• Nenhum resultado encontrado

CAPÍTULO 3 BALANÇOS DE MASSA A PROCESSOS QUÍMICOS E BIOLÓGICOS

N/A
N/A
Protected

Academic year: 2021

Share "CAPÍTULO 3 BALANÇOS DE MASSA A PROCESSOS QUÍMICOS E BIOLÓGICOS"

Copied!
14
0
0

Texto

(1)

OBJECTIVO:

Estabelecer balanços de massa a processos com e sem reacção química/biológica.

BIBLIOGRAFIA:

(2)

Princípio da conservação da matéria

“Na natureza nada se cria, nada se perde, tudo se transforma"

Antoine-Laurent de Lavoisier A elaboração de um balanço de matéria num sistema ou processo baseia-se na aplicação do

princípio da conservação da matéria.

(3)

Sistema e Fronteira

SISTEMA

Fronteira do sistema

Pode-se definir um sistema com sendo uma porção ou a totalidade de um processo definido especificamente para análise. Esta porção é limitada pela fronteira entre o sistema e o seu exterior.

Os sistemas podem ser classificados em contínuos ou

descontínuos e em abertos ou fechados.

• Nos sistemas abertos e contínuos ocorre transferência de matéria através da fronteira.

• Nos sistemas fechados e descontínuos não ocorre transferência de matéria através da fronteira.

(4)

SISTEMA

Fronteira do sistema

Equação Geral de Balanço de Massa

Acumulação (A) Consumo (C) Entradas (E)

Saídas (S) Produção (F)

Acumulação Entrada através Saída através Formação por Consumo por = - + - no Sistema da Fronteira da Fronteira Reacção Reacção

(5)

Ou de outro modo: E + F = S + C + A

Se não ocorrer reacção química/biológica: E = S + A

Se não ocorrer reacção química/biológica nem acumulação: E = S

Sistema em estado estacionário – sistema em que a acumulação é nula.

(em PEQB I só iremos analisar processos em estado estacionário)

Acumulação - variação com o tempo da

matéria dentro do sistema. 20 L/h 10 L/h

Tanque agitado

Em cada hora há uma acumulação de volume de 10 L. Exemplo: SISTEMA Fronteira do sistema Acumulação (A) Consumo (C) Entradas (E) Saídas (S) Produção (F)

(6)

Graus de Liberdade de um Processo

O número de grau de liberdade (ou número de variáveis de projecto), NGL, pode ser definido como o número de variáveis do processo cujo valor tem de ser conhecido para que o problema de balanços de material tenha solução, isto é, para que todas as restantes variáveis possam ser determinadas. Podemos escrever que:

NGL = NV - NEQ

em que:

NV - o número de variáveis;

NEQ - o número de equações independentes que relacionam as diversas variáveis

(7)

EXEMPLO 3.1

Um corrente contendo dois componentes é sujeita a um determinado processamento, donde resultam duas correntes, de acordo com a figura seguinte:

(X1)1 (X2)1 F3 F2 F1 (X1)3 (X2)3 (X1)2 (X2)2 (X1)1 (X2)1 F3 F2 F1 (X1)3 (X2)3 (X1)2 (X2)2

em que F é o caudal molar (ou mássico) e (Xi)j é a fracção molar (ou mássica) do componente i na corrente j. Determinar o número de grau de liberdade do processo.

Resolução

• Número de variáveis:

Para o problema em estudo temos 9 variáveis: 3 caudais (F1, F2 e F3) e 6 fracções ( (X1)1 , (X2)1 , (X1)2 , (X2)2 , (X1)3 , (X2)3 ).

(8)

• Número de equações (balanços de massa):

Os balanços de massa são equações que traduzem a lei de conservação de massa e que relacionam os fluxos de matéria que entram e que saem do sistema. Para um sistema em

estado estacionário (acumulação nula) e sem reacção química, a equação geral do balanços

de massa é a seguinte:

Entrada através Saída através = da Fronteira da Fronteira

- Balanço de massa total: F1 = F2 + F3

- Balanço de massa ao componente 1: (X ) F = (X ) F + (X) F

Deste modo: (X1)1 (X2)1 F3 F2 F1 (X1)3 (X2)3 (X1)2 (X2)2

(9)

No entanto as três equações anteriores não são linearmente independentes (a 1ª equação resulta da soma das 2ª e 3ª equações), só podendo ser utilizadas duas equações.

Para além destas equações sabe-se que para cada uma das três corrente: ∑ (Xi)j = 1

• Número de graus de liberdade:

NGL = 9 – (2 + 3) = 4 NGL = NV - NEQ

Temos assim 4 grau de liberdade, donde 4 variáveis terão de ser conhecidas à priori, sendo as restantes variáveis conhecidas através da resolução das 5 equações estabelecidas.

Exemplo: (X1)1 = 0,60 (X2)1 F3 F2 = 30 mol/h F1 = 100 mol/h (X1)3 = 0,40 (X2)3 (X1)2 (X2)2 NGL = 0

(10)

Técnicas de Cálculo de Balanços de Massa

1 - Estabelecimento de um diagrama de blocos do processo.

2 - Atribuir símbolos algébricos às variáveis das correntes. Indicação de todos as variáveis

conhecidas do problema.

3 - Construção de uma tabela com indicação de todas as correntes e de todos os compostos

intervenientes no problema. Deverão ser indicadas as unidades dos valores numéricos a introduzir nesta tabela.

4 - Estabelecimento de um número de equações igual ao número de variáveis desconhecidas

do processo. Estas equações poderão ser balanços de massa, leis da Termodinâmica, correlações empíricas, tabelas de dados, etc.

5 - Escolher uma base de cálculo para iniciar os cálculos (consoante o tipo de problema, a

(11)

Resolução

EXEMPLO 3.2

Pretende-se concentrar, por evaporação, uma solução aquosa de hidróxido de sódio de 5% para 29%. Efectuar os balanços de massa, para um caudal inicial de 100 kg/h de solução processada.

Técnicas de Cálculo:

Ponto 1 - Estabelecimento de um diagrama de blocos do processo.

Ponto 2 - Atribuir símbolos algébricos às variáveis das correntes. Indicação de todos as variáveis conhecidas do problema.

Evaporador H2O – 95% NaOH – 5% H2O H2O – 71% NaOH – 21%

100 kg/h Evaporador H2O – 95% NaOH – 5% H2O H2O – 71% NaOH – 21%

Evaporador

H2O – 95% NaOH – 5% H2O H2O – 71% NaOH – 21%

100 kg/h

(12)

Ponto 3 - Construção de uma tabela com indicação de todas as correntes e de todos os compostos intervenientes no problema. Deverão ser indicadas as unidades dos valores numéricos a introduzir nesta tabela.

Ponto 4 - Estabelecimento de um número de equações igual ao número de variáveis desconhecidas do processo. Estas equações poderão ser balanços de massa, leis da Termodinâmica, correlações empíricas, tabelas de dados, etc.

H2O NaOH Total    Kg/h

--

(13)

No problema temos duas incógnitas (FM e FM, em que FM representa caudal mássico) e podemos escrever dois balanços de massa independentes (pois temos dois componentes). Logo: NGL = 0

- Balanço de massa ao NaoH: (NaOH) = (NaOH) - Balanço de massa total: FM = FM + FM

Ponto 5 - Escolher uma base de cálculo para iniciar os cálculos (consoante o tipo de problema, a base de cálculo deverá ser expressa em moles, massa ou volume).

Base de cálculo: 100 kg/h na corrente

 (base de cálculo real)

Evaporador H2O – 95% NaOH – 5% H2O H2O – 71% NaOH – 29%    100 kg/h Evaporador H2O – 95% NaOH – 5% H2O H2O – 71% NaOH – 29%    Evaporador H2O – 95% NaOH – 5% H2O H2O – 71% NaOH – 29%    100 kg/h

(14)

Ponto 6 - Resolução das equações estabelecidas.

FM = FM + FM (NaOH) = (NaOH)

Escrever os Balanços de Massa em função das incógnitas (FM e FM): 100 = FM + FM 0,05 x 100 = 0,29 x FM FM

=

0,290,05 x100 = 17,2kg/h FM = 100 – 17,2 = 82,8 kg/h Preenchimento da tabela H2O NaOH    Kg/h

--

82,8 95,0 5,0 12,2 5,0 Evaporador H2O – 95% NaOH – 5% H2O H2O – 71% NaOH – 29%    100 kg/h Evaporador H2O – 95% NaOH – 5% H2O H2O – 71% NaOH – 29%    Evaporador H2O – 95% NaOH – 5% H2O H2O – 71% NaOH – 29%    100 kg/h

Referências

Documentos relacionados

 Ambulância da marca Ford (viatura nº8), de matrícula XJ-23-45, dotada com sirene, luz rotativa e equipamento de comunicação (Emissor/Receptor com adaptador);.  Ambulância da

O objetivo do curso foi oportunizar aos participantes, um contato direto com as plantas nativas do Cerrado para identificação de espécies com potencial

O valor da reputação dos pseudônimos é igual a 0,8 devido aos fal- sos positivos do mecanismo auxiliar, que acabam por fazer com que a reputação mesmo dos usuários que enviam

Taking into account the theoretical framework we have presented as relevant for understanding the organization, expression and social impact of these civic movements, grounded on

Neste estudo foram estipulados os seguintes objec- tivos: (a) identifi car as dimensões do desenvolvimento vocacional (convicção vocacional, cooperação vocacio- nal,

Os dados referentes aos sentimentos dos acadêmicos de enfermagem durante a realização do banho de leito, a preparação destes para a realização, a atribuição

Neste tipo de situações, os valores da propriedade cuisine da classe Restaurant deixam de ser apenas “valores” sem semântica a apresentar (possivelmente) numa caixa

2. Identifica as personagens do texto.. Indica o tempo da história. Indica o espaço da história. Classifica as palavras quanto ao número de sílabas. Copia do texto três