• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número1"

Copied!
8
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Laboratory

evaluation

of

Clusia

fluminensis

extracts

and

their

isolated

compounds

against

Dysdercus

peruvianus

and

Oncopeltus

fasciatus

Rodrigo

C.

Duprat

a,b

,

Maria

C.

Anholeti

c,d

,

Bruno

P.

de

Sousa

a

,

João

P.F.

Pacheco

a,b

,

Maria

R.

Figueiredo

e

,

Maria

A.C.

Kaplan

f

,

Marcelo

Guerra

Santos

g

,

Marcelo

S.

Gonzalez

a

,

Norman

A.

Ratcliffe

a,h

,

Cicero

B.

Mello

a

,

Selma

R.

Paiva

d

,

Denise

Feder

a,∗

aLaboratóriodeBiologiadeInsetos,UniversidadeFederalFluminense,CampusValonguinho,Niterói,RJ,Brazil

bProgramadePós-graduac¸ãoemCiênciaseBiotecnologia,InstitutodeBiologia,UniversidadeFederalFluminense,Niterói,RJ,Brazil

cProgramadePós-graduac¸ãoemQuímicadeProdutosNaturais,InstitutodePesquisasdeProdutosNaturais,UniversidadeFederaldoRiodeJaneiro,RiodeJaneiro,RJ,Brazil dLaboratóriodeBotânicaEstruturaleFuncional,InstitutodeBiologia,UniversidadeFederalFluminense,Niterói,RJ,Brazil

eLaboratóriodeQuímicadeProdutosNaturais,Far-Manguinhos,Fiocruz,RiodeJaneiro,RJ,Brazil fInstitutodePesquisasdeProdutosNaturais,UniversidadeFederaldoRiodeJaneiro,RiodeJaneiro,RJ,Brazil

gDepartamentodeCiências,FaculdadedeFormac¸ãodeProfessores,UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,RJ,Brazil hDepartmentofBiosciences,CollegeofScience,SwanseaUniversity,SingletonPark,Swansea,UnitedKingdom

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received11May2016 Accepted1August2016

Availableonline23September2016

Keywords: Clusianone Lanosterol Oncopeltusfasciatus Dysdercusperuvianus Developmentalinhibition Mortality

a

b

s

t

r

a

c

t

TheeffectsofthehexanicextractsofthefruitsandflowersofClusiafluminensisPlanch.&Triana, Clu-siaceae,aswellastheirmainconstituents,thetriterpenelanosterolandthebenzophenoneclusianone, wereevaluatedonhemipteransDysdercusperuvianusandOncopeltusfasciatus.Thetopicaltreatments ofinsectswiththehexanicextractssignificantlyaffectedthesurvivalofO.fasciatus,butnotthatofD. peruvianus.Concomitantly,extractsdelayedthedevelopmentofbothhemipterans.Moreover,isolated lanosterolsignificantlyreducedboththesurvivalanddevelopmentofO.fasciatusandD.peruvianus,while clusianoneonlyreducethesurvivalofD.peruvianusandmarginallyinhibitedthedevelopmentofboth insects.Theresultsshowthespecificactivityoflanosterolandclusianoneagainstthetwoevaluated insectspeciesandindicatethepotentialofcompoundsderivedfromC.fluminensisforthedevelopment ofspecificbiopesticidesforthecontrolofagriculturalpests.Subsequentworkwillexaminethemodeof actionoflanosterolandclusianoneisolatesfromC.fluminensis.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Synthetic insecticides were widely used after World War II (McGraw and O’Neill, 2013) and have played important roles inthecontrol ofagriculturalpestsandtropical diseasevectors. Thesecompounds,however,arehighlytoxicandcontaminatethe environmentcausingserioushumanhealthproblems(Longnecker etal.,2001;Weissetal.,2004).

In addition, the frequent use of pesticides has enhanced insectresistanceandresultedinincreaseddosagesand/or subse-quentreplacementbyotherchemicalswithevenhighertoxicity (Hemingway and Ranson, 2000). Therefore, new strategies for insect control are under development, especially with natural

Correspondingauthor.

E-mail:mdfeder@id.uff.br(D.Feder).

productsofplantoriginthatarelessharmfultotheenvironment (Stoateetal.,2009).

Co-evolution mechanisms between insects and plants have resultedintheselectionofplantsecondarymetabolites, includ-ing pyrethrins, alkaloids, rotenoids and terpenoids, with killer, repellentorgrowthanddevelopmentalinhibitoryactivitiesagainst insects(Isman,2006;AlexenizerandDorn,2007;Miresmailliand Isman,2014).

ThevastBrazilianfloraisofprimaryimportanceinthesearchfor alternativenaturalinsecticides(Mendonc¸aetal.,2005;Giorgietal., 2013).ClusiafluminensisPlanch.&Triana,Clusiaceae,isanative plantfromBrazil,foundinregionsofhighluminousintensityand waterrestriction,suchasthe“restinga”environment(sandycoastal plains)androckyoutcrops(Bittrich,2010).Moreoverinnature,C. fluminensisleavesarerarelyattackedbyinsects.

Previousreports showedthat theleavesofspecies fromthe genus Clusia are rich in terpenes, especially triterpenes and sesquiterpenes (Barrios et al., 1990; De Andrade et al., 1998;

http://dx.doi.org/10.1016/j.bjp.2016.08.004

(2)

Compagnone et al., 2008; Marín et al., 2008; Guimarãeset al., 2013).Nagemetal.(1993)identifiedthepentacyclictriterpenes, amyrin, friedelin, ␣-friedelinol and ␤-friedelinol as wellas the tetracyclic triterpene, lupenone, in the leavesof C. fluminensis. Recently,lanosterolandclusianonefromthefruitsandmale flow-ersofC.fluminensis,respectively,wereisolatedandstructurally characterized(Silvaetal.,2012;Oliveiraetal.,2014).Subsequently, clusianonewasshowninlaboratoryassaystoinducehighmortality andtoinhibitdevelopmentofAedesaegyptilarvae(Anholetietal., 2015).

Clusianoneisabenzophenoneofwhichtherearemany deriva-tives(BeerhuesandLiu,2009;Lietal.,2014)butonlyafewstudies of theirinsecticide properties have beenmade (Middleton and Chadds,1970; Ranganatha et al., 2013). For example, the ben-zophenones,cariphenone Aandcariphenone B,fromHypericum carinatumGriseb.,Hypericaceae,haveanti-mosquitoactivity(da Silvaet al.,2013),while benzophenonespresent incommercial UVfiltersmimicecdysoneactivityinChironomusriparius(Meigen, 1804) (Diptera: Chironomidae) and affect development (Ozáez etal.,2014).

Lanosterolisknowngenerallytobetheprecursorofergosterol infungiandcholesterolinanimals(Phillipsetal.,2006).Although cycloartenolisthemainprecursorofsteroidsinvegetable, stud-ieshave shownthat plants arecapableof producing lanosterol directlyfrom2,3-oxidosqualenecyclase(Suzukietal.,2006). Stud-iesinvolvingterpenesshowthatthesemetabolitesarecapableof causingchangesintheendocrinesystemofinsects,actingas ago-nistsorhormoneantagonists,killingthemorpreventingthemfrom reachingadulthood(Bowersetal.,1976).Inapreviousstudywith

C.fluminensisclusianoneshowedasignificantreducedsurvivalof

Aedesaegyptilarvae.However,noactivitywasdetectedwith lanos-terolonthesurvivalordevelopmentofA.aegyptilarvae(Anholeti etal.,2015).

Dysdercusperuvianus(Guérin-Menéville)(Hemiptera: Pyrrho-coridae)andOncopeltusfasciatus(Dallas)(Hemiptera:Lygaeidae) areoftenusedasmodelsfordrugtestingin basicresearchand appliedentomology(Fernandesetal.,2013;Tietbohletal.,2014). Thecottonstainerbug,D.peruvianus,damagescottonseedsand spoilsthe cottonfibers. It is also a vector for phytopathogenic microorganismsandmayresultingreatlossesincottonproduction (Gallo,1988).InBrazil,Dysdercusspp.aretargetsforinsecticidesin cottonplantations,however,therearefewspecificproductsforthe controlofthesepests(Gallo,1988).Themilkweedbug,O.fasciatus, isalsoahemipteraninsect,butunlikeDysdercusspp.,isnotusually regardedasapestspeciesbuthasbeenusedextensivelyasamodel inbiologicalresearch(LiuandKaufman,2009).

ThepresentpaperinvestigatestheactivityofC.fluminensis hex-anicextracts,andtheirmajorisolatedcomponents,lanosteroland clusianone,againsttwopestinsectspecies,D.peruvianusandO. fas-ciatus.TheresultsshowthatcompoundsfromC.fluminensishave selectiveactivitieswithlanosterolkillingO.fasciatuswithgreater efficiencythanD.peruvianuswhileclusianonekilledD.peruvianus

butnotO.fasciatus.

Materialandmethods

Insectcolonies

ColoniesofOncopeltusfasciatusandDysdercusperuvianuswere establishedintheLaboratoryofInsectBiologyoftheUniversidade FederalFluminense,andkeptatconstanttemperature(26±1◦C),

photoperiod (16L:8D) and relative humidity (60%±5) (Milano etal.,1999).Theinsectswerehousedin transparentglasspots, covered in netting and water provided ad libitum. O. fasciatus, werereared under similar conditions to D. peruvianus but fed,

respectively,onsunflowerseeds(HelianthusannuusL.,Asteraceae) and cotton seeds (Gossypium hirsutum L., Malvaceae) (Feir and Beck,1963; Feir,1974).The seedswere placed inside the pots duringthe matingand layingperiod and uptothe firstinstar. Fromthesecondinstaron,theinsectsweretransferredtoclean potseachweek,inordertoavoidseedcontaminationwithinsect fecesandfacilitatecleaning,theseedswereplacedontopofthe nettingclosingthepots.Alltheinsecticidalactivityexperiments wereconductedataconstanttemperatureof26±1◦C.

Plantmaterialandextractpreparation

Flowersfrommaleindividualandfruitsfromfemaleindividual ofClusiafluminensisPlanch.&Triana,Clusiaceae,werecollectedin thesummerandautumn,respectively,inNiterói(RiodeJaneiro State,Brazil).Theidentificationofplantsandthepreparationof extractswereasdescribedpreviously(Silvaetal.,2012;Anholeti etal.,2015).

Isolationofsubstancesandchemicalanalysisofcrudeextracts

The polyisoprenylated benzophenone, clusianone, and the triterpene,lanosterol,wereisolatedandanalyzedfromtheflowers andfruits,respectively,ofC.fluminensisusingvarious chromato-graphicandmassspectrometrictechniquesasdescribedbySilva etal.(2012),Oliveiraetal.(2014)andasmodifiedinAnholetietal. (2015).

Insectbioassays

Randomlyselected,4thinstarnymphsofO.fasciatusandD. peru-vianus,weretreatedwithsamplesolutions,whichwereapplied topicallytothedorsalcuticleofeach insect.Thecrudeextracts fromC.fluminensisweredissolvedinethanol ataconcentration of1mg/ml,and1␮lofeachsamplewasapplied.Theisolated sub-stances(clusianoneandlanosterol)wereappliedsimilarly,except thattheyweredissolvedinacetonetoaconcentrationof0.7mg/ml (0.7␮g/insect).

Thecontrolgroupswereuntreated(C)ortreatedsolelywiththe solvents(SC)usedtodissolvethesamples.Biologicalevaluationof theresultsofthedifferenttreatmentswasperformeddailyfrom thebeginningofthe4thinstaruptotheadultstage.Observations

weremadeofsurvival(mortality),theintermoltand metamorpho-sisperiods,andthepresenceofprematureadultcharacteristicsand bodydeformities.Theexperimentswereterminatedatthedeath oremergencetoadultsofallinsectsfromthecontrolgroups.

Allexperimentswererepeatedatleasttwicewithbatchesoften fullyengorgedinsectswithreplicatesofsixforeachofthethree groups(experimental,CandSC).Theresultsarederivedfromthe mediaofthepercentageofeachreplicatefromthedayafter top-icalapplicationon4th instarnymphs(1stday)tothelastdayof

observation.

Dataandstatisticalanalysis

AllgraphswerecreatedwithGraphPad Prism6.05 software (GraphPadSoftware,SanDiego,CA,USA),showingthesurvivaland thedevelopmentalcourseofthejuvenilestageandadults.

(3)

0

2 4 6

FR x SC P=.2433, SC x C P=.6326 FR x SC P=5865–09, SC x C P=.05538 FR x SC P<.0001, SC x C P=.0034 8 10

Days

Sur

viv

al, %

12 14 16 20 40 60 80 100 0 2 4 6

FR x SC P=.0198, SC x C P=.9591 8 10

Days

Sur

viv

al, %

12 14 16 18 20 22 24 20

40 60 80 100

D

E

F

A

B

C

0 2 4 6

FR x SC P=4237–04, SC x C P=.7495

FR SC C

8 10 Days

5

th instar

, %

12 14 16 18 20 22 24 20 40 60 80 100 0 2 4 6

FR x SC P=.0002, SC x C P=.3917 8 10

Days

Adults

, %

12 14 16 18 20 22 24 20 40 60 80 100 0

2 4 6 8 10 Days

5

th instar

, %

12 14 16 20 40 60 80 100 0

2 4 6 8 10 Days

Adults

, %

12 14 16 20

40 60 80 100

Fig.1.Effectsofextractsoffruit(FR)fromClusiafluminensisonsurvival(A,D)anddevelopmentofnymphs(B,E),adults(C,F)ofDysdercusperuvianus,(A,B,C)andOncopeltus fasciatus(D,E,F),atdifferentdaysafterexperimentaltreatment.(FR,)comparedwiththesolventcontrol(SC,),thatwascomparedwiththeuntreatedcontrol(C,). Fourthinstarhemipterannymphweretopicallytreatedwith1␮gofextractin1␮lofsolvent.Statisticalanalyses(underthegraphs)withtheBarnard’stestwereused(B, E)onarepresentativedayindicatedbyanarrowandtheGehan-Breslow-Wilcoxontestwasused(A,C,D,F)tocomparetheentirecurvebetweenthegroups(FR×SCand SC×C).EachpointrepresentsthemediumofatleastsixreplicateswithteninsectsandbarsshowSE.Significantdifferences(pvalue<0.05)areinbold.

graphs.Thep-valuesgeneratedbyExactpackagewereconfirmed byFortranprogramXUN2X2version2.0(Berger,1996)andBarnard packageversion1.6forRprogram(Erguler,2015).Inall experi-ments,onlyp-values<0.05wereconsideredstatisticallysignificant andnocorrectionsformultiplecomparisonsweremade(Rothman, 1990).

Results

ThebioassayswiththehexanicextractofC.fluminensisfruit(FR) showedthatinthetreatedgroupstherewasnoeffectonsurvival ratesofD.peruvianus(Fig.1A).Incontrast,inexperimentswithO. fasciatus,thesurvivalcurveshowedasignificant(p<0.02,inbold)

0

2 4 6 8

Days

FL x SC P=.0218, SC x C P=.6326

Sur

viv

al, %

10 12 14 20

40 60 80 100

A

B

C

D

E

F

0

2 4 6 8

Days

FL x SC P=.1055, SC x C P=.9591

Sur

viv

al, %

10 12 14 16 20 40 60 80 100 0

2 4 6 8

Days

FL x SC P=8683–09, SC x C P=.7495

FL SC C

5

th instar

, %

10 12 14 16 20 40 60 80 100 0

2 4 6 8

Days

FL x SC P<.0001, SC x C P=.3917

Adults

, %

10 12 14 16 20 40 60 80 100 0

2 4 6 8

Days

FL x SC P=7969–06, SC x C P=2036–04

5

th instar

, %

10 12 14 20 40 60 80 100 0

2 4 6 8

Days

FL x SC P<.0001, SC x C P=.0002

Adults

, %

10 12 14 20

40 60 80 100

(4)

Abundance

1.7e+07

1.6e+07

1.5e+07

1.4e+07

1.3e+07

1.2e+07

1.1e+07

1e+07

9 000 000

8 000 000

7 000 000

6 000 000

5 000 000

4 000 000

3 000 000

2 000 000

1 000 000

0 4.00

4748 6427

8354

8807 10 428

12 938 13 064 13 179 13 336

14 521 14 729

16 167 17 529

19 497 8629 10 289

19 159

Lanosterol

TIC: EM01_14_03_0780.D/data.ms

H HO

18 778 19 924

20 424 2222 163

Time 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00

Fig.3.ChromatogramobtainedforthehexanicextractoffruitsofClusiafluminensisbyGC–MSshowingthetriterpenelanosterolasthemajorcomponent.*Lanosterol isomers.

mortalityrateinFRgroupcomparedwiththesolventcontrol(SC) (Fig.1D),sothatbythelastdayoftesting(24th),33.3%ofthetreated

insectsweredeadcomparedto6.7%ofthecontrolgroups(Fig.1D). Inaddition,thedevelopmentofnymphsandadultsinFRtreated

O.fasciatusandD.peruvianusshowedsignificantdelays(p≤0.0002) incomparisonwiththecontrols(Fig.1B,CandE,F).Forexample, withD.peruvianusatday12,90%oftheinsectsfromtheSCgroup hadmetamorphosed(Fig.1C),while73.3%oftheinsectsoftheFR groupwerestilljuveniles(Fig.1B).Likewise,atday13withO. fas-ciatus86.7%oftheinsectsfromtheSCgroupwereadults(Fig.1F) while46.7%oftheFRgroupwerestillnymphs(Fig.1E).

IncontrastwiththeFR,thebioassayswiththehexanicextract ofC.fluminensisflowers(FL),resultedinsignificantmortalityin theD.peruvianus(p=0.0218)experimentalgroupcomparedwith theSC(day14.3%versus6.7%,respectively,Fig.2A)aswellasno significanteffectontheO.fasciatussurvivalincomparisonwiththe SC(p=0.1055,Fig.2D).

Similarto theeffects of FR ondevelopment to adults, both insectspeciesshowed significantdelays in molting(p≤0.0001) betweentheFL-treatedandtheSCgroups(Fig.2CandF).For exam-ple,onday10withD.peruvianus,76.7%oftheinsectsintheSC grouphad moltedtoadults,while noneofthem had metamor-phosedintheFLgroup(Fig.2Band C).Likewise,ontheday13 withO. fasciatus,86.7% oftheinsectshad becomeadultsinthe

SCgroup,whileonly16.7%oftheFLgrouphadreachedthisstage (Fig.2EandF).

Thehexanicextractsofthefruitsandflowersweresubmitted toGC–MS.Thechromatogramobtainedforthehexanicextractof fruitsofC.fluminensisshowedapeakat19.16min,corresponding toasubstancethatrepresents40.6%ofthesamplecomposition. Themassspectrumofthissubstanceissimilartothatprovidedby theequipment’sdatabaseforthetriterpene,lanosterol.Themass fragmentationpatternobservedis alsoconsistentwiththedata providedbyShinetal.(2000)forthissubstance.Thetriterpene isaccompaniedbythreeisomers(retentiontimes:19.50,19.92, 20.42min)withthesamemassfragmentationpatternoflanosterol, and that togethercorrespondto10.73% of sample composition (Fig.3).Othersubstances presentinappreciableamountinthis extract,withretentiontimesof8.63minand 10.29min(Fig.3), showedmassfragmentationpatternsconsistentwithfattyacids, andwereidentified,respectively,aspalmiticandoleicacids.

Moreover,theGC–MSdataobtainedforthehexanicextractof flowersofC.fluminensissuggeststhepresenceoflanosterol(9.7%) andclusianone(54.8%),as shownina previouspaper(Anholeti etal.,2015).

(5)

100

A

B

C

D

E

F

80

60

40

20

0

2 4 6 8 10 Days

Sur

viv

al, %

12 14 16

100

80

60

40

20

0

2 4 6 8 10 Days

5

th instar

, %

12 14 16

100

80

60

40

20

0 2 4

LN x SC P=.0003, SC x C P=.0243 LN x SC P=0.02133, SC x C P=.6876

LN x SC P=.0140, SC x C P=.1498

100

80

60

40

20

0

2 4 6 8 10

Days

Sur

viv

al, %

12 14

LN x SC P=.0069, SC x C P=.6713

100

80

60

40

20

0

2 4 6 8 10

Days

LN SC C

5

th instar

, %

12 14

LN x SC P=5308–05, SC x C P=.2364

100

80

60

40

20

0

2 4 6 8 10

Days

Adults

, %

12 14

LN x SC P=.0199, SC x C P=.4193 6 8 10

Days

Adults

, %

12 14 16

Fig.4. Effectsofextractsoflanosterol(LN)isolatedfromClusiafluminensisonsurvival(A,D)anddevelopmentofnymphs(B,E),adults(C,F)ofDysdercusperuvianus,(A,B, C)andOncopeltusfasciatus(D,E,F),atdifferentdaysafterexperimentaltreatment.(LN,)comparedwiththesolventcontrol(SC,),thatwascomparedwiththeuntreated control(C,).TheassayswereexecutedandanalyzedasinFig.1legendand“Materialsandmethods”section.

2014).Subsequently,bioassayswiththesetwopurifiedsubstances wereperformedagainstD.peruvianusandO.fasciatus.

Inthebioassayswithlanosterol-treatedD. peruvianusandO. fasciatus, thesurvival rates were significantly reduced in com-parison with the SC groups (p=0.014, Fig. 4A and p =0.0069,

Fig.4D,respectively).Regardingthedevelopmentofthenymphs toadults, significantdelays occurredwith lanosterol treatment although variations were observed between the D. peruvianus

andO. fasciatusgroups.WithD.peruvianus,there wasa signifi-cantdifferenceintheadultdevelopmentbetweenthelanosterol andSCcurves(p=0.0003,Fig.4C).Thus,byday12,33.3%ofthe nymphs from thelanosterol grouphad moltedcompared with 85%intheSCgroup(Fig.4Band C).Similarly,withO.fasciatus, atday9oflanosteroltreatment,only36.7%ofthenymphsofO. fasciatushadmoltedto5thinstarwhereasinthecontrolgroups (p=5.308−05)at least93.9% ofinsects had already reachedthis

samenymphalstage(Fig.4E).Thedifferencesbetweenthecurves ofdevelopmenttoadultwerealsostatisticallysignificantforthe lanosterol-treatedinsects comparedtotheSCgroup(p=0.0199,

Fig.4F).

Inexperimentswithlanosterol-treatedO.fasciatusandD. peru-vianus, 3.3%(SE±3.3) malformed insects withdeformed wings andruffledcuticlewereobserved(Fig.5).Theseabnormalforms appeared after4–6days testing with4th to5th instar nymphs

thatshouldhavemoltedto5thinstars. Thesemalformed speci-mensdiedafterorduringmolting,oftenconfinedwithintheold cuticle.

Thebioassayswithclusianoneshowedasignificantreductionin survivalofD.peruvianus(p<0.0048,Fig.6A)butnotofO.fasciatus

(p>0.6685,Fig.6D)incomparisonwiththeSCgroups.Onthelast daywithD.peruvianus(17thday),only66.7%ofinsectssurvived comparedwith100%oftheSCgroup(Fig.6A).Regarding develop-ment,significantdelays(p=0.01037at7days,Fig.6BandC)were recordedwithD.peruvianusbut,surprisingly,clusianone acceler-atedsignificantly(p=4.077−04at11days)thedevelopmentofO. fasciatus(Fig.6EandF).

Fig.5. Normal5thinstar(A)andadult(B)ofOncopeltusfasciatusfromcontrol group(PC).DeformedspecimensofO.fasciatusfrom4thinstarabnormalmoltafter treatmentwithlanosterol(CtoF).Bar=1cm.

(6)

0

2 4 6

CL x SC P=.0048, SC x C P=.1498 8 10

Days

Sur

viv

al, %

12 14 16 20

40 60 80 100

A

B

C

D

E

F

0

2 4 6

CL x SC P=.6685, SC x C P=.6713 8 10 Days

Sur

viv

al, %

12 14 20

40 60 80 100

0

2 4 6

CL x SC P=4077–04, SC x C P=.5296 8 10 Days

CL SC C

5

th instar

, %

12 14 20

40 60 80 100

0

2 4 6

CL x SC P=.0075, SC x C P=.4193 8 10 Days

Adults

, %

12 14 20

40 60 80 100 0

2 4 6

CL x SC P=.01037, SC x C P=.01768 8 10

Days

5

th instar

, %

12 14 16 20

40 60 80 100

0

2 4 6

CL x SC P=.0014, SC x C P=.0243 8 10

Days

Adults

, %

12 14 16 20

40 60 80 100

Fig.6.Effectsofextractsofclusianone(CL)isolatedfromClusiafluminensisonsurvival(A,D)anddevelopmentofnymphs(B,E),adults(C,F)ofDysdercusperuvianus,(A,B, C)andOncopeltusfasciatus(D,E,F),atdifferentdaysafterexperimentaltreatment(CL,)comparedwiththesolventcontrol(SC,),thatwascomparedwiththeuntreated control(C,).TheassayswereexecutedandanalyzedasinFig.1legendand“Materialsandmethods”section.

Discussionandconclusion

Inthepresentstudy,thetriterpene,lanosterol,wasfurther iden-tified and purified from the hexanic extractsof the fruits (FR) andflowers(FL)ofC.fluminensis,followingtheoriginalprotocols describedbyOliveiraetal.(2014).Incrudeextractsoftheflowers, lanosterolrepresentsonly10%ofthecontents(Anholetietal.,2015) whileinextractsofthefruits,thiscompoundmakesup40.46%of theextract.Thehighlanosterolcontentin theFRextract prob-ablyaccountsforsomesimilaritiesinsurvivalanddevelopment obtainedwiththetwoinsectspeciestestedwiththeFRextractand purifiedlanosterol(compareFigs.1and4).O.fasciatuswasmore sensitivetotheFRextractandlanosterol,intermsofmortality,than

D.peruvianus,andnoactivitywasdetectedagainstAe.aegyptiwith eithertreatment(Anholetietal.,2015).Moltingaberrationinlast stageOncopeltusnymphs,treatedwithIGR’spesticideshavebeen described(Redfernetal.,1982).However,theappearanceofsome precociousadultswithdeformationsafterthe4thinstar

hemipter-answeretreated(Fig.5)couldindicatetheanti-juvenilehormone activityoflanosterol(Bowersetal.,1976).

Theeffectofplantmetaboliteswithantijuvenilehormone activ-ityhasbeendescribedagainstmanyinsects,especiallyafterthe identificationoftheprecocenespurifiedfromplantsofthegenus

Ageratum(Bowersetal.,1976;Prattetal.,1980).Thesesubstances havemarkedeffectsonhemipteransandinducetheappearanceof earlyadults(adultoids)withcharacteristicssimilartothosefound inthepresumptiveadultoidbugsresultingfromthetreatmentwith lanosterolinthepresentstudy(Masneretal.,1979;Unnithanetal., 1977;Jurbergetal.,1984).

The lanosterol effect is similar to theprecocenes, have less effectsin holometabolousinsects(Kellyand Fuchs,1978;Staal, 1986;Erezyilmazetal.,2006),whichcouldexplainwhyA.Aegypyi

wasnotsusceptibletolanosterol(Anholetietal.,2015)evenupto concentrationsof100␮g(unpublishedresult).

Apparently,theprecocenesinactivate thecorpora allata and consequently interrupt the production of juvenile hormone (Bowers and Aldrich,1980).However, anti-JH activitycan also

occurwithsubstancesthatcompetewithJHfortherecognition receptorsinthecellsoftargettissues(Staal,1986).Inaddition, somesubstances,suchaslanosterol,canactasprecursorsinthe biosynthesisofJH,producingahormonewithalteredspecificity (Staal,1986).Lanosterolcanbeaprecursorofcholesterolandthe biosynthesisofjuvenilehormoneissimilartothatofcholesterol (Miaoetal.,2002).

Following application, the uptake of lanosterol into the hemolymphmaynotonlymodifythesynthesisofJHbutalsotheJH receptorsonthetargetcellsbysubstitutingforcholesterolinthe cellmembraneandsignificantlyalteringthestructuraland func-tionalintegrityofthecell(Miaoetal.,2002)tobindorrespond appropriatelytoJH.Cholesterolsubstitutionbylanosterolmayalso interfere/modifytheentryofsmallmoleculesandionsintoandout ofepithelialcellsoftheexoskeletonandcompromisethechitin syn-thasesecretorypathwayproducingthecuticle(Merzendorferand Zimoch,2003)andresultininsectdeformations.

Inthepresentstudy,andincontrasttotheireffectsonAedes aegypti (Diptera: Culicidae) (Anholeti et al., 2015), FLand clu-sianonehadnoorlimitedeffectsonkillingthehemipteransand delaying their development. Moreover, clusianone was further identifiedandpurifiedfromthehexanicextractsofflowers(FL) ofC.fluminensis.Clusianoneat55%isthemajorcomponentofC. fluminensisflowersextract(Anholetietal.,2015)withlanosterol alsopresentinFLbutmakinguplessthan10%ofthecomposition. In O. fasciatus, clusianoneactually accelerated development, aswellthesolventcontrolsinD.peruvianus.Wehaveobserved inourlaboratorythatsomecompoundsthatstressthenymphs canacceleratetheirdevelopmenttotheadultsstage(unpublished observation),asifattemptingtoescapeanunfavorable environ-ment.

(7)

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thatnoexperimentswereperformedonhumansoranimalsfor thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Authorscontributions

MCA,MRF,MACK,SRPpreparedextracts,isolatedsubstances andanalyzedchemicaldatafromtheplantmaterial.MGScollected theplantmaterialandidentifiedtheplant.RCD,MSG,DF,CBM,NAR conceived,designedresearchandanalyzeddataofinsectbioassays. MCA,RCD,DF,NARandCBMwrotethemanuscript.RCD,BPS,JPFP, MCAconductedinsectbioassays.Allauthorsreadandapprovedthe manuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

The authors thank the Universidade Federal Fluminense (PROPPI-UFF), CNPqand FAPERJfor financial support. Theyare gratefultoRodrigoMexas(Fiocruz)forhelpingwiththe illustra-tions,toDrCéliaCarlini(UFRGS)forthedonationofcottonseeds andtoFelipeLeite(UFF)forhistechnicalassistance.Thecommand ofForteBarãodoImbuhy(21stGroupofFieldArtillery),for

permis-siontocollectC.fluminensis.

References

Alexenizer,M.,Dorn,A.,2007.Screeningofmedicinalandornamentalplantsfor insecticidalandgrowthregulatingactivity.J.Pest.Sci.80,205–215.

Anholeti,M.C.,Duprat,R.C.,Figueiredo,M.R.,Kaplan,M.A.C.,Santos,M.G.,Gonzalez, M.S.,Ratcliffe,N.A.,Feder,D.,Paiva,S.R.,Mello,C.B.,2015.Biocontrolevaluation ofextractsandamajorcomponent,clusianone,fromClusiafluminensisPlanch. &TrianaagainstAedesaegypt.Mem.I.OswaldoCruz110,629–635.

Barrios,M.,Calvo,M.,Arguedas,E.,Castro,O.,1990.ConstituentsofClusiauvitana. Fitoterapia61,479.

Beerhues,L.,Liu,B.,2009.Biosynthesisofbiphenylsandbenzophenones–evolution ofbenzoicacid-specifictypeIIIpolyketidesynthasesinplants.Phytochemistry 70,1719–1727.

Berger, R.L., 1996. A Fortran program – XUN2X2 version 2.0, http://www.public.asu.edu/∼rlberge1/software/xun2x2v2.f.Onlineinteractive versionavailableat:http://www4.stat.ncsu.edu/∼boos/exact/.

Bittrich,V.,2010.ClusiaceaeinListadeespéciesdafloradoBrasil.JardimBotânicodo RiodeJaneiro,Brasilhttp://floradobrasil.jbrj.gov.br/2010/FB000089[accessed August2010].

Bowers,W.S.,Aldrich,J.R.,1980.Invivoinactivationofdenervatedcorporaallataby precoceneIIinthebug,Oncopeltusfasciatus.Experientia36,362–364. Bowers,W.S.,Ohta,T.,Cleere,J.S.,Marsella,P.A.,1976.Discoveryofinsect

anti-juvenilehormonesinplants.Science193,542–547.

Calhoun, P., 2015. Exact: Unconditional Exact Test. R package version 1.6. https://CRAN.R-project.org/package=Exact.

Compagnone,R.S.,Suarez,A.C.,Leitao,S.G.,DelleMonache,F.,2008.Flavonoids, benzophenonesandaneweuphanederivativefromClusiacolumnarisEngl.Rev. Bras.Farmacogn.18,6–10.

daSilva,F.C.,deBarros,F.M.C.,Prophiro,J.S.,daSilva,O.S.,Pereira,T.N.,Bordignon, S.A.L.,Eifler-Lima,V.L.,vonPoser,G.L.,2013.Larvicidalactivityoflipophilic extractofHypericumcarinatum(Clusiaceae)againstAedesaegypti(Diptera: Culi-cidae)andbenzophenonesdetermination.Parasitol.Res.112,2367–2371. DeAndrade,M.R.,Almeida,E.X.,Conserva,L.M.,1998.Alkylchromoneandother

compoundsfromClusianemorosa.Phytochemistry47,1431–1433.

Erezyilmaz,D.F.,Riddiford,L.M.,Truman,W.,2006.Thepupalspecifierbroaddirects progressivemorphogenesisinadirect-developinginsect.Proc.Natl.Acad.Sci. U.S.A.103,6925–6930.

Erguler,K.,2015.Barnard:Barnard’sUnconditionalTest.Rpackageversion1.6. https://CRAN.R-project.org/package=Barnard.

Feir,D.,1974.Oncopeltusfasciatus:aresearchanimal.Annu.Rev.Entomol.19,81–96. Feir,D.,Beck,S.D.,1963.Feedingbehaviorofthelargemilkweedbug,Oncopeltus

fasciatus.Annu.Entomol.Soc.Am.56,224–229.

Fernandes,C.P.,Xavier,A.,Pacheco,J.P.F.,Santos,M.G.,Mexas,R.,Ratcliffe,N.A., Gon-zalez,M.S.,Mello,C.B.,Rocha,L.,Feder,D.,2013.Laboratoryevaluationofthe

Manilkarasubsericea(Mart.)Dubardextractsandtriterpenesondevelopmentof

DysdercusperuvianusandOncopeltusfasciatus.Pest.Manag.Sci.69,292–301.

Gallo,D.,1988.ManualdeEntomologiaAgrícola,2nded.Ceres,SãoPaulo,Brazil,pp. 649.

Giorgi, A., De Marinis, P., Granelli, G., Chiesa, L.M., Panseri, S., 2013. Sec-ondary metabolite profile, antioxidant capacity, and mosquito repel-lent activity of Bixa orellana from Brazilian Amazon region. J. Chem., http://dx.doi.org/10.1155/2013/409826.

Guimarães,A.L.A.,Bizarri,C.H.B.,Barbosa,L.S.,Nakamura,M.J.,Ramos,M.F.S.,Vieira, A.C.M.,2013.CharacterisationoftheeffectsofleafgallsofClusiamyianitida

(Cecidomyiidae)onClusialanceolataCambess.(Clusiaceae):anatomicalaspects andchemicalanalysisofessentialoil.Flora208,165–173.

Hemingway,J.,Ranson,H.,2000.Insecticideresistanceininsectvectorsofhuman disease.Annu.Rev.Entomol.45,371–391.

Isman,N.B.,2006.Botanicalinsecticides,deterrents,andrepellentsinmodern agri-cultureandanincreasinglyregulatedworld.Annu.Rev.Entomol.51,45–66. Jurberg,J.,Costa,J.M.,Gonc¸alves,T.C.,Garcia,E.S.,Azambuja,P.,1984.Morphogenetic

effectsofprecoceneIIonnymphsofRhodniusprolixus(Stal,1859) (Hemiptera-Triatominae).Mem.I.OswaldoCruz79,397–407.

Kelly,T.J.,Fuchs,M.S.,1978.Precoceneisnotaspecificantigonadotropicagentin adultfemaleAedesaegypti.Physiol.Entomol.3,297–301.

Li,W.Q.,Zhang,Z.J.,Nan,X.,Liu,Y.Q.,Hu,G.F.,Yu,H.T.,Zhao,X.B.,Wua,D.,Yana, L.T.,2014.Design,synthesisandbioactivityevaluationofnovelbenzophenone hydrazonederivatives.Pest.Manag.Sci.70,667–673.

Liu,P.,Kaufman,T.C.,2009.Morphologyandhusbandryofthelargemilkweedbug,

Oncopeltusfasciatus.ColdSpringHarb.Protoc.8,127.

Longnecker,M.P.,Klebanoff,M.A.,Zhou,H.,Brock,J.W.,2001.Associationbetween maternalserumconcentrationoftheDDTmetaboliteDDEandpretermand small-for-gestational-agebabiesatbirth.Lancet358,110–114.

Marín,R.M.,Montes,P.O.R.,Bello,A.A.,Nival,V.L.A.,2008.Caracterizaciónpor cro-matografíadegases/espectrometríademasasdelextractoapolardelashojas

deClusiaminorL.Lat.Am.J.Pharm.27,747–751.

Masner,P.,Bowers,W.S.,Kälin,M.,Mühle,T.,1979.EffectofprecoceneIIonthe endocrineregulationofdevelopmentandreproductioninthebug,Oncopeltus

fasciatus.Gen.Comp.Endocrinol.37,156–166.

McGraw,E.A.,O’Neill,S.L.,2013.Beyondinsecticides:newthinkingonanancient problem.Nat.Rev.Microbiol.11,181–193.

Mendonc¸a,F.A.C.,Silva,K.F.S.,Santos,K.K.,Ribeiro,K.A.L.,Santana,A.E.G.,2005. ActivitiesofsomeBrazilianplantsagainstlarvaeofthemosquitoAedesaegypti. Fitoterapia76,629–636.

Merzendorfer,H.,Zimoch,L.,2003.Chitinmetabolismininsects:structure, func-tionandregulationofchitinsynthasesandchitinases.J.Exp.Biol.206,4393– 4412.

Miao,L.,Nielsen,M.,Thewalt,J.,Ipsen,J.H.,Bloom,M.,Zuckermann,M.J.,Mouritsen, O.G.,2002.Fromlanosteroltocholesterol:structuralevolutionanddifferential effectsonlipidbilayers.Biophys.J.82,1429–1444.

Middleton, W.J., Chadds, F., 1970. Benzophenone hydrazones containing peruoroalkyl, peruoroalkoxy and peruoroalkylthio substituents. United StatespatentUS3732307,1970Set24,1973May8.

Milano,P.,Consoli,F.L.,Zerio,N.G.,Parra,J.R.P.,1999.Thermalrequirementsofthe cottonstainerDysdercusperuvianusGuerin-Meneville(Heteroptera: Pyrrhocori-dae).Ann.Soc.Entomol.Bras.28,233–238.

Miresmailli,S.,Isman,M.B.,2014.Botanicalinsecticidesinspiredbyplant–herbivore chemicalinteractions.TrendsPlantSci.19,29–35.

Nagem,T.J.,Mesquita,A.A.L.,Silva,R.,1993.ConstituentsofClusiafluminensis. Fitoterapia64,380.

Oliveira,E.C.,Anholeti,M.C.,Domingos,T.F.,Faioli,C.N.,Sanchez,E.F.,Paiva,S.R., Fuly,A.L.,2014.InhibitoryeffectoftheplantClusiafluminensisagainstbiological activitiesofBothropsjararacaSnakeVenom.Nat.Prod.Commun.9,21–25. Ozáez,I.,Martínez-Guitarte,J.L.,Morcillo,G.,2014.TheUVfilterbenzophenone3

(BP-3)activateshormonalgenesmimickingtheactionofecdysoneandalters embryodevelopmentintheinsectChironomusriparius(Diptera).Environ.Pollut. 192,19–26.

Pratt,G.E.,Jennings,R.C.,Hamnett,A.F.,Brooks,G.T.,1980.Lethalmetabolismof precocene-Itoareactiveepoxidebylocustcorporaallata.Nature284,320–323. Phillips,D.R.,Rasbery,J.M.,Bartel,B.,Matsuda,S.P.,2006.Biosyntheticdiversityin

planttriterpenecyclization.Curr.Opin.PlantBiol.9,305–314.

Ranganatha,V.L.,Begum,A.B.,Prashanth,T.,Gurupadaswamy,H.D.,Madhu,S.K., Shivakumar,S.,Khanum,S.A.,2013.Synthesisandlarvicidalpropertiesof ben-zophenonecompriseindoleanaloguesagainstCulex quinquefasciatus. Drug Invent.Today5,275–280.

Redfern,R.E.,Kelly,T.J.,Borkovees,A.B.,Hayes,D.K.,1982.Ecdysteroidtitersand moultingaberrationinlaststageOncopeltusnymphs,treatedwithIGR’s pesti-cides.Biochem.Physiol.118,351–356.

R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/.

(8)

Shin,Y.,Tamai,Y.,Terazawa,M.,2000.ChemicalconstituentsofInonotusobliquusI.:a newtriterpene,3ˇ-hydroxy-8,24-dien-lanosta-21,23-lactonefromsclerotium. Eur.J.For.Res.1,43–50.

Silva,M.C.A.,Heringer,A.P.,Figueiredo,M.R.,Paiva,S.R.,2012.Separationof clu-sianonefromClusiafluminensisPlanch.andTriana(Clusiaceae)byhighspeed counter-current chromatography (HSCCC). J. Liq. Chrom.Rel. Technol.35, 2313–2321.

Staal,G.B.,1986.Antijuvenilehormoneagents.Ann.Rev.Entomol.31,391–429. Stoate,C.,Báldi,A.,Beja,P.,Boatman,N.D.,Herzon,I.,vanDoorn,A.,deSnoo,G.R.,

Rakosy,L.,Ramwell,C.,2009.Ecologicalimpactsofearly21stcenturyagricultural changeinEurope–areview.J.Environ.Manage.91,22–46.

Suissa,S.,Shuster,J.J.,1985.Exactunconditionalsamplesizesforthe2x2binomial trial.J.R.Stat.Soc.Ser.A148,317–327.

Suzuki,M.,Xiang,T.,Ohyama,K.,Seki,H.,Saito,K.,Muranaka,T.,Hayashi,H.,Katsube, Y.,Kushiro,T.,Shibuya,M.,Ebizuka,Y.,2006.Lanosterolsynthasein dicotyle-donousplants.PlantCellPhysiol.47,565–571.

Tietbohl,L.A.C.,Barbosa,T.,Fernandes,C.P.,Santos,M.G.,Machado,F.P.,Santos, K.T.,Mello,C.B.,Araújo,H.B.,Gonzalez,M.S.,Feder,D.,Rocha,L.,2014. Labo-ratoryevaluationoftheeffectsofessentialoilofMyrciariafloribundaleaveson thedevelopmentofDysdercusperuvianusandOncopeltusfasciatus.Rev.Bras. Farmacogn.24,316–321.

Unnithan,G.C.,Nair,K.K.,Bowers,W.S.,1977.Precocene-induceddegenerationof thecorpusallatumofadultfemalesofthebugOncopeltusfasciatus.J.Insect. Physiol.23,1081–1094.

Imagem

Fig. 1. Effects of extracts of fruit (FR) from Clusia fluminensis on survival (A, D) and development of nymphs (B, E), adults (C, F) of Dysdercus peruvianus, (A, B, C) and Oncopeltus fasciatus (D, E, F), at different days after experimental treatment
Fig. 3. Chromatogram obtained for the hexanic extract of fruits of Clusia fluminensis by GC–MS showing the triterpene lanosterol as the major component
Fig. 4. Effects of extracts of lanosterol (LN) isolated from Clusia fluminensis on survival (A, D) and development of nymphs (B, E), adults (C, F) of Dysdercus peruvianus, (A, B, C) and Oncopeltus fasciatus (D, E, F), at different days after experimental t
Fig. 6. Effects of extracts of clusianone (CL) isolated from Clusia fluminensis on survival (A, D) and development of nymphs (B, E), adults (C, F) of Dysdercus peruvianus, (A, B, C) and Oncopeltus fasciatus (D, E, F), at different days after experimental t

Referências

Documentos relacionados

Economia bruta inicial «consumo de energia elétrica do sistema de ventilação dos alojamentos» Disposições construtivas escolhidas, avaliadas em projeto Disposições construtivas

interpretar dados de natureza diversa (laboratoriais, bibliográficos, internet...) sobre estratégias de obtenção de matéria por diferentes seres heterotróficos.. -

Afinal, se o marido, por qualquer circunstância, não puder assum ir a direção da Família, a lei reconhece à mulher aptidão para ficar com os poderes de chefia, substituição que

Despite the theoretically brilliant logic, animal and human studies have taught us differently and highlighted the issue of the feasibility of correlating organ toxicity with

Assim compete à escola e ao professor de Educação Física, atendendo à sua realidade, refletir sobre como melhor gerir a disciplina, adequando as atividades aos

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

Desenvolve atividades alinhadas com o plano de ação da unidade em que atua e contribui para o alcance dos objetivos estratégicos da universidade.. Nível Atribuições