntivo que,

posteriormente, quando associado à calcificação, limita o crescimento ósseo [19].

No que se refere ao processo de formação óssea, a utilização de bisfosfonatos (BPs),

suprimem a reabsorção óssea, induzindo a inativação dos osteoclastos e inibindo sua função e

maturação. Os bisfosfonatos são drogas sintéticas com configuração similar e não hidrolisável

de pirofosfato inorgânico [20].

O alendronato é o representante mais importante dos bisfosfonatos que contêm

nitrogênio e apresenta ampla magnitude na inibição da reabsorção óssea in vivo quando

(16)

3

REVISÃO DA LITERATURA

O morfodesenvolvimento craniofacial é um processo complexo que exige migração,

proliferação, diferenciação e apoptose celular a partir de um desenvolvimento sincronizado

entre células derivadas da crista neural cranial, ectoderma neural, mesoderma e endoderma axial

[22,23]. O resultado desse processo é a fusão de proeminências (processos) anatômicos,

formando as estruturas de todo osso maxilar, palato e rafe palatina, a partir de um

desenvolvimento condroide, bem como de coanas, cartilagem nasal, cornetos, e da estrutura dos

seios nasais e maxilares.

Todo o desenvolvimento da face inicia com a migração das células da crista neural, um

processo que começa no oitavo dia do embrião (E8) e finda em dois dias [22], o que em

humanos, corresponde ao E19 e E38 [23].

Após a migração da crista neural, o mesênquima calvarial se origina do mesoderma

paraxial e da crista neural cranial migrada [24]. As áreas limites entre a crista neural e o osso

derivado do mesoderma sofrerão mudanças estruturais. Essas células da crista neural

originam-se no tubo neural dorsal e, à medida que migram, são atraídas para a área frontomedial por meio

de quimio-tropismo em consequência da expansão da epiderme para formar o processo

frontonasal. O mesênquima primordial frontal forma, então, os ossos frontais, que se

diferenciam nas placas ósseas primárias [25], e o processo continua nas placas ósseas até que

elas se encontrem, resultando na formação de uma sutura.

Esse desenvolvimento facial propriamente dito tem sua gênese em meados do 10,5E no

camundongo e ratos, o que equivale à sexta semana de gestação humana. Após esse fenômeno,

os processos nasais mediais que se originam do processo frontonasal fundem-se entre si e,

(17)

4

pelo lábio superior e o palato primário. Analogamente, a fusão dos processos mandibulares

bilaterais ao longo da linha média produz o lábio inferior e a mandíbula inferior [23].

Em torno do E11 no rato, o sinal mais precoce de iniciação do palato secundário se

manifesta como consequências bilaterais, primórdios das estruturas palatinas, que emergem da

parte interna dos processos maxilares e se estendem anterosuperiormente [23]. Esse

crescimento polarizado assegura a aproximação das proeminências palatinas opostas e a sua

aderência ao longo do epitélio da borda medial, criando um epitélio transiente de múltiplas

camadas que posteriormente sofrerá apoptose para a formação da linha média. O

desaparecimento progressivo desse tecido epitelial permite a fusão do palato secundário ao

longo da linha média [23,27]. Em conseguinte, o palato secundário também se funde com o

palato primário anteriormente e com o septo nasal dorsalmente, formando a estrutura palatal

propriamente dita [23,27, 28].

Após o término da palatogênese, a cavidade oronasal precoce é subdividida em uma

cavidade oral e uma nasal, um pré-requisito funcional para a formação das vias aéreas

superiores, bem como o inicio anatômico de uma via digestória, aqui representada pela cavidade

oral. Assim, é relevante ressaltar que a diferenciação de células mesenquimais produz os

processos palatinos dos ossos maxilar e palatino do palato duro. Quanto às áreas centrais da

rafe palatina, a cartilagem nasal advém propriamente da crista neural [30].

A regulação via fator de crescimento é um dos principais mecanismos que coordenam

e padronizam a migração, formação e ossificação dos ossos craniofaciais. As vias de sinalização

mais comumente estudadas advém do fator de crescimento transformante (TGF-β) e a

sinalização da proteína morfogenética óssea (BMP) [31-35].

A importância dessas vias foi discutida em estudos que demonstram que a

desregularização da sinalização de TGF-β, por exemplo, altera significativamente a formação

da ossificação e o destino das suturas (fusão vs. patência) [35-37]. Embora o periósteo esteja

(18)

5

suturais [38,39]. Em conjunto, as sinalizações dos fatores de crescimento, os caminhos de

diferenciação celular por meio da regulação de genes da família Hedgehog (HH) na

morfogênese das áreas derivadas da crista neural parece ser de clara importância.

Alendronato

O alendronato é uma droga pertencente a família dos bisfosfonatos, cuja estrutura

mimetiza os análogos de pirofosfatos inorgânicos. É considerado uma das terapias de primeira

escolha no tratamento de entidades patológicas ósseas que afetam o metabolismo ósseo

(osteoporose e doença de Paget) e metástases ósseas [56].

Seu mecanismo nos osteoclastos interfere na geranil-geranilação, uma condição

responsável ímpar para a geração de proteínas preniladas, que são responsáveis pela interação

da camada de fosfolipídio com as proteínas reguladoras. O resultado dessa perda proteica

culmina na inibição de proteínas de superfície de membrana e receptores de membrana,

suprindo a excitação quimiotática e a inativação e maturação celular, como ocorre nos

osteoclastos [57].

As GTPases preniladas são proteínas de sinalização que regulam uma variedade de

processos celulares importantes para a função celular e a síntese de reposição celular, pois

atuam em conjunto com fatores de crescimento dependentes que são receptores acoplados à

membrana plasmática [58]. Entre esses fatores, alguns possuem destaque no desenvolvimento

ósseo, tais como o fator de crescimento transformante B1 (TGF-B1), o fator de crescimento

vascular endotelial (VEGF) e as proteínas Na+K+ATPase, que podem, de forma direta ou

indireta, alterar, inibir, ou excitar a transcrição de proteínas ósseas.

Os efeitos do alendronato durante o desenvolvimento do tecido ósseo e cartilaginoso

pós-natal não são bem conhecidos. Os ossos craniofaciais detêm origem no mesênquima e na

(19)

6

desenvolvimento de ossos chatos, como os ossos faciais e o crânio [23]. Esse processo envolve

a diferenciação direta das células mesenquimais em osteoblastos, o que resulta na formação

óssea. Durante esse processo, uma nova matriz óssea é sintetizada e mineralizada por

osteoblastos, ao mesmo tempo que há a formação de cartilagem. Ocorre nesse momento a

proliferação de condrócitos e a sua diferenciação em cartilagem, que é depois substituída por

osso [23]. Assim, este estudo averiguou os efeitos do alendronato de sódio no desenvolvimento

(20)

7

PROPOSIÇÃO GERAL

Os objetivos desta tese apresentada no formato de manuscritos foram:

Manuscrito 1

Avaliar os efeitos do uso de 2,5 mg/kg de alendronato de sódio durante o

desenvolvimento e a expansão da rafe palatina em ratos neonatos, nos períodos de 2 e 7 dias.

Ainda, avaliar a imunopresença do IHH durante a formação e ossificação da linha média.

Manuscrito será submetido ao periódico: Brazilian Dental Science. Manuscrito

formatado de acordo com as normas específicas do periódico (acessado em: 05/03/2019).

Manuscrito 2

Avaliar a imunopresença de IHH, FGF-23 durante o desenvolvimento das conchas

nasais, bem como a imunopresença da bomba Na+K+ATPase no epitélio do trato respiratório

após 7 dias de uso de 2,5 mg/kg de alendronato de sódio.

Manuscrito será submetido ao periódico: Brazilian Dental Science. Manuscrito

(21)

8

MANUSCRITOS

MANUSCRIPT 1

ANALYSIS OF THE IMMUNOEXPRESSION OF IHH IN THE DEVELOPMENT OF THE MIDPALATAL SUTURE OF NEONATAL RATS TREATED WITH

ALEDRONATE1

ABSTRACT

Postnatal palatal growth arrest or deficiencies in the midpalatal area are common

sequelae of physical injury. As alendronate may induce chondroid expansion, this study

evaluated the immunoexpression of IHH in the area of the palatal raphe and compared results

with the histological characteristics of the midpalatal area at 2 and 7 days of life of newborn

rats receiving alendronate. Thirty-two newborn rats were included in this study: 16 in a control

group, and 16 in a group that received intraperitoneal applications of 2.5 mg/kg/day of

alendronate. The animals were euthanized on the 2nd or 7th day, and their heads prepared for

histological and immunohistochemical analyses. Specimens of animals that received

alendronate had larger chondroid matrix deposition in areas where there was proliferation and

isogenic formation of hypertrophic chondrocytes, and the analyses revealed immunoexpression

of IHH. In addition, higher levels of IHH were detected in the mesenchymal tissue of the palatal

raphe, forming an area of resting chondrocytes and a perichondral topography resulting from

the differentiation of mesenchyme into chondrocytes. Alendronate may be used in the treatment

of orthopedic diseases, especially to promote the growth of the midpalatal area.

KEYWORDS

Alendronate, palatal raphe, IHH

1 Manuscrito será submetido ao periódico: Brazilian Dental Science. Manuscrito formatado de acordo

(22)

9

INTRODUCTION

Postnatal craniofacial disorders due to physical injury are a common concern in clinical

practice, because the resulting midpalatal growth disorders may have serious consequences,

such as craniosynostosis and midface hypoplasia, conditions that not only affect facial harmony,

but that also contribute to the compression of the growing encephalon, especially in children

[1].

These pathological disorders invariably result from changes in the usual signaling

pathways that activate proteins for the differentiation of cells that originate in the neural crest

and the mesenchyme. They may also be caused by the activation of growth factors that act in

the suppression of the usual pathways in the formation of the midpalatal suture [2].

The HH family of proteins has a function in these processes of palatal and facial

development. Specifically, Indian hedgehog (IHH) expression has been associated with the

induction of cell proliferation and differentiation, found mainly on the osteogenic fronts of the

calvarial, maxillary and mandibular bones. In addition, IHH seems to play an important role in

the site of plate growth and cartilage formation, and in early craniofacial development,

especially in the growth of midpalatal areas [3].

Therefore, dugs that stimulate differentiation of chondrocytes and osteogenesis may be

used for the treatment of disorders, such as craniosynostosis and midface hypoplasia. The

consecutive use of alendronate may be an option for chondrocyte proliferations in midpalatal

areas, contributing for chondrocyte maturation and ossification of this anatomical site [4].

This study evaluated the immunoexpression of IHH in the midpalatal suture area, and

(23)

10

MATERIAL AND METHODS

Animals

This study followed the Principles of Laboratory Animal Care (NIH Publication 85-23,

revised in 1985) and Brazilian laws on animal use, and was approved by the Ethical Committee

for Animal Research of the institution were it was conducted (Protocol #266).

Ten female rats (Rattus norvegicus albinus, Holtzman) aged 2-3 months and weighing

approximately 242 to 260 g were kept under controlled temperature (22±2°C) and humidity

(55%±5%), with a 12 h/12 h light/dark cycle and food and water ad libitum. Using a cotton

swab soaked in saline solution (pH 7.0), vaginal oncotic cytology samples were collected from

all female rats every day. The cytological material was spread on a glass slide and stained using

the Papanicolaou technique to determine the phase in the estrus cycle, according to the

characteristics of epithelial cells and the presence or absence of inflammatory cells.

Female rats in the estrus phase were mated overnight with male rats, with two females

per male in each cage. Early in the next morning, oncotic cytological vaginal smears were

collected from female rats again, stained using Shorr staining, and examined under a light

microscope to verify the presence of sperm. Presence of sperm in vaginal smears was indicative

of first day of pregnancy.

Treatment

Pregnant rats were housed singly in polypropylene cages until after the birth of the pups.

Afterwards, the newborn rats were randomly assigned to one of two groups: a control group, in

(24)

11

rats received 2.5 mg/kg/day of alendronate trihydrate (Biolife, Curitiba, Brazil; lot number:

14042132C) (n=16). The saline and alendronate solutions were administered intraperitoneally

daily until euthanasia, which occurred on the 2rd and 7th day after birth for eight animals in

each treatment group at each time point. Euthanasia was performed by brief exposure to

isoflurane.

Histology

Immediately after euthanasia, the heads of newborn rats were removed and the surgical

specimens were immersed in a 4% formaldehyde fixative solution, prepared from

paraformaldehyde and 0.1 M sodium phosphate, at a pH of 7.2. After decalcification for 3

weeks in 7% edetate disodium (EDTA) containing 0.5% formaldehyde in 0.1 M sodium

phosphate (pH 7.2), the specimens were dehydrated in graded concentrations of ethanol, cleared

in xylene and embedded in paraffin. Serial 3-µm-thick histological sections were obtained from

each specimen in the anterior-posterior direction according to the coronal anatomic plane. Some

sections were stained with hematoxylin and eosin, Masson trichrome, and Alcian blue to

examine histomorphologic and histomorphometric aspects of bone and chondroid matrix, and

other sections were deposited on silanized slides (Sigma-Aldrich Chemie, Steinheim, Germany)

for the immunohistochemical detection of IHH.

Immunohistochemistry

From each specimen, 3-µm-thick sections were used for the immunohistochemical

detection of proteins. For antigen retrieval, deparaffinized sections were immersed in 10 mM

sodium citrate buffer (pH 6.0) and microwaved in 3× 5-minute cycles to detect IHH. After

(25)

12

were incubated for 30 min at room temperature with 2% bovine serum albumin (BSA;

Sigma-Aldrich Chemie, Steinheim, Germany). The sections were then incubated overnight at 4º C with

primary antibody anti-IHH (200 mg/mL, Santa Cruz Biotechnology, CA, sc-271101) at a

dilution of 1:200. A labeled streptavidin/biotin antibody binding detection system (Universal

HRP immunostaining kit; Diagnostic Biosystem, Foster City, CA) was used to detect the

primary antibodies. After washing in 0.05 M Tris-HCl buffer (pH 7.2), the sections were

incubated for 30 min at room temperature in biotinylated anti-rabbit/mouse/goat

immunoglobulin (LSAB-plus kit; Dako, CA). Sections were counterstained with Harris

hematoxylin. For the negative control group, the primary antibodies were omitted, and the

sections were incubated with nonimmune serum.

Image Analyses

Images of both histological and immunohistochemical sections were captured with a

digital camera (Samsung, South Korea) under a light microscope at x100 and x200

magnifications. The digital images were captured and saved at 300 dpi resolution (image size:

115 × 75 cm).

The amount of bone matrix deposited in the body of the maxillary bone, as well as the

amount of chondroid tissue in the midpalatal area, was determined on each histological sample.

The software Image J was used to record the histomorphometric data about bone matrix and

chondroid matrix deposition.

Histomorphometric measurements were made using, the microscopic images and

Adobe Photoshop for Mac. A line tangent to the lower edge of the nasal septum cartilage was

drawn on each image. The maxillary area below this line was the focus of this study and the

point at which all measurements were made. The lateral borders were established by lines drawn

(26)

13

limit was the epithelial lining of the mucosa. Figure 1A shows the area examined in each

specimen.

Each micrograph was transferred to the Image J software (https://imagej.nih.gov/ij), and

the total area and the areas of bone matrix and of chondroid tissue stained with hematoxylin

and eosin were carefully selected and measured. Cells positive for IHH were scored as: - 0% to

1%; + 1% to 25%; ++ 25% to 50%; +++ 50% to 75%; and ++++ >75%.

A 1-mm slide micrometer was used to calibrate all measurements. The average of three

measurements for each parameter was calculated for each specimen. After that, all data were

expressed in percentages.

Statistical Analysis

Data for histomorphologic and immunohistochemical analyses were collected along the

monitoring time. The Shapiro-Wilk test was used to determine normality, followed by the

Kruskal Wallis nonparametric test to detect significant differences between groups. The level

of significance was set at p<0.05.

RESULTS

All histomorphometric data and immunohistochemical scores are showed in Table 1,

The main findings of specimen analyses are described here. On the 2rd day, the histological

findings for the midpalatal area of the control group indicated the presence of a fibrous

connective tissue surrounded by hyaline cartilaginous tissue. The hyaline cartilage had two to

three layers of chondrocytes surrounded by hypertrophic chondrocytes. At this time point, few

(27)

14

there was intense separation of chondrocyte cells by dense connective tissue. Bone matrix was

visible among the hyperplastic chondrocytes. However, IHH was scarce on the 7th day.

On the 2nd day, the specimens that received alendronate had similar patterns to those of

the control group. However, several cells of the mesenchymal connective tissue had an intense

immunoexpression of IHH. In contrast, there were several IHH+ chondrocytes and few isogenic

and proliferative groups of hypertrophic IHH+ chondrocytes. On the 7th day, a large area of

hypertrophic chondrocytes formed characteristic isogenic IHH+ areas, differently from the

chondroid stained areas. Four to six layers of hyaline cartilage and one layer of IHH+

mesenchyme circumscribed most chondrocytes throughout the length of the midpalatal area. At

this time point, no bone deposition was detected in these specimens.

Figure 1: A and B - Larger presence of IHH in specimens that received alendronate;

simultaneous presence isogenic and proliferative hypertrophic chondrocytes. C and D -

Immunohistochemical presence of IHH in specimens that received alendronate and in control

specimens. A 2nd day Test C 2nd day Control B 7th day Test D 7th day Control

(28)

15

Table 1: Histomorphometric and immunohistochemical findings of both groups.

Findings Day Control Alendronate p

Area of chondroid tissue

(mm2) 2 1.34  0.08 1.42  0.11 0.523 7 1.42  1.01 1.73  0.77 0.032 Area of hyperplasic chondrocytes 2 1.12  0.02 1.33  0.21 0.437 7 1.42  1.01 1.69  0.55 0.028 IHH in chondrocytes 2 + ++ 7 + ++++ IHH in mesenchymal tissue 2 + +++ 7 - ++++ DISCUSSION

In this study, the use of alendronate changed the histological aspect of the formation of

the midpalatal suture. In specimens that received alendronate, there was an increase in the

immunoexpression of IHH, formation of a net of isogenic groups of hyperplasic chondrocytes,

resulting in a lower area of mineralization and an increase in hypertrophic and proliferative

chondrocytes. The mesenchymal tissue that formed the palatal raphe was also classified as

(29)

16

These results suggested that the use of alendronate induces a sequence of events in the

endochondral metaphyseal area, as well as the differentiation of mesenchymal cells distributed

into a resting zone. Alendronate promotes chondral protection in the midpalatal suture area and

shapes it. It is responsible for the expansion of the chondroid area and simultaneously delays

the mineralization of the midpalatal area [5]. All these sequences of events seem to be

associated with chondrocytes and the increase in IHH expression.

A factor associated with alendronate that may increase IHH action and cartilage growth

in the midpalatal suture is the potential capacity of this drug to increase TGF-β [6].

Corroborating this premise, a study of TGF-β2 conducted by Erlebacher and Derynck

(1996) found TGF-β2 overexpression, which may lead to specific increases of IHH expression

in the chondral osteoblasts, and revealed a novel pathway of action of this pluripotent growth

factor in endochondral metabolism [7].

These results also seem to be supported by the findings reported by Tekari et al. (2015),

who demonstrated that the expansion of chondrocytes seem to be strictly associated with

functional endogenous TGF-β signaling. The authors demonstrated that TGF-β receptor

inhibited the cytokine-dependent pathway, a condition that coincided with the arrest of

cartilaginous growth and chondroid differentiation [8]. Here we add that these effects may occur

via IHH.

In our study, alendronate inhibited precocious mineralization and increased IHH

expression. These changes enhanced endochondral ossification through chondrocyte expansion

induced by alendronate. According to our results, alendronate may contribute to the orthopedic

growth of the maxilla, which provides new evidence that alendronate may be an option for the

treatment of diseases affecting the midpalatal.

CONCLUSION

(30)

17

REFERENCES

1) Suzuki A, Sangani DR, Ansari A, Iwata J. Molecular mechanisms of midfacial

developmental defects. Dev Dyn. 2016 Mar;245(3):276-93. Epub 2015 Dec 11.

2) Twigg SR, Wilkie AO. A genetic-pathophysiological framework for craniosynostosis. Am J

Hum Genet. 2015 Sep 3;97(3):359-77.

3) Deng A, Zhang H, Hu M, Liu S, Wang Y, Gao Q, Guo C. The inhibitory roles of Ihh

downregulation on chondrocyte growth and differentiation. Exp Ther Med. 2018

Jan;15(1):789-794. doi: 10.3892/etm.2017.5458. Epub 2017 Nov 7.

4) St-Jacques, B., Hammerschmidt, M., McMahon, A.P. Indian hedgehog signaling regulates

proliferation and differentiation of chondrocytes and is essential for bone formation. Genes

Dev. 1999: 13: 2072–2086.

5) Yaffe A, Kollerman R, Bahar H, Binderman I. The influence of Alendronate on bone

formation and resorption in a rat ectopic bone development model. J Periodontol. 2003;

74(1):44-50.

6) Manzano-Moreno FJ, Ramos-Torrecillas J, Melguizo-Rodríguez L, Illescas-Montes

R, Ruiz C, García-Martínez O. Bisphosphonate modulation of the gene expression of

different markers involved in osteoblast physiology: Possible implications in

bisphosphonate-related osteonecrosis of the jaw. Int J Med Sci. 2018 Feb 12;15(4):359-367.

7) Erlebacher A, Derynck R. Increased expression of TGF-beta 2 in osteoblasts results in an

osteoporosis-like phenotype. J Cell Biol. 1996 Jan;132(1-2):195-210.

8) Tekari A, Luginbuehl R, Hofstetter W, Egli RJ. Transforming growth factor beta signaling

is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes.

(31)

18

MANUSCRIPT 2

EFFECT OF SODIUM ALENDRONATE ON THE DEVELOPMENT OF NASAL

CONCHA AND MUCOSA. AN IMMUNOHISTOCHEMICAL STUDY2

ABSTRACT

Alendronate (ALN) may change or even accelerate the chondroid development in the

nasal cavity. This study evaluated the immunoexpression of IHH, FGF-23 and Na+K+ATPase

in the nasal cartilage and concha and Na+K+ATPase immunopresence in the respiratory tract

epithelium. Results were compared with the histological characteristics on the 7th day of life

of newborn rats receiving ALN. Sixteen newborn rats were included in this study: eight in a

control group, and eight in the ALN group, in which animals received 2.5 mg/kg/day of

intraperitoneal alendronate daily. The animals were euthanized on the 7th day, and their heads

prepared for histological and immunohistochemical analyses. Specimens in the test group had

a greater number of cells and a larger area of cartilage than those in the control group.

Chondrocytes with discrete to moderate IHH immunolabeling and areas of endochondral bone

deposition were detected at the apex of the hyperplastic nasal concha in the control group. The

nasal concha of the specimens that received alendronate had proliferative chondrocytes and

hyperplastic areas, with intense IHH immunopositivity. FGF-23 positivity was high, whereas

FGF-23 was scarce in the ALN specimens. ALN promoted proliferation of nasal cartilage and

increased the number of chondrocytes per area, which also increased the size of the nasal

concha. Alendronate may affect the histophysiology of the nasal cavity, because it increases the

size of the nasal concha. At the same time, it suppresses Na+K+ATPase in respiratory epithelia.

KEYWORDS

Alendronate, nasal concha, IHH, FGF-23, Na+K+ATPase.

2 Manuscrito será submetido ao periódico: Brazilian Dental Science. Manuscrito formatado de acordo

(32)

19

INTRODUCTION

Alendronate (ALN) is a bisphosphonate drug used in clinical practice to minimize the

deleterious effects of pathologies that promote intense bone loss. The use of bisphosphonate

therapy in pediatric patients was suggested in 1998 when the cyclic administration of

intravenous bisphosphonates in children with osteogenesis imperfecta resulted in reduction in

bone resorption, increase in bone density, and reduction in fracture incidence [1]. This drug has

also been used in the treatment not only of comorbidities, but also of endochondral growth

deficiencies in children, as alendronate seems to promote bone and cartilage growth [2].

In addition to the endochondral area of the metaphysis and epiphysis of long bones,

several anatomical areas are composed of chondrocytes and may present with deficiencies

during growth. An important area that may have its anatomy affected by ALN use is the nasal

cartilage and concha [3]. In fact, ALN may disturb protein immunoexpression in this site, either

by stimulating or suppressing the chondroid expansion, or even by changing the respiratory

epithelium in the region [4].

One of the proteins responsible for cartilage growth is the Indian hedgehog (IHH). This

protein is an important marker of cartilaginous expansion and development of hyperplastic

chondrocytes. The area of development of this cartilage is regulated by the fibroblast growth

factor-23 (FGF-23), a protein that reduces and suppresses chondrogenesis [5].

Despite these benefits, ALN may also damage the development of respiratory epithelia

and induce ulcers in cylindrical epithelia, such as enterocytes [6, 7].

This study evaluated the immunoexpression of IHH, FGF-23 and Na+K+ATPase in the

in the nasal concha and mucosa, and compared results with histomorphometric findings in the

(33)

20

MATERIAL AND METHODS

Animals

This study followed the Principles of Laboratory Animal Care (NIH Publication 85-23,

revised in 1985) and Brazilian laws on animal use, and was approved by the Ethical Committee

for Animal Research of the institution were it was conducted (Protocol #266).

Seven female rats (Rattus norvegicus albinus, Holtzman), aged 2 months and weighing

245- to 255 g, were used as progenitresses. The animals were kept in a room with controlled

temperature (22 ± 2°C) and humidity (55% ± 5%), at a 12-h light/dark cycle and with food and

water ad libitum.

Sixteen newborn rats were obtained from natural generation, using the method described

by de Souza et al. [8]. Eight newborn rats received sterile 0.9% saline solution (control group);

the other eight newborn rats received 2.5 mg/kg/day of alendronate trihydrate (Biolife, Curitiba,

Brazil; lot number: 14042132C) for seven days (ALN group). Both saline and alendronate

solutions were administered intraperitoneally daily until euthanasia by isoflurane overdose,

which occurred on the 7th day.

Histology

Immediately after euthanasia, the heads of newborn rats were removed and the surgical

specimens were immersed in a 4% formaldehyde fixative solution, prepared from

paraformaldehyde and 0.1 M sodium phosphate, at a pH of 7.2, for 48 h at 18º to 20º C. After

decalcification for 3 weeks in 7% edetate disodium (EDTA) containing 0.5% formaldehyde in

(34)

21

ethanol, cleared in xylene and embedded in paraffin. Serial 3-µm-thick histological sections

were obtained from each specimen in the anterior-posterior direction according to the coronal

anatomic plane. The sections were stained with hematoxylin and eosin to examine

histomorphologic and histomorphometric aspects of the chondroid matrix, and other sections

were deposited on silanized slides (Sigma-Aldrich Chemie, Steinheim, Germany) for the

immunohistochemical detection of IHH, FGF-23 and Na+K+ATPase.

Immunohistochemistry

From each specimen, 3-µm-thick sections were used for the immunohistochemical

detection of proteins. For antigen retrieval, deparaffinized sections were immersed in 10 mM

sodium citrate buffer (pH 6.0) and microwaved in 3× 5-minute cycles to detect IHH. After

cooling and inactivation of endogenous peroxidase with 5 % hydrogen peroxide, the sections

were incubated for 30 min at room temperature with 2% bovine serum albumin (BSA;

Sigma-Aldrich Chemie, Steinheim, Germany). The sections were then incubated overnight at 4º C with

primary antibody anti-IHH (200 mg/mL, Santa Cruz Biotechnology, CA, sc-271101) at a

dilution of 1:200. A labeled streptavidin/biotin antibody binding detection system (Universal

HRP immunostaining kit; Diagnostic Biosystem, Foster City, CA) was used to detect the

primary antibodies. After washing in 0.05 M Tris-HCl buffer (pH 7.2), the sections were

incubated for 30 min at room temperature in biotinylated anti-rabbit/mouse/goat

immunoglobulin (LSAB-plus kit; Dako, CA). Sections were counterstained with Harris

hematoxylin. For the negative control group, the primary antibodies were omitted, and the

(35)

22

Image Analyses

Images of both histological and immunohistochemical sections were captured with a

digital camera (Samsung, South Korea) under a light microscope at x100 and x200

magnifications. The digital images were captured and saved at 300 dpi resolution (image size:

115 × 75 cm).

The amount of chondroid matrix deposited in the nasal concha, as well as the number

of cells in this site, was determined on each histological sample. The software Image J was used

to record the histomorphometric data about bone matrix and number of cells at this site.

Histomorphometric measurements were made using, the microscopic images and

Adobe Photoshop for Mac. All areas of cartilage in the nasal concha were measured

Each micrograph was transferred to the Image J software (https://imagej.nih.gov/ij), and

the total area and the areas of chondroid matrix were carefully selected and measured. Cells

positive for IHH, FGF-23 and Na+K+ATPase were scored as: - 0% to 1%; + 1% to 25%; ++

25% to 50%; +++ 50% to 75%; and ++++ >75%. The average of three measurements for each

parameter was calculated for each specimen.

Statistical Analysis

Data for histomorphologic and immunohistochemical analyses were collected along the

monitoring time. The Shapiro-Wilk test was used to determine normality, followed by the

Kruskal Wallis nonparametric test to detect significant differences between groups. The level

(36)

23

RESULTS

After 7 days of alendronate administration, the specimens in the test group had a greater

number of cells and a larger area of cartilage than those in the control group. Chondrocytes with

discrete to moderate IHH immunolabeling and areas of endochondral bone deposition were

detected at the apex of the hyperplastic nasal concha in the control group. In contras, the nasal

concha of the specimens that received alendronate had numerous proliferative chondrocytes

and hyperplastic areas, with intense IHH immunopositivity. The delineation of the cartilaginous

areas in the control group revealed high FGF-23 positivity, whereas FGF-23 was scarce in the

specimens that received the drug (FIg.1). All histomorphometric data are showed in Table 1,

and the immunohistochemical scores, in Table 2.

Figure 1: IHH and FGF-23 immunopositivity in control and test groups. A - IHH

(37)

24

(brownish areas). C and D - FGF-23 in control and test groups; FGF-23 surrounds chondroid

area of nasal cartilage; FGF-23 is scarce in ALN group.

Table 1: Mean (min - max) value of chondroid area and cells/mm2

Parameter Control Alendronate p value

Chondroid area (mm2) 0.36 (0.29 – 0.41) 0.77 (0.66 – 0.81) p= 0.0027 Cells/mm2 117 (108 – 137) 153 (139 – 166) p=0.0152

At the same time, Na+K+ATPase was scarce in respiratory epithelium, both in nasal

epithelium and in the epithelium of the maxillary sinus in formation. In contrast, Na+K+ATPase

was positive in the control group.

Figure 2: Na+K+ATPase immunopositivity in control and test group. A -

(38)

25

epithelium of specimens that received alendronate (brownish areas). C and D: Na+K+ATPase

presence in area of maxillary sinus in control and test groups; pattern Na+K+ATPase

immunopositivity in maxillary sinus is similar to that of respiratory epithelium.

Table 2: Immunohistochemical scores of IHH and FGF-23 in chondroid area of nasal concha

and of Na+K+ATPase in respiratory epithelium.

Protein Score Control Alendronate IHH ++ ++++ FGF-23 ++ + Na+K+ATPase ++++ + DISCUSSION

The results of this study suggest that alendronate (ALN) may change or even accelerate

the chondroid development in the nasal cavity in a model of growing animals. ALN promoted

proliferation of nasal cartilage and increased the number of chondrocytes per area (mm2), which

also increased the size of the nasal concha. These results were associated with a high IHH

positivity.

In fact, Indian hedgehog (IHH) signaling seems to be indispensable for the proper

development of the endochondral areas and skeleton. In the developing cartilage, IHH is

primarily expressed on pre-hypertrophic chondrocytes and in early hypertrophic chondrocytes,

and IHH signals to both immature chondrocytes and the perichondral cells [9,10]. These

(39)

26

Cartilage growth suppression, or even its growth retardation, seems to be correlated to

the presence of other proteins that impair IHH action and limit excessive cartilage growth [10].

IHH plays a critical role in chondrocyte proliferation, and the downstream target of FGF

receptor 3 activation suppresses the growth of cartilage. Kawai (2013) found that IHH is the

downstream target of FGF23, a signaling that induces a decrease of IHH expression and

consequently promotes suppression of chondrocyte proliferation [11].

The intense presence of IHH and the simultaneous suppression of FGF-23 may explain

why ALN affects the biology of nasal concha development and improves cartilage growth.

Actually, the reason why ALN increases HHI or decreases FGF-23 remains unclear, but

there is evidence that this effect of ALN on these proteins may be indirect, through the increase of TGFβ, which is higher when ALN is used. Erlebacher & Derynck (1996) found a direct

correlation between enhance of effects of TGF beta and enhancement of IHH expression

chondrocytes [12], while Richter et al. (2016) found a suppression of FGF23 in cultures of

myocytes submitted to treatment with exogenous TGF-β [13]. Although myocytes are different

cells, from different embryological sources, our results suggest that this mechanism may be

similar in chondrocytes.

In fact, the use of ALN until the seventh day cannot demonstrate the actual deleterious

effect to the airways of the animal and dyspnea, but an exacerbated growth of nasal concha

cartilage may lead to upper airway stenosis and even obstructive pulmonary disease.

Na+K+ATPase suppression may also contribute to respiratory tract diseases.

Na+K+ATPase, a protein expressed in epithelial cells, plays a crucial role. Primarily found in

the basolateral plasma membrane, it catalyzes ATP-dependent transport of three Na+ and two K+ into the cell per pump cycle to maintain Na+ and K+ gradients across the plasma membrane.

This Na+ and K+ homeostasis is necessary to regulate the functions of the various ion and solute transporters in epithelial cells. It is also responsible for cell polarization [14]. Loss of

(40)

27 vacuolar degeneration [14].

The loss of Na+K+ATPase found in this study may be explained by the fact that ALN

inhibits farnesyl pyrophosphate synthase in the mevalonate cascade [15]. As result of this

inhibitory event, cholesterol synthesis may fail, and non-prenylated GTP-binding proteins may

accumulate in the cell cytoplasm. In the non-prenylated form, the binding-protein loses its

functional capacity to promote protein-protein interaction to cellular membrane [16,17]. When

a protein that works as membrane receptor is allowed to spread throughout the cytoplasm,

especially due to failure of its common interaction with membrane integrin, this situation

changes the tertiary or quaternary protein configuration, a condition that simulates the

denaturation of protein and that suppresses its usual functional action [18,19]

CONCLUSION

Alendronate may affect the histophysiology of the nasal cavity, because it increases the

size of the chondroid area and IHH, at the same time, suppresses Na+K+ATPase and FGF-23.

REFERENCES

1) Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic administration

of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998 Oct

1;339(14):947-52.

2) Mostoufi-Moab S, Halton J. Bone morbidity in childhood leukemia: epidemiology,

mechanisms, diagnosis, and treatment. Curr Osteoporos Rep. 2014 Sep;12(3):300-12.

3) Som PM, Naidich TP. Illustrated review of the embryology and development of the facial

region, part 1: Early face and lateral nasal cavities. AJNR Am J Neuroradiol. 2013

(41)

28

4) Vieira JS, Giovanini A, Görhinger I, Gonzaga CC, Costa-Casagrande TA, Deliberador TM.

Use of low-dose Alendronate improves cranial bone repair and is associated with an increase

of osteocalcin: An experimental study. J Oral Maxillofac Surg. 2017 Sep;75(9):1873-1881.

5) Nie X, Luukko K, Kettunen P. FGF signalling in craniofacial development and

developmental disorders. Oral Dis. 2006 Mar;12(2):102-11.

6) Graham DY, Malaty HM. Alendronate gastric ulcers. Aliment Pharmacol Ther. 1999

Apr;13(4):515-9.

7) Ballester I, Daddaoua A, López-Posadas R, Nieto A, Suárez MD, Zarzuelo A,

Martínez-Augustin O, Sánchez de Medina F. The bisphosphonate Alendronate improves the damage

associated with trinitrobenzenesulfonic acid-induced colitis in rats. Br J Pharmacol. 2007

May;151(2):206-15. Epub 2007 Mar 20.

8) de Souza JF, Gramasco M, Jeremias F, Santos-Pinto L, Giovanini AF, Cerri PS, Cordeiro

Rde C. Amoxicillin diminishes the thickness of the enamel matrix that is deposited during the

secretory stage in rats. Int J Paediatr Dent. 2016 May;26(3):199-210.

9) St-Jacques, B., Hammerschmidt, M., McMahon, A.P. Indian hedgehog signaling regulates

proliferation and differentiation of chondrocytes and is essential for bone formation. Genes

Dev. 1999: 13: 2072–2086.

10) Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate

of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996 Aug

2;273(5275):613-22.

11) Kawai M, Kinoshita S, Kimoto A, Hasegawa Y, Miyagawa K, Yamazaki M, Ohata Y,

Ozono K, Michigami T. FGF23 suppresses chondrocyte proliferation in the presence of soluble α-Klotho both in vitro and in vivo. J Biol Chem. 2013 Jan 25;288(4):2414-27. Epub 2012 Dec

12.

12) Erlebacher A, Derynck R. Increased expression of TGF-beta 2 in osteoblasts results in an

(42)

29

13) Richter B, Haller J, Haffner D, Leifheit-Nestler M. Klotho modulates FGF23-mediated NO

synthesis and oxidative stress in human coronary artery endothelial cells. Pflugers Arch. 2016

Sep;468(9):1621-35. Epub 2016 Jul 22.

14) Clausen MV, Hilbers F, Poulsen H. The Structure and Function of the Na+K+ATPase

Isoforms in Health and Disease. Front Physiol. 2017 Jun 6;8:371.

15) Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical

practice. Mayo Clin Proc. 2008 Sep;83(9):1032-45.

16) Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ.

Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational

prenylation of GTP-binding proteins, including Ras. J Bone Miner Res. 1998 Apr;13(4):581-9.

17) Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD, Ebetino FH,

Rogers MJ. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in

vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J

Pharmacol Exp Ther. 2001 Feb;296(2):235-42.

18) Stevens VL. Regulation of glycosylphosphatidylinositol biosynthesis by GTP. Stimulation

of N-acetylglucosamine-phosphatidylinositol deacetylation. J Biol Chem. 1993 May

5;268(13):9718–9724.

19) Paulick MG, Bertozzi CR. The glycosylphosphatidylinositol anchor: a complex

membrane-anchoring structure for proteins. Biochemistry. 2008 Jul 8;47(27):6991-7000. Epub 2008 Jun

(43)

30

CONSIDERAÇÕES FINAIS

Manuscrito 1

O alendronato 2,5 mg/kg promoveu expansão condroide da rafe palatina em ratos neonatos,

devido:

 ao aumento da camada hipertrófica de condrócitos;

 à transdiferenciação do mesênquima em zona de condrócitos em repouso.

Todo esse aumento ocorreu associado ao aumento da imunoexpressão do IHH nas áreas

condroides da rafe palatina.

Manuscrito 2

O alendronato aumentou a imunoexpressão do IHH e aumentou a expansividade cartilaginosa

nas conchas nasais.

Esse fenômeno ocorre também associado à supressão do FGF-23, o qual é um opositor

funcional do IHH.

Ainda, os espécimes que receberam alendronato tiveram a bomba Na+K+ATPase inibida no

(44)

31

REFERÊNCIAS

1) Hall BK. Neural Crest In Development and Evolution. New York: Springer-Velarg. 1999,

313p.

2) Le Douarin NM., Kalcheim C. The Neural Crest. 1999: 2 Ed. New York: Cambridge Univ.

Press.

3) Santagati F, Rijli FM. Cranial neural crest and the building of the vertebrate head. Nat. Rev.

Neurosc. 2003. 4: 806-818

4) Schneider RA, Helms JA. The cellular and molecular origins of beak morphology. Science.

2003 Jan 24;299(5606):565-8.

5) Gans C, Northcutt RG. Neural crest and the origin of vertebrates: a new head. Science. 1983:

Apr 15;220(4594):268-73.

6) McKee GJ, Ferguson MW. The effects of mesencephalic neural crest cell extirpation on the

development of chicken embryos. J Anat. 1984 Oct;139 ( Pt3):491-512.

7) Langille RM, Hall BK. Role of the neural crest in development of the cartilaginous cranial

and visceral skeleton of the medaka, Oryzias latipes (Teleostei). Anat Embryol (Berl).

1988;177(4):297-305.

8) Scherson T, Serbedzija G, Fraser S, Bronner-Fraser M. Regulative capacity of the cranial

neural tube to form neural crest. Development. 1993 Aug;118(4):1049-62.

9) Vaglia JL, Hall BK. Regulation of neural crest cell populations: occurrence, distribution and

underlying mechanisms. Int J Dev Biol. 1999 Mar;43(2):95-110.

10) Jankowski R. The Evo-Devo Origin of the Nose, Anterior Skull Base and Midface. Paris:

Springer Paris; 2013.

11) Rice R, Spencer-Dene B, Connor EC, Gritli-Linde A, McMahon AP, Dickson C, Thesleff

I, Rice DP. Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions

(45)

32

12) Alappat SR, Zhang Z, Suzuki K, Zhang X, Liu H, Jiang R, Yamada G, Chen Y. The cellular

and molecular etiology of the cleft secondary palate in Fgf10 mutant mice. Dev Biol. 2005 Jan

1;277(1):102-13.

13) McMahon, A. P., Ingham, P. W. and Tabin, C. J. Developmental roles and clinical

significance of hedgehog signaling. Curr. Top. Dev. Biol. 2003: 53, 1-114.

14) Rice, R., Rice DPC, Thesleff I. Foxc1 integrates Fgf and Bmp signaling independently of

twist or noggin during calvarial bone development. Dev. Dyn. 2005: 233, 847 - 852.

15) Nie X, Luukko K, Kettunen P. FGF signalling in craniofacial development and

developmental disorders. Oral Dis. 2006 Mar;12(2):102-11.

16) McMahon, A. P., Ingham, P. W. and Tabin, C. J. Developmental roles and clinical

significance of hedgehog signaling. Curr. Top. Dev. Biol. 2003: 53, 1-114.

17) St-Jacques, B., Hammerschmidt, M., McMahon, A.P. Indian hedgehog signaling regulates

proliferation and differentiation of chondrocytes and is essential for bone formation. Genes

Dev. 1999: 13: 2072–2086.

18) Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N, Takada S. FGF18

is required for normal cell proliferation and differentiation during osteogenesis and

chondrogenesis. Genes Dev. 2002 Apr 1;16(7):870-9.

19) Klopocki E, Mundlos S. Copy-number variations, noncoding sequences, and human

phenotypes. Annu Rev Genomics Hum Genet. 2011;12:53-72.

doi:10.1146/annurev-genom-082410-101404.

20) Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates:

similarities and differences and their potential influence on clinical efficacy. Osteoporos Int.

2008 Jun;19(6):733-59.

21) Cremers S, Papapoulos S. Pharmacology of bisphosphonates. Bone. 2011 Jul;49(1):42-9.

22) Slavkin HC . Development of Craniofacial Biology. Philadelphia: Lea and Febiger. 1979

(46)

33

23) Dixon A, Hoyte D, Rönning O. Fundamentals of craniofacial growth. Boca Raton: CRC

Press; 1997.

24) Noden DM. The role of the neural crest in patterning of avian cranial skeletal, connective,

and muscle tissues. Dev Biol. 1983; 1:144-65.

25) Yeung Tsang K, Wa Tsang S, Chan D, Cheah KS. The chondrocytic journey in

endochondral bone growth and skeletal dysplasia. Birth Defects Res C Embryo Today. 2014

Mar;102(1):52-73. doi: 10.1002/bdrc.21060.

26) Hatch NE. FGF signaling in craniofacial biological control and pathological craniofacial

development. Crit Rev Eukaryot Gene Expr. 2010;20(4):295-311.

27) Diewert VM. Craniofacial growth during human secondary palate formation and potential

relevance of experimental cleft palate observations. J Craniofac Genet Dev Biol Suppl.

1986;2:267-76.

28) Diewert VM, Shiota K. Morphological observations in normal primary palate and cleft lip

embryos in the Kyoto collection. Teratology. 1990 Jun;41(6):663-77.

29) Li C, Lan Y, Jiang R. Molecular and cellular mechanisms of palate development. J Dent

Res. 2017 Oct;96(11):1184-1191. Epub 2017 Jul 26.

30) Som PM, Naidich TP. Illustrated review of the embryology and development of the facial

region, part 1: Early face and lateral nasal cavities. AJNR Am J Neuroradiol. 2013

Dec;34(12):2233-40.

31) Longaker MT, Peled ZM, Chang J, Krummel TM. Fetal wound healing: Progress report

and future directions. Surgery. 2001: 130, 785-787.

32) Warren SM, Brunet LJ, Harland RM, Econimides AN, Longaker MT. The BMP antagonist

noggin regulates cranial suture fusion. Nature. 2003; 422: 625 – 629.

33) Nie X, Luukko K, Kettunen P. BMP signalling in craniofacial development. Int J Dev Biol.

(47)

34

34) Nie X, Luukko K, Kettunen P. FGF signalling in craniofacial development and

developmental disorders. Oral Dis. 2006 Mar;12(2):102-11.

35) Rawlins JT, Opperman LA. Tgf-beta regulation of suture morphogenesis and growth. Front

Oral Biol 2008;12:178-96.

36) Derynck R, Chen RH, Ebner R, Filvaroff EH, Lawler S. An emerging complexity of

receptors for transforming growth factor-beta. Princess Takamatsu Symp. 1994;24:264-75.

37) Chim H, Miller E, Gliniak C, Alsberg E. Stromal-cell-derived factor (SDF) 1-alpha in

combination with BMP-2 and TGF-β1 induces site-directed cell homing and osteogenic and

chondrogenic differentiation for tissue engineering without the requirement for cell seeding.

Cell Tissue Res. 2012 Oct;350(1):89-94. Epub 2012 Jun 12.

38) Opperman LA, Persing JA, Sheen R, Ogle RC. In the absence of periosteum, transplanted

fetal and neonatal rat coronal sutures resist osseous obliteration. J Craniofac Surg. 1994

Nov;5(5):327-32.

39) Opperman LA, Passarelli RW, Morgan EP, Reintjes M, Ogle RC. Cranial sutures require

tissue interactions with dura mater to resist osseous obliteration in vitro. J Bone Miner Res.

1995 Dec;10(12):1978-87.

40) Parmantier E., Lynn B., Lawson D., Turmaine M., Namini S. S., Chakrabarti L., et al.

Schwann cell-derived Desert hedgehog controls the development of peripheral nerve sheaths.

Neuron. 1999; 23: 713–724 10.1016/S0896-6273(01)80030-1.

41) Yao HHC, Whoriskey W, Blanche C. Desert Hedgehog/Patched 1 signaling specifies fetal

Leydig cell fate in testis organogenesis. Genes Dev 2002: Jun 1; 16(11): 1433–1440.

42) Cohen M M Jr. The Hedgehog signaling network. Am J Med Genet, United States. 2003:

123, 5-28.

43) Kawai Y, Noguchi J, Akiyama K, et al. A missense mutation of the Dhh gene is associated

with male pseudohermaphroditic rats showing impaired Leydig cell development.

(48)

35

44) Chiang, C, Litingtung, Y, Lee E, Young KE, Corden JT, Westphal H, Beachy PA. Cyclopia

and defective axial patterning in mice lacking Sonic Hedgehog gene function. Nature. 1996;

383, 407-413.

45) Hayhurst M and McConnell, SK. Mouse models of holoprosencephaly. Curr. Opin. Neurol.

2003; 16: 135–141.

46) Britto J, Tannahill D, Keynes R. A critical role for sonic hedgehog signaling in the early

expansion of the developing brain. Nat Neurosci. 2002 Feb;5(2):103-10.

47) Jeong Y, El-Jaick K, Roessler E, Muenke M, Epstein DJ. A functional screen for sonic

hedgehog regulatory elements across a 1 Mb interval identifies long-range ventral forebrain

enhancers. Development. 2006 Feb;133(4):761-72. Epub 2006 Jan 11.

48) Capdevila J, Johnson RL. Hedgehog signaling in vertebrate and invertebrate limb

patterning. Cell. Mol. Life Sci. 2000; 57, 1682–1694.

49) Byrnes AM, Racacho L, Grimsey A et al. Brachydactyly A-1 mutations restricted to the

central region of the N-terminal active fragment of Indian Hedgehog. Eur J Hum Genet. 2009;

17:1112–1120.

50) Schlosser G, Wagner GP. Modularity in Development and Evolution. Chicago: University

of Chicago Press; 2004.

51) Bitgood MJ, McMahon AP. Hedgehog and Bmpgenes are coexpressed at many diverse sites

of cell-cell interaction in the mouse embryo. Dev Biol. 1995;172:126–138.

52) Long F, Chung UI, Ohba S, McMahon J, Kronenberg HM, McMahon AP. Ihh signaling is

directly required for the osteoblast lineage in the endochondral skeleton. Development. 2004:

131, 1309-1318.

53) Deng A, Zhang H, Hu M, Liu S, Wang Y, Gao Q, Guo C. The inhibitory roles of Ihh

downregulation on chondrocyte growth and differentiation. Exp Ther Med. 2018

(49)

36

54) Cohen MM Jr. The new bone biology: pathologic, molecular, and clinical correlates. Am J

Med Genet A. 2006 Dec 1;140(23):2646-706.

55) Vieira JS, Giovanini A, Görhinger I, Gonzaga CC, Costa-Casagrande TA, Deliberador TM.

Use of low-dose Alendronate improves cranial bone repair and is associated with an increase

of osteocalcin: An experimental study. J Oral Maxillofac Surg. 2017 Sep;75(9):1873-1881.

56) Russell RG. Bisphosphonates: mode of action and pharmacology. Pediatrics. 2007 Mar;119

Suppl 2:S150-62.

57) Gong L, Altman RB, Klein TE. Bisphosphonates pathway. Pharmacogenet Genomics. 2011

Jan;21(1):50-3.

58) van der Meel R, Symons MH, Kudernatsch R, Kok RJ, Schiffelers RM, Storm G, Gallagher

WM, Byrne AT. The VEGF/Rho GTPase signalling pathway: a promising target for

anti-angiogenic/anti-invasion therapy. Drug Discov Today. 2011 Mar;16(5-6):219-28. Epub 2011

(50)

37

APÊNDICE 1 - METODOLOGIA

Animais

Os experimentos foram realizados no biotério e no laboratório de Histopatologia da

Universidade Positivo, após a aprovação na comissão de Ética no Uso de Animais da

Universidade (protocolo #266).

Para o desenvolvimento deste trabalho, nove ratas com idade de três meses, com

aproximadamente 250 g de massa corporal, e três ratos machos adultos com massa variando de

250-300g foram usados para acasalamento.

Acasalamento e obtenção da amostra

Os animais selecionados para acasalamento foram mantidos no biotério em condições

controladas de temperatura (23 ±10oC) e umidade relativa do ar (55±5%), com iluminação artificial por lâmpada fluorescente com fotoperíodos de 12 horas claro/escuro e com ração e

água (0,7 ppm/F) ad libitum.

Inicialmente, foi realizado esfregaço vaginal nas ratas para uma avaliação do período do

ciclo estral em qual se encontravam. O resultado da citologia esfoliativa nos permitiu uma

avaliação precisa da atividade do conteúdo celular representado por epitélio vaginal ou a

presença ou ausência de processo inflamatório, os quais mudam abruptamente devido as

flutuações constantes nos níveis de estradiol.

A estratificação dos critérios que foram considerados para cada período obtidos por

Referências

Documentos relacionados

A democratização do acesso às tecnologias digitais permitiu uma significativa expansão na educação no Brasil, acontecimento decisivo no percurso de uma nação em

& LOY J966 que trabalh.aram com raças PSI e Quarto de Milha de cinco a dezenove meses de idade com raçao completa peleti zada e com a mesma ração na forma farelada, obtendo um

O presente artigo discute o tema do Feminicídio, especificamente, na cidade de Campina Grande. A metodologia utilizada foi de natureza qualitativa e do tipo

Os resultados obtidos no desenvolvimento da ferramenta mostraram-se satisfatórios, pois foi possível agregar alguns princípios encontrados nas metodologias ágeis

Célula cilíndrica, 67-79 µm compr., 8-14 µm larg., Rc/l = 5,6-8,3; abertura do canal subapical; polo anterior arredondado ou truncado, polo posterior atenuado em

4 Este processo foi discutido de maneira mais detalhada no subtópico 4.2.2... o desvio estequiométrico de lítio provoca mudanças na intensidade, assim como, um pequeno deslocamento

Após extração do óleo da polpa, foram avaliados alguns dos principais parâmetros de qualidade utilizados para o azeite de oliva: índice de acidez e de peróxidos, além

Na investigação de nosso fenômeno, consideramos o contexto de influência local que deu origem aos depoimentos dos docentes e no contexto de influência oficial utilizamos os textos