• Nenhum resultado encontrado

Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China plain

N/A
N/A
Protected

Academic year: 2021

Share "Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China plain"

Copied!
15
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Agricultural

Water

Management

j o ur na l h o me pa g e : w w w . e l s e v i e r . c o m / l o c a t e / a g w a t

Performance

assessment

of

the

FAO

AquaCrop

model

for

soil

water,

soil

evaporation,

biomass

and

yield

of

soybeans

in

North

China

Plain

P.

Paredes

a,1

,

Z.

Wei

b,c,1

,

Y.

Liu

b,c

,

D.

Xu

b,c

,

Y.

Xin

b

,

B.

Zhang

b

,

L.S.

Pereira

a,∗

aCEER-BiosystemsEngineering,InstituteofAgronomy,UniversityofLisbon,TapadadaAjuda,1349-017,Lisbon,Portugal

bStateKeyLaboratoryofSimulationandRegulationofWaterCycleinRiverBasin,ChinaInstituteofWaterResourcesandHydropowerResearch,China cNationalCenterofEfficientIrrigationEngineeringandTechnologyResearch,Beijing,100048,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received25July2014 Accepted10December2014 Availableonline22January2015 Keywords:

Cropcoefficientscurve Dualcropcoefficientapproach Partitioningcropevapotranspiration Planttranspiration

Soilwaterbalance SIMDualKcmodel

a

b

s

t

r

a

c

t

FouryearsofsoybeanexperimentaldataobservedatDaxing,NorthChinaPlain,wereusedtoassessthe

abilityoftheAquaCropmodeltopredictsoybeanfinalbiomassandyield.Themodelwasparameterized

andcalibratedusingfielddataonleafareaindex(LAI),availablesoilwater,soilevaporation,biomassand

finalyielddata.Themodelwasassessedusingcalibratedanddefaultparameters.DataonLAIwereused

toderivethefractionofgroundcoverandtocalibratethegreencanopycover(CC)curve.Anaccurate

cal-ibrationoftheCCcurvewasperformed,withlowrootmeansquareerrors(RMSE<7.3%).Resultsrelative

tosoilwaterbalancesimulationsshowahighvariabilityofthepredictions,thusabiasoftheestimation,

withR2ranging0.22–0.86andlowNash-SutcliffeefficiencyEF,rangingbetween−0.47and0.82.The

esti-mationerrorswererelativelyhigh,withRMSEnotexceeding22.9mm.AquaCropwascomparedwith

thesoilwaterbalancemodelSIMDualKc,thathasshownbetterperformancewithR20.83,EFgenerally

greaterthan0.75andRMSEsmallerthan12.5mm.Thesoilevaporation(Es)simulationswerecompared

withtheobservationsperformedusingmicrolysimeters;resultsforAquacrophaveshownacleartrend

forunder-estimationofEs,with“goodness-of-fit”resultsworsethanforSIMDualKc(Weietal.,2015).

Ingeneral,AquaCrophasshownseriouslimitationstoestimatecroptranspirationorsoilevaporation,

whichislikelyduetoabandoningtheFAOdualKcapproach.However,themodelperformedwellrelative

tobiomassandyieldpredictions,withayieldRMSEof302kgha−1.Overall,resultsshowtheadequacy

ofAquaCropforestimatingsoybeanbiomassandyieldwhenthemodelisappropriatelyparameterized.

However,AquaCropisnotappropriatetosupportirrigationscheduling.

©2014ElsevierB.V.Allrightsreserved.

Abbreviations:ARE,Averagerelativeerror(%);ASW,Availablesoilwater(mm);B,Abovegrounddrybiomass(tha−1);b,Regressioncoefficient(non-dimensional);BWP*,

Biomass(water)productivityadjustedforEToandCO2(gm−2);CC,Greencanopycover(%);CC*,Actualcropcanopycoveradjustedformicro-advectiveeffects(%);CCo,

Canopycoverat90%ofemergence(cm2perplant);CC

x,Maximumgreencanopycover(%);CDC,Canopydeclinecoefficient(%GDD−1or%day−1);CGC,Canopygrowth

coefficient(%GDD−1or%day−1);CGDD,Cumulativegrowingdegreedays(oC);CN,Curvenumber(non-dimensional);CR,Capillaryrisefromshallowwatertable(mm);

DP,Deeppercolation(mm);EF,Modellingefficiency(non-dimensional);Es,Soilevaporation(mm);ET,cropevapotranspiration(mm);ETc,Potential(non-stressed)crop

evapotranspiration(mm);ETc act,Adjustedoractualcropevapotranspiration(mm);ETd,Cropevapotranspirationdeficit(mm);ETo,Referenceevapotranspiration(mm);fc,

Fractionofsoilcoverbyvegetation(non-dimensional);few,Fractionofsoilwettedandexposedtosolarradiation(non-dimensional);fK,Declinefactor(non-dimensional);

GDD,Growingdegreedays(oC);HI

o,Referenceharvestindex(%);Kc,Cropcoefficient(non-dimensional);Kcmax,Maximumvalueofcropcoefficient(followingrainor

irrigation)(non-dimensional);Kcb,Basalcropcoefficient(non-dimensional);Kcbact,Actualoradjustedbasalcropcoefficient(non-dimensional);Kcbend,Basalcropcoefficient

atendofthelateseasongrowthstage(non-dimensional);Kcbini,Basalcropcoefficientduringtheinitialgrowthstage(non-dimensional);Kcbmid,Basalcropcoefficient

duringthemid-seasongrowthstage(non-dimensional);Kcmax,Maximumvalueofthecropcoefficient(Kc)followingrainoranirrigationevent(non-dimensional);Kc,Tr,

Croptranspirationcoefficient(non-dimensional);Kc,Tract,Actualcroptranspirationcoefficient(non-dimensional);Kc,Trx,Maximumstandardcroptranspirationcoefficient

(non-dimensional);Kex,Soilevaporationcoefficientforfullywetandnon-shadedsoilsurface(non-dimensional);Kd,Densitycoefficient(non-dimensional);Kr,Evaporation

reductioncoefficient(non-dimensional);Ks,Waterstresscoefficient(non-dimensional);Ksat,Saturatedhydraulicconductivity(cmd−1);Ky,Yieldresponsefactor

(non-dimensional);LAI,Leafareaindex(cm2cm−2);R2,Determinationcoefficient(non-dimensional);RAW,Readilyavailablesoilwater(mm);REW,Readilyevaporablesoilwater

(mm);RMSE,Rootmeansquareerror(sameunitsasobservations);RO,Runoff(mm);RYL,Relativeyieldlosses(%);Ta,Actualtranspiration(mm);TAW,Total(plant)available

soilwater(mm);Tc,Croptranspiration(mm);Td,transpirationdeficit(mm);TEW,Totalevaporablewater(mm);Wrel,Relativesoilwatercontent(%);Ya,Actualyield(tha−1);

Ze,Evaporablelayerthickness(m);Zr,Rootdepth(m);FC,Volumetricwatercontentatfieldcapacity(m3m−3);sat,Volumetricwatercontentatsaturation(m3m−3);WP,

Volumetricwatercontentatwiltingpoint(m3m−3).

∗ Correspondingauthor.Tel.:+351213653480;fax:351213653287.

E-mailaddresses:lspereira@isa.ulisboa.pt,luis.santospereira@gmail.com(L.S.Pereira).

1 Theseauthorscontributedequallytothepresentstudy.

http://dx.doi.org/10.1016/j.agwat.2014.12.007

(2)

1. Introduction

SoybeansareamainsummercropinNorthChinaPlain,where

theyare cropped during the rainyseason, thus only requiring

supplementalirrigationtofulfilthecropwaterrequirement.The

predictionofthesoybeanyieldandoftheyieldresponsetowater

ismandatoryfordevelopingstrategiesforirrigationmanagement

and tosupport related farmers’ decision-making under limited

wateravailabilityconditions.

Toassesstheimpactsofdifferentirrigationscheduling

strate-giesonyield,variousmodellingapproachesmaybeusedsuchas

couplinga soilwater balancemodelwithwateryieldfunctions

describingtherelationshipsbetweencropevapotranspirationor

croptranspirationwith yield.A successful approach appliedto

soybeansisdescribedbyWeietal.(2015)thatadoptedthe

SIM-DualKcsoilwaterbalancemodel(Rosaetal.,2012)coupledwith

theStewart’swater-yieldmodel(Stewartetal.,1977).The

SIM-DualKcmodelappliestheFAOdualcropcoefficientapproachfor

computingandpartitioningthedailycropevapotranspiration(ETc,

mm)intocroptranspiration(Tc,mm)andsoilevaporation(Es,mm).

SIMDualKcperformsadailysoilwaterbalancefortheentireroot

zoneandadailywaterbalanceofthesoilevaporationlayer

adopt-ingthetwostagesRitchie’sevaporationapproach(Ritchie,1972;

Allenetal.,1998;AllenandPereira,2009).Deeppercolation(DP,

mm)andcapillaryrise(CR,mm)arecomputedusingtheparametric

equationsproposedbyLiuetal.(2006),andrunoff(RO,mm)is

esti-matedusingthecurvenumber(CN)approach(Allenetal.,2007).

SIMDualKcallowscomputingthedailyETcandTcdeficits(ETdand

Td)definedrespectively asthedifferencebetweenthestandard

ETc andtheactualET(ETc act)andasthedifferencebetweenTc

andactualtranspiration(Ta).Thosevaluesmaybeusedwiththe

Stewart’swater-yieldmodel(Stewartetal.,1977),thusadoptinga

simple,linearcrop-waterproductionfunctionthatrelatesseasonal

ETdorTdwiththerelativeyieldloss(RYL)throughan

appropri-atewater-yieldfactor,Ky,asreportedbyParedesetal.(2014a)for

maize.

AmorecomplexmodellingapproachisusedintheFAOcrop

yield model AquaCrop (Raes et al., 2012; Steduto et al., 2012),

thatsimulatescropbiomassandyieldinresponsetowater and

otherabioticstresses(temperature,fertilization,salinityandCO2).

AquaCropusesanempiricalapproachtoestimateTcandEs

depend-inguponthecanopycovercurve,whichisdifferentfromtheFAO

dualKcapproachdescribedinFAO56(Allenetal.,1998).Itisbased

uponaKccurvethatdoesnotrelatewiththecommonFAOKccurve

adoptedinFAO24andFAO56(DoorenbosandPruitt,1977;Allen

etal.,1998).AquaCropperformsadailysoilwaterbalanceand

esti-matesROalsousingtheCNmethod.DifferentlyfromSIMDualKc,

itusesasemi-empiricDPestimationprocedurethatrequiresthe

knowledgeofthesaturatedhydraulicconductivity,Ksat,

through-outthesoilprofile(Raesetal.,2006).

TheAquaCropmodelwasalreadyappliedtoseveralannualfield

cropsbutonlyafewapplicationsanalysedthemodelbehaviour

relative tothesoil water and evapotranspiration, e.g.,Farahani

etal.(2009)forcotton,Katerjietal.(2013)fortomatoandParedes etal.(2014b)formaize.However,assessmentsofETpartitioning

inAquaCroparelimited(Pereiraetal.,2015b)andthereareno

assessmentsforthemodel’sabilitytopredictsoilevaporation.

Consideringtheabovediscussionsonthepossible

appropriate-nessandlimitationsoftheAquaCropmodel,aswellastheprevious

resultsobtainedwhenusingtheSIMDualKcandStewart’s

mod-ellingapproachesdescribedbyWeietal.(2015),theobjectivesof

thepresentstudyare:(1)assessingtheperformanceofAquaCrop

forsoybean yieldestimation whenusing calibratedand default

parameters;(2)totesttheAquaCropabilitytopartitioncropET

incomparisonwiththeFAOdualKc approach;(3)toassessthe

abilityofAquaCroptosimulatesoilevaporationcomparingwith

observationsperformedwithmicrolysimetersalongfoursoybean

seasons;and(4)tocomparetheAquaCropapproachesusedforsoil

waterbalanceandsoilevaporationestimationwiththeonesused

bythesoilwaterbalanceSIMDualKc.ThesamedatausedbyWei

etal.(2015)areusedinthisstudy.

2. Materialandmethods

2.1. Experimentalsitecharacterisationandobservations

Soybean(GlycinemaxL.)experimentswereperformedatthe

Irrigation Experiment Station of the China Institute of Water

Resources and Hydropower Research (IWHR)locatedat Daxing

(39◦37N, 116◦26E, and 40.1m altitude). The soybean variety

ZhonghuangNo. 13wassownusingconventional tillagewitha

plantdensityof15plantsm−2 andaninter-rowspacingof0.4m.

This variety is a high-yielding semi-determinate cultivar that

belongstothematuritygroupIIandtakesanaverageof96days

toreachfullmaturity(Wangetal.,2013).Theexperimentswere

performedfrom2008to2011,withsowingbymid-Juneand

har-vestingbyearlyOctober.FurtherinformationisprovidedbyWei

etal.(2015).

Theclimateintheexperimentalsiteissub-humidofmonsoon

type,withcoldanddrywinterandhotandhumidsummer,which

isclassifiedasDwaaccordingtotheKöppenclassification(Kottek

etal.,2006).Climaticdatausedinthestudywerecollectedfroman

automaticmeteorologicalstationinstalledinsidetheexperimental

station.Dailydatausedincludedprecipitation,maximumand

min-imumairtemperature,relativehumidity,globalandnetradiation

andwindspeedat2mheight.Theclimaticdatasetswerechecked

forqualityassessmentasrecommendedbyAllenetal.(1998).The

referenceET(ETo)wascomputedwiththeFAOPenman–Monteith

method(Allenetal.,1998).Table1presentstheclimatic

charac-terizationofthefourcropseasonsfortheperiod2008to2011.

Detailedinformationonweatherdatarelativetothefouryearsof

observationsisprovidedbyWeietal.(2015).Climaticdata(Table1)

suggestthatdifferencesamongyearsweresmallexceptrelativeto

precipitation,whichwashigherin2009and2011.

Thesoils in theexperimentalfield aresilty soils formedby

depositsoftheloessformations.By2007,fourundisturbedsoil

samplesof250cm3foreachsoillayertoadepthof1mwere

col-lectedinvariousplotstodeterminethesoilwaterretentioncurve

andthehydraulicconductivitycurveinlaboratory.Theku-pf

appa-ratus(Umwelt-Geräte-Technik,Müncheberg,Germany)wasused.

Averagedvalues ofbasicsoilhydraulicpropertiesarepresented

inTable2.TheKsat valuesareintherangeofthoseproposedby

Rawlsetal.(1998)andRaesetal.(2012)forsiltloamsoils,

how-evertheyarehigherthanthoseformerlyobservedintheregion

(Pereiraetal.,2003).Capillaryrisefromthegroundwaterwasnot

consideredbecausetheaveragegroundwatertablewasdeep,near

18m,inallfouryearsofobservations.

Theirrigationschedulesweresetusingtwosoilwater

thresh-olds,of75%and60%ofFC,respectivelytreatmentT1andT2.Thus,

irrigationwasperformedwheneverthesoilwatercontentreached

thosethresholds.Treatmentswereperformedwiththree

replica-tionsinplotsof30m2 each.Sincethecropdevelopsduringthe

monsoonrainyseason,lowerirrigationthresholdscouldnotbe

selected.In2009and2011,duetoabundantrainfall,no

distinc-tioncouldbemadebetweentreatmentsthus,resultinginatotalof

sixdatasets.

Fieldobservationsincluded:

(a)Thedatesofeachcropgrowthstage(Table3).

(b)The leaf area index (LAI, cm2cm−2), that was measured

(3)

Table1

Averagemonthlyweatherdatarelativetothesoybeanseason,years2008–2011.

Year Jun Jul Aug Sep Oct

Max.airtemperature,◦C 2008 27.7 31.5 30.3 25.9 20.2

2009 31.5 31.4 29.8 25.7 21.2

2010 29.3 32.7 30.7 25.5 18.5

2011 32.0 31.6 30.4 25.2 19.5

Min.airtemperature,◦C 2008 17.4 21.7 20.3 14.0 6.0

2009 17.5 21.1 20.2 14.2 6.3

2010 18.2 23.2 20.1 14.0 6.1

2011 18.8 22.1 20.6 12.3 6.0

Min.RelativeHumidity,% 2008 63 64 66 64 54

2009 44 64 69 65 47 2010 59 63 63 62 57 2011 48 66 70 57 60 Solarradiation,MJm−2d−1 2008 21.4 21.5 19.8 15.9 11.4 2009 22.5 21.5 19.4 14.9 12.1 2010 22.3 19.4 19.0 15.2 11.2 2011 22.7 20.9 20.1 16.0 11.4 ETo,mm 2008 118 132 113 72 42 2009 147 140 113 70 52 2010 132 135 115 72 43 2011 146 137 119 81 40 Precipitation,mm 2008 103 66 64 123 42 2009 81 206 104 21 6 2010 87 42 141 69 32 2011 72 210 72 33 10 Table2

AveragesoilhydraulicpropertiesofDaxingexperimentalfields.

Layer Depth(m) sat(cm3cm−3) FC(cm3cm−3) WP(cm3cm−3) Ksat(cmd−1)

1 0.00–0.10 0.46 0.32 0.09 97.1

2 0.10–0.20 0.46 0.34 0.13 91.5

3 0.20–0.40 0.47 0.35 0.10 98.5

4 0.40–0.60 0.45 0.33 0.11 88.0

5 0.60–1.00 0.44 0.31 0.16 37.1

FC,WPandsatrepresentthesoilwatercontentatfieldcapacity,wiltingpointandsaturationrespectively;Ksatisthesaturatedhydraulicconductivity.

(AccuPAR LP-80,Decagon Devices) and a leaf area scanner

(F915900model,Cannon).

(c)Therootdepth(Zr,m),observedinrandomlydistributedplants;

byfullsoilcover,Zrreached1.0mdepth,henceinagreement

withdatareportedbyYan(2007).

(d)Thesoilwatercontent,thatwasmonitoredwithapreviously

calibrated TDRsystem(TRIME®-T3/IPH,IMKO GmbH).

Mea-surementswereperformedateach0.10muntilthemaximum

depthof1.0m,withthreereplications,everyfivedays.When

precipitation or anirrigationevent occurred, thesoil water

content wasmeasuredin the following day.For simulation

purposes,thesoilwatercontentwasconvertedintoavailable

soilwater,whichisthedepthofwaterstoredinthesoilabove

thewiltingpoint(ASW,mm).

(e)Soilevaporation,thatwasmeasuredusingtwomicrolysimeters

ineachplot;themicrolysimetersweremadeofPVCwithan

internaldiameterof0.10mandadepthof0.17m.Weighing

wasperformedeverydayaroundsunset,whenenergyavailable

forevaporationandtranspirationwasreduced.

(f) Thefinal crop biomassand yield, that were determinedby

harvestingplantsamplesineachplot,withatotalof3

sam-plespertreatment.Thesampleswereplacedinrefrigerated

Table3

Soybeancropgrowthstagesdatesandcumulativegrowingdegreedays(CGDD)forallexperimentalyears.

Cropgrowthstages Soybean

2008 2009 2010 2011

Initial Dates 24-06to13-07 14-06to09-07 25-06to18-07 22-06to07-07

CGDD(◦C) 372 463 468 302

Cropdevelopment Dates 14-07to07-08 10-07to31-07 19-07to20-08 08-07to07-08

CGDD(◦C) 910 948 1163 969

Mid-season Dates 08-08to16-09 01-08to09-09 21-08to19-09 08-08to13-09

CGDD(◦C) 1642 1690 1713 1676

LateSeason Dates 17-09to09-10 10-09to02-10 20-09to08-10 14-09to02-10

(4)

containersuntiltheywereweighedin thelab toobtainthe

freshweightand,later,ovendriedat65±5◦Ctoobtainthedry

weight.

Furtherdescriptionof theexperiments andfurtherobserved

data,namelyrelativetorootdepthsandirrigationschedules,are

presentedbyWeietal.(2015).

2.2. Modellingapproaches.ETpartitioningandyieldprediction

TheAquacropmodel(Stedutoetal., 2012;Raesetal., 2012)

isbasicallyacropyieldmodelthatcomputesbiomassandyield

consideringtheactualtranspiration(Ta,mm).Itseparately

com-putesTaandEsusingadailytimestep.ThedailyactualcropET

(ETcact,mmday−1)isobtainedasthesumofTaandEs,whichare

respectivelycomputedas

Ta=KsCC∗Kc,TrxETo (1)

and

Es=Kr(1−CC∗)KexETo (2)

where, ETo is reference evapotranspiration (mmday−1), Kc,Tr x

is the maximum standard crop transpiration coefficient

(non-dimensional),ormaximumbasalcropcoefficientwhenCC=100%;

CC*istheactualgreencropcanopycover(%)adjustedfor

micro-advectiveeffects;Ks(0–1)isthewaterstresscoefficient;Kex is

thesoilevaporationcoefficientforfullywetandnon-shadedsoil

surface(non-dimensional);andKr(0–1)istheevaporation

reduc-tioncoefficient(Raesetal.,2012).Thus,thecomputationofboth

ETcomponentsismainlytiedtothesimulatedcropcanopycover

(internallyadjusted for micro-advective effects),CC*.Thisis an

approachverydifferentfromFAO56(Allenetal.,1998),thusfrom

theapproachusedwithSIMDualKc(Rosaetal.,2012)despitethis

modelestimatesKcbwithadensitycoefficientKdthatisafunction

ofthefractionofgroundcoveredorshadedbythecrop(fc,

non-dimensional)andofthecropheight(h,m)asdescribedbyAllen

andPereira(2009).

ThesoilevaporationcoefficientiscomputedinAquaCropusing

adeepmodificationoftheRitchie’stwostagesapproach,including

askinlayermodification(Raesetal.,2012).StageIisdetermined

bytheavailableenergyatthesoilsurface,thusnotlimitedbythe

evaporablewateravailableinthesurfacesoillayer;Esisthenat

itspotentialrateandit is assumedthat waterevaporates from

athinsoilsurfacelayerwith0.04mdepththatdirectlycontacts

withtheatmosphere(Raesetal.,2012).Whenwaterisevaporated

fromthisthinsurfacelayer,anupwardsfluxfromthesoillayer

underneathoccursandevaporationisinstageII.Atthisstage,

evap-orationislimitedbythesoilwateravailabilityandthesoilhydraulic

propertiesdeterminingthetransferofwaterfromtheunderneath

soillayertotheevaporativesurfacelayer.Thesoilwatercontent

intheunderneathsoillayerprogressivelydecreasesresultingin

a decreaseof theevaporation ratewithtime. AquaCrop uses a

mechanisticapproachtodescribethefallingevaporationrate

dur-ingStageIIwhichmakesKrcomputedasafunctionoftimeand,

amongotherfactors,oftheamountofwaterextractedbythecrop

rootsfromtheuppersoillayerandofthedeclineoftheunsaturated

hydraulicconductivitywiththedecreaseofthesoilwatercontent.

Anexponentialequationisusedtorelatetheevaporation

reduc-tioncoefficientKrwiththerelativewatercontentofthesurface

soillayer,whichdependsonadeclinefactor(fK)andoftherelative

watercontentofthesoillayer(Wrel)throughwhichwatermoves

totheevaporativesurfacelayer.ThedefaultvaluefK=4isprovided

inthemodelmanual,aswellasofthethicknessofthesurfacelayer

(0.15mincludingtheskinlayer).However,accordingtoRaesetal.

(2012),whenWreldropsbelowathresholdof0.4,thethicknessis

expandedtoadepthsetbydefaultas0.3m.Theapproachis

rea-sonablebuthasnotbeenprovedinpracticeormentionedinany

modelusers’publication.Thereisnoreferencetotheneedfor

cal-ibrationoftherequiredparametersorrelativetotheircalibration

bytheusers.

SIMDualKc,contrastingly,computesKewiththeRitchie’smodel

andbyperformingadailysoilwaterbalanceoftheevaporablelayer

(Allenetal.,2005;Rosaetal.,2012).InSIMDualKc,theevaporable

layerischaracterizedbyitsthickness(Ze,m),thatisassumedto

varyfrom0.10to0.15m,thetotalevaporablewater(TEW,mm),

whichisthemaximumdepthofwaterthatcanbeevaporatedfrom

thatsoillayerafterithasbeenfullywetted,andthereadily

evap-orablewater (REW,mm),which isthedepthofwater thatcan

beevaporatedwithoutwateravailabilityrestrictions,i.e.,during

stageIofsoildrying.Furthermore,theevaporationcoefficientKeis

maximumwhenthesoiliswetbutislimitedbytheenergy

avail-ableatthesoilsurface,thusitsvaluecannotexceedthedifference

Kc max−Kcb,betweenthemaximum dailyKc andthebasal crop

coefficientatthesame day.As thetopsoil dries andless water

isavailablefor evaporation,areduction inEs occurs in

propor-tiontotheamountofwaterremaininginthesurfacesoillayer,

whichisusedtodefinetheevaporationreductioncoefficient(Kr,

non-dimensional)asdescribedbyAllenetal.(1998,2005).Due

toadoptingdifferentapproaches,Krisobviouslydifferentinboth

models.

AccordingtoRaesetal.(2012),themodelestimatestheCC

evo-lutionalongtimeinthreedistinctphases:(a)thefirstphasebegins

atthecropemergenceandendswhenhalfofthemaximumCC

(CCx)isattained;(b)thesecondphasefollowsthepreviousone

untilCCxisreached;and(c)thethirdphasebeginswhen

senes-cencestartsandendsatharvest.Anexponentialfunctionoftime

isusedinthe1stand2ndphases,beginningwiththecanopycover

when90%emergencehasoccurred(CCo)andusingagrowthrate

definedbythecanopygrowthcoefficient(CGC).Thethirdandlast

phasereferstothedecline ofgreencanopycover anditsshape

isdefinedbythecanopy declinecoefficient(CDC).Therefore,to

parameterizetheCCcurvesitisnecessarytousethefourreferred

parametersCCo,CCx,CGCandCDC.Incontrast,insteadof

simu-latingCC,SIMDualKcadoptstheobservedfcfractionofsoilcover

byvegetationasdefinedFAO56(Allenetal.,1998).Inadditionto

thereferredadjustmentofKcbvaluesthroughadensitycoefficient,

fc isalsousedtolimitKe(Ke≤fewKc max)wherethefractionof

soilwettedandexposedtosolarradiation(few,non-dimensional),

fromwheresoilevaporationoriginates,isdependingonfc(Allen

etal., 1998,2005).The approachesused inAquaCrop and with

thedualKc methodologyusedinSIMDualKcaretherefore

differ-ent.

AquaCropestimatestheabovegrounddrybiomass(B,tha−1)by

multiplyingthewatertranspiredbythecropalongtheseason(Ta)

bytheadjustedbiomass(water)productivity(BWP*,gm−2).BWP*

representstheabovegroundbiomassproducedperunitofland

areaconsideringboththecumulativetranspiration,after

adjust-mentforatmosphericCO2concentrationandETo(Raesetal.,2012).

Theactualyield(Ya,tha−1)ispredictedbythemodelusingthe

ref-erenceharvestindex(HIo,%)andB.TheHIoisadjustedwhenwater

stressoccursbyafactorintegratingfivewaterstressfactors

rela-tivetotheinhibitionofleafgrowth,inhibitionofstomata,reduction

ingreencanopydurationduetosenescence,reductioninbiomass

duetopre-anthesisstress,andpollinationfailure(Raesetal.,2012).

Relativetoyieldestimation, differencesbetweenAquaCrop and

theStewart’smodelareenormousbecausethelatterusesjustan

empiricalrelationbetweentherelativeyieldlossandtheseason

ETdeficitwhileAquaCropusesadeterministicapproachasbriefly

describedabove.

FurtherdescriptionsoftheAquaCropmodelandauxiliary

(5)

2.3. Modelparameterization,calibrationandvalidation

TheAquaCropmodelusesalargenumber ofparameters

rel-ativetocropcharacteristicsand effectsofcropmanagement on

thecropgrowth.Someofthoseparameters,namedconservative

parameters,areexpectedtochangelittlewithtime,with

manage-mentconditionorwiththelocation.Theyareidentified,described

andtabledbyRaesetal.(2012).Thesetabledvalueswereusedto

startthesimulationsandwereadjustedusingfieldobservations.

BecauseCCdeterminesthepartitionofETintocroptranspiration

andsoilevaporation(Eqs.(1)and(2)),theparameterizationfirstly

focusedontheCCcurve,i.e.,theparametersCCo,CCx,CGCandCDC.

TheCCmeasuredvalueswerederivedfromtheobservedleafarea

index(LAI)andcropheightusingtheapproachproposedbyAllen

andPereira(2009),previouslyusedwithSIMDualKc(Weietal., 2015).CCowasobtainedfromplantdensityafteremergence,CCx

wasthemaximumCCobservedfornowaterstressconditions,and

atrialanderrorprocedurewasusedforCGCandCDC.Thetrial

anderrorprocedurewasinitiatedusingparametervaluestabled

byRaesetal.(2012)andendedwhenthesimulatedCCcurvefitted

theobservedCCvaluesasdescribedbyParedesetal.(2014b)ina

previousapplicationtomaize.Subsequently,atrialanderror

pro-cedurefocusedonadjustingtheKc,Tr xbycomparingsimulatedand

observedfielddataofavailablesoilwater.Inthisapplication,the

initialvalueforKc,Tr xwas1.10asproposedbyRaesetal.(2012).

ThemodelwascalibratedwiththedataofTreatment1in2008and

wastestedwiththeremainingdatacollectedinthecropseasons

of2008to2011.

Tosimulatesoilevaporation,avalueforthereadilyevaporable

water(REW,mm),wasobtainedfromsoiltexturalandhydraulic

propertiesofthesoilasdefinedbyAllenetal.(1998).Toestimate

runoff,thecurvenumber(CN)methodisusedbythemodel;theCN

valueswereobtainedfromtabledvaluesproposedbyAllenetal.

(2007)forsoilswithmediumtexturewhosepreviouscropwasa

cereal.REWandCNwerenotobtainedthroughthetrialanderror

procedurebecausetheywereavailablefromtheprevious

calibra-tionofthemodelSIMDualKc(Weietal.,2015).

The reference harvest index HIo was obtained from yield

data observations performed in all seasons, without

occur-ring water stress; it resulted the average value HIo=0.38.

The retained HIo value is within the range of HIo values,

0.30–0.43, reported by Donatelli et al. (1997) and is only

slightly lower thanvalues reported byCui and Yu(2005) with

HIo=0.41.

TheBWP*wasobtainedusingatrialanderrorprocedureaimed

atminimizingdifferencesbetweenpredictedandobservedabove

grounddrybiomass.BWP* wassetat17gm−2,whichisslightly

higherthan thetabledvalueproposedbyRaes etal.(2012)for

soybean[15gm−2],andtherangeofvaluesproposedbySteduto

etal.(2012)[12–16gm−2];howeveritiswithintherangeofvalues

proposedbythesameauthorsforC3plants.

The“goodness-of-fit”relativetoboththecalibrationand

vali-dationprocesseswasassessedusingasetofindicatorsdescribed

previously(Weietal.,2015).Alinearregressionforcedthroughthe

originwasperformedtocompareobservedand simulated

(pre-dicted)values,OiandPi,whosemeansarerespectivelyOandP;

theregressioncoefficient(b)andthedeterminationcoefficient(R2)

werethenassumedasmainstatisticalindicators.Toanalysethe

residualestimationerrorsasetofindicatorswerealsoused,mainly

therootmeansquareerror(RMSE)toexpressthevarianceoferrors

(Bowermannetal.,2005),andtheaveragerelativeerror(ARE)to

indicatetheaveragesizeoftheestimatederrors.Theseindicators

Table4

ConservativeandcalibratedcropparametersofAquaCropmodel.

Description Unitsorsymbolmeaning Value

Conservativeparameters Default*

Basetemperature ◦C 5

Cut-offtemperature ◦C 30

Canopycoverat90% emergence(CCo)

cm2perplant 5.00

Soilwaterdepletionthreshold forcanopyexpansion

Upperthreshold 0.15

Soilwaterdepletionthreshold forcanopyexpansion

Lowerthreshold 0.65

Shapefactorforwaterstress coefficientforcanopy expansion

Curveshapemoderately convexcurve

3.0

Soilwaterdepletionthreshold forstomatalcontrol

FractionofTAWatwhich stomatastarttoclose

0.50 Shapefactorforwaterstress

coefficientforstomatal control

Highlyconvexcurve 3.0

Soilwaterdepletionthreshold forfailureofpollination

FractionofTAWatwhich pollinationstartstofail

0.85

Calibratedparameters Default* Calibrated

Cropcoefficientfor transpirationatCC=100%

Basalcropcoefficient(Kc,Trx) 1.10 1.12

BWP* Biomass(water)productivity

adjustedforEToandCO2

(gm−2)

15 17

HIo Referenceharvestindex(%) 0.40 0.38

Canopycovercurveparameters Default* 2008 2009 2010 2011

Maximumgreencanopycover, CCx,

% 99 98 98 98 98

Canopygrowthcoefficient,CGC %GDD−1 0.45 0.71 0.62 0.72 0.74

Canopydeclinecoefficient,CDC %GDD−1 1.50 1.04 0.870 1.04 1.50

*DefaultparametersaretabledbyRaesetal.(2012).

(6)

arecomputedfromthepairsofobservedandpredictedvaluesOi andPi(i=1,2,...,n)as RMSE=

n



i=1 (Pi−Oi)2 n

0.5 (3) and ARE=100n n



i=1

Oi−Pi Oi

(4)

Theseindicatorswerecalculatedateachiterationofthetrialand

errorproceduretosupportfindingofthecalibratedparametersthat

leadtotheminimizationoftheestimationerrors.

In addition, an indicator of the quality of modelling was

used,theNashandSutcliffe(1970)modellingefficiency(EF,

non-dimensional),thatisanormalizedstatisticwhichcorrespondsto

theratiobetweentheresidualvarianceandtheobservations

vari-ance EF=1.0− n



i=1 (Oi−Pi)2 n



i=1

Oi−O

2 (5)

ThetargetvalueforEFis1.0,whileanullornegativevalue

indi-catesthatthemeanofobservationsisasgoodorabetterpredictor

thanthemodel.

3. Resultsanddiscussion

3.1. AquaCropmodelparameterization,calibrationand

validation

Aspreviouslyreferred,modelcalibrationwasperformedusing

dataof2008-T1byminimizingthedifferencesbetweenobserved

andsimulated canopy cover(CC, %), availablesoil water (ASW,

mm),soilevaporation (Es,mm),biomass (B,kgha−1)and yield

(Ya,kgha−1).Duetotheinterdependenceofthecalibratedmodel

parameters,themainfocuswastheaccuracyofBandYa

predic-tions.TheparameterizationoftheCCcurvewasfirstperformed.

Table4presentsthedefaultvalues(Raesetal.,2012)ofthemain

modelparametersusedtoinitiatethemodelapplication,aswellas

thecalibrated valuesofthepreviouslyreferredparametersCCo,

CCx,CGC,CDC,Kc,Tr x,BWP*andHIo.

AspreviouslydiscussedconsideringEqs.(1)and(2),an

accu-rateparameterizationoftheCCcurveisofmajorimportancefor

appropriatecomputationofTaandEsand,subsequently,

estimat-ingbiomassandyield.SpecificCGCandCDCwereobtainedforeach

year(Table4).Differencesamongyearsrelatewiththeobserved

differencesinCGDDrequiredbythecroptoreachthecrop

devel-opmentandmid-season stages(Table3).Selectedresultsofthe

fittedandthedefaultCCcurvesarepresentedinFig.1.Relativeto

thecalibratedCCcurves,resultsshowthatthemodeltendsto

over-estimateCCduringtheinitialandcropdevelopmentstagesandto

slightlyunder-estimateCCduringthemid-seasonin2008and2009

(e.g.Fig.1a)buttoover-estimatein2010and2011(e.g.Fig.1b).This

mayrelatewiththefactthatAquaCropinternallyadjustedthe

cali-bratedCCx(Table4)to97.9%forbothtreatmentsin2008and2011,

to90.8%in2009,to93.9%and95.2%respectivelyforT1andT2in

2010.Raesetal.(2012)explainsinternalmodeladjustmentsdue

tostress,butstresswasnotobservedorcomputedbythemodel

inthepresentstudy.Ifdefaultparameters(CCx,CGCandCDCin

Table4)areusedthereisacleartrendforunder-estimationofthe

observedCCvaluesmainlyduringtheinitial,cropdevelopmentand

midstageperiods.

The“goodness-of-fit”indicatorsrelativetotheCCcurveswhen

usingdefaultandcalibratedparametersarepresentedinTable5.

AfteraccuratecalibrationoftheCCcurveparameters(CCo,CCx,

CGCand CDC), resultsdo not show anyclear trendto over or

under-estimation,withbrangingfrom0.96to1.04(Table5).The

determinationcoefficientsarehigh(R2>0.91),indicatingthatthe

CCmodelisabletoexplainthevarianceofobservedCCvalues.EF

valuesarealsohigh(≥0.91),showingthatthevarianceofresiduals

wasmuchsmallerthanthemeasureddatavariance.Consequently,

theestimationerrorsarelow,withRMSErangingfrom4.3%to7.4%

(ofcanopycover)andAREnotexceeding10.2%.Ifdefault

param-eters(CCx,CGCandCDCinTable4)areusedthereisacleartrend

forunder-estimationof theobserved CCvalues, withbranging

from0.73to0.86.Estimationerrorsarehigh,withAREexceeding

26.7%,thusdefinitelynonnegligible.Themodelefficiencyvalues

arelow,includinganegativevalue,−0.71,in2011,thuswhenb

isthesmallestand errorsarethehighest.Thelessgood results

obtainedwhenusingdefaultparametersrelatewiththenatural

variabilityofcropgrowth(Table3),whichrelateswiththe

vari-abilityofclimaticconditions(Table1)despitetheseweregenerally

smallexceptforrainfall.

Resultsdiscussedaboveindicatethattheuseofdefaultvalues

mayleadtolargeinaccuraciesinthecomputationsthatusethe

CCcurves.Therefore,thereisaneedforanappropriaterevision

a)

b)

0 10 20 30 40 50 60 70 80 90 100 24 /0 6 01 /0 7 08 /0 7 15 /0 7 22 /0 7 29 /0 7 05 /0 8 12 /0 8 19 /0 8 26 /0 8 02 /0 9 09 /0 9 16 /0 9 23 /0 9 30 /0 9 07 /1 0 Ca no py co ve r(%) 0 10 20 30 40 50 60 70 80 90 100 25 /0 6 02 /0 7 09 /0 7 16 /0 7 23 /0 7 30 /0 7 06 /0 8 13 /0 8 20 /0 8 27 /0 8 03 /0 9 10 /0 9 17 /0 9 24 /0 9 01 /1 0 08 /1 0 Ca no py co ve r( % )

Fig.1.Bestandworsesimulatedcanopycover(CC)curveswhenusingdefaultparameters(—)andaftercalibration( )comparedwithobservedvalues( ):(a)T1in2008, and(b)T2in2010.

(7)

Table5

“Goodness-of-fit”indicatorsrelativetothecanopycovercurveusingdefaultandcalibratedparameters.

Yearandtreatment Numberofobservations b R2 RMSE(%) ARE(%) EF

Usingdefaultparameters 2008,T1 13 0.81 0.93 20.0 31.5 0.49

2008,T2 13 0.80 0.93 20.3 31.8 0.48 2009 14 0.85 0.92 18.4 26.7 0.38 2010,T1 12 0.76 0.81 25.2 36.1 0.23 2010,T2 11 0.86 0.91 16.4 26.7 0.72 2011 11 0.73 0.74 30.1 37.6 −0.71 Usingcalibrated parameters 2008,T1 13 1.01 0.94 7.4 10.2 0.93 2008,T2 13 1.01 0.94 7.2 9.9 0.94 2009 14 0.97 0.95 5.7 9.0 0.94 2010,T1 12 0.96 0.99 5.3 9.4 0.97 2010,T2 11 1.04 0.99 4.3 7.2 0.99 2011 11 1.00 0.99 5.4 7.9 0.95

oftheCCdefaultvaluesbythemodeldevelopers.Meanwhile,it

isadvisablethatatleastacoupleofCCcurvesshouldbelocally

calibratedandrelatedresultsusedasdefaultparameters.

3.2. Simulationoftheavailablesoilwater

Selectedresultsrelativetocomparingtheobservedand

sim-ulatedASWafterappropriatemodelcalibrationarepresentedin

Fig.2.Alsoincludedthevaluessimulatedwiththedefault

param-eterslistedinTable4.ASWwereobservedandsimulatedforthe

maximumrootdepth.ThetargetupperlimitofASWisthethetotal

availablesoilwater(TAW,mm)thatcorrespondstotheASWstored

atfieldcapacityin therootzone,andthetargetlowerlimitfor

ASWwithoutwaterstressisthereadilyavailablewater,RAW=p

TAW,wherepisthedepletionfractionfornostress(Allenetal.,

1998).Inthisapplication,pwaspreviouslycalibratedwith

SIMD-ualKc(Weietal.,2015).ResultsinFig.2showthatASWgenerally

variedbetweenRAWandTAW,thusevidencingthatonlynegligible

waterstressmayhaveoccurred.Thisisduetothefactthatirrigation

treatmentsT1andT2weredesignedfordepletionfractionssmaller

thanp.

Fig.2showsthatthemodeltendstounder-estimateASWduring

mostofthemid-seasonandendseasonandtoover-estimateASW

duringcropdevelopmentandpartofthemid-season.This

behav-iorisparticularlyevidentfor2010and2011(Fig.2candd).Results

indicateabiasintheestimationoftheASWalongtheseason.Bias

inthesoilwatersimulationbyAquaCropwasidentifiedin

stud-iesrelativetobarley(Pereiraetal.,2015b),cotton(Farahanietal.,

2009)andmaize(Paredesetal.,2014b).TheanalysisbyPereira etal.(2015b)suggeststhatthereferredbiasedestimationofASW

islikelyduetoAquaCropabandoningtheFAOKc andKcbcurve,

changingtheprocedurestocomputeKe,andthusabandoningthe

FAOdualKcapproachtomakeTaandEstodependtoomuchfrom

theCCcurve.ThisisanalyzedinSection3.3throughcomparing

theKcbandKecurvesrelativetoAquaCropandtoSIMDualKcwhen

usingtheFAOdualKcapproach.Resultsbecameworsewhenusing

defaultparametersin2008,butnotthosefor2009,2010and2011.

OnecannotfindareasonforthatwhenknowingthattheCCcurves

simulatedwithdefaultparametersshowmuchlargererrorsthan

those usingcalibrated values(Table5).This isprobably dueto

internaladjustmentsofthemodelnotopentotheusers.

Resultsofthe“goodness-of-fit”indicatorsrelativetotheASW

simulationswhenusingdefaultandcalibratedparametersare

pre-sentedinTable6togetherwithresultsobtainedbyWeietal.(2015)

whenusingSIMDualKc.AfterAquaCropcalibration,the

determina-tioncoefficientsvaryinawiderange,indicatingthatthevariability

oftheASWobservationsisnotwellcapturedbythemodel.Errors

aregenerallyrelativelysmallbutRMSEmayreach24mmandARE

canattain 14.1%.Theregression coefficients arearound1.0 but

thesebvaluesmasktheover-estimationofASWinthefirsthalf

of theseasonand theunder-estimationinthesecondhalf.The

worseresultsarefor2011whenEFtakesanegativevalue,thus

indicatingthattheresidualsvariancewaslargerthanthemeasured

datavariance;onthecontrary,theotherdatasetshadpositiveEF

indicating thattheresiduals variance waslowerthan the

mea-sureddatavariance. Differently,the“goodness-of-fit”indicators

relativetoSIMDualKcareoverall betterthanthosereportedfor

AquaCrop,particularlywithquitegoodresultsfor2010and2011

whenAquaCropresultsareworse(Fig.2andTable6).Thus,thepoor

simulationresultsrelativetothesedatasetsarenotduetosome

peculiardatacombinationbuttosomeinsufficiencyinmodelling,

likelyduetoabandoningtheFAOwellprovenapproachesandto

internalmodeladjustmentsthatchangetheparametervalues.

Whenusingdefaultparameters,someindicatorsareworseand

otherarebetterthanusingcalibratedparameters(Table6).This

factistiedwithproblemsofcalibrationbecause,asdiscussedby

Pereiraetal.(2015b),thecalibratedparameterssuchasKc,Tr x,or

theCCxparameters,areinternallychangedbythemodel.Thisfact

identifiesadifficultyintheuseofthemodelbecausetheuserhas

nocontrolontheparameterizationand/orcalibrationprocesses.

Thus,overall,theindicatorsof“goodness-of-fit”oftheAquaCrop

modelusingcalibratedordefaultparametersfailedthelimitsfor

R2andEF,0.80and0.70respectively,proposedbyMaetal.(2011)

foragriculturalmodels.

3.3. ETpartitioningandevaporationandtranspirationcrop

coefficients

Fig. 3 presents examples of the daily variation of the crop

coefficients under standard conditions (Kcb and Kc,Tr), adjusted

towater stress(Kcb act and Kc,Tr act)as wellas theevaporation

coefficient(Ke)relativetothesamedatasetsofFig.2estimated

withAquaCropandSIMDualKc.ThepicturesrelativetoAquaCrop

includethecropcoefficientandevaporationcurvescomputedwith

calibratedanddefaultparametersaimingatexplainingthe

simu-lationresultsinFig.2.Rainfallandirrigationarerepresentedinthe

picturesrelativetotheKcbandKecurvescomputedwith

SIMDu-alKc.

Fig.3clearly showsthedifferencesin Kcb curves by

SIMDu-alKc,followingthelinearshapedcropcoefficientscurveassumed

inFAO56(Allenetal.,1998);incontrastwiththosederivedwith

AquaCrop, where theKc,Tr curves consistof curvilinear shaped

curvesproportionaltotheCCcurve(e.g.,Fig.1).Thus,Fig.3clearly

showthatAquaCropnearlyabandonedtheFAO“Kc–ETo”approach

despite,asdiscussedbyPereiraetal.(2015a),itssimplicity,

accu-racyandcommonapplication.

In AquaCrop, the crop coefficients curves are built using a

dailymodifiedKc,TrthatdependsupontheCCadjustedfor

micro-advectionandoftheKc,Tr x,thatistheKc,TrvaluewhenCC=100%.

(8)

)

b

)

a

c)

d)

e)

f)

g)

h)

0 50 100 150 200 250 24 /0 6 01 /0 7 08 /0 7 15 /0 7 22 /0 7 29 /0 7 05 /0 8 12 /0 8 19 /0 8 26 /0 8 02 /0 9 09 /0 9 16 /0 9 23 /0 9 30 /0 9 07 /1 0 AS W( m m ) TAW RAW 0 50 100 150 200 250 24 /0 6 01 /0 7 08 /0 7 15 /0 7 22 /0 7 29 /0 7 05 /0 8 12 /0 8 19 /0 8 26 /0 8 02 /0 9 09 /0 9 16 /0 9 23 /0 9 30 /0 9 07 /1 0 AS W (mm ) TAW RAW 0 50 100 150 200 250 14 /0 6 21 /0 6 28 /0 6 05 /0 7 12 /0 7 19 /0 7 26 /0 7 02 /0 8 09 /0 8 16 /0 8 23 /0 8 30 /0 8 06 /0 9 13 /0 9 20 /0 9 27 /0 9 AS W (m m ) TAW RAW 0 50 100 150 200 250 14 /0 6 21 /0 6 28 /0 6 05 /0 7 12 /0 7 19 /0 7 26 /0 7 02 /0 8 09 /0 8 16 /0 8 23 /0 8 30 /0 8 06 /0 9 13 /0 9 20 /0 9 27 /0 9 AS W( m m ) TAW RAW 0 50 100 150 200 250 25 /06 02 /07 09 /07 16 /07 23 /07 30 /07 06 /08 13 /08 20 /08 27 /08 03 /09 10 /09 17 /09 24 /09 01 /10 08 /10 ASW (mm) TAW RAW 0 50 100 150 200 250 25/ 06 02/ 07 09/ 07 16/ 07 23/ 07 30/ 07 06/ 08 13/ 08 20/ 08 27/ 08 03/ 09 10/ 09 17/ 09 24/ 09 01/ 10 08/ 10 AS W (mm ) TAW RAW 0 50 100 150 200 250 22 /0 6 29 /0 6 06 /0 7 13 /0 7 20 /0 7 27 /0 7 03 /0 8 10 /0 8 17 /0 8 24 /0 8 31 /0 8 07 /0 9 14 /0 9 21 /0 9 28 /0 9 AS W (mm ) TAW RAW 0 50 100 150 200 250 22 /0 6 29 /0 6 06 /0 7 13 /0 7 20 /0 7 27 /0 7 03 /0 8 10 /0 8 17 /0 8 24 /0 8 31 /0 8 07 /0 9 14 /0 9 21 /0 9 28 /0 9 AS W (mm) TAW RAW

Fig.2.Observed( )andsimulated( )dailyavailablesoilwater(ASW)withAquaCrop,ontheleft,comparedwithSIMDualKc,ontheright(datafromWeietal.,2015): (a,b)T1in2008,calibration;(c,d)2009,(e,f)T2in2010,and(g,h)2011(errorbarsrefertothestandarddeviationofASWobservations).Alsoincludedthesimulationwith AquaCropwhenusingdefaultparameters(—)

(9)

Fig.3. Seasonalvariationofthesoilevaporationcoefficient(Ke)andcropcoefficients(KcborKc,Tr)relativeto:(a,b)T1in2008,calibration;(c,d)2009,(e,f)T2in2010,and

(10)

Table6

“Goodness-of-fit”indicatorsrelativetosimulationsofASW(mm)withAquaCropwhenusingdefaultandcalibratedparametersandtoSIMDuaKcmodel(Weietal.,2015). Yearandtreatment Numberofpairs b R2 RMSE(mm) ARE(%) EF

AquaCrop Usingdefaultparameters 2008,T1 18 1.10 0.69 20.4 12.0 0.28

2008,T2 18 1.16 0.35 26.8 17.5 −1.11 2009 21 0.99 0.83 11.4 5.9 0.79 2010,T1 33 0.99 0.92 6.4 3.7 0.90 2010,T2 33 1.06 0.81 11.6 7.0 0.56 2011 32 1.06 0.70 19.9 10.2 −0.12 Usingcalibrated parameters 2008,T1 18 1.01 0.85 11.4 6.0 0.78 2008,T2 18 0.99 0.85 10.6 6.8 0.67 2009 21 0.98 0.86 10.7 6.1 0.82 2010,T1 33 0.94 0.82 12.3 6.5 0.64 2010,T2 33 0.95 0.22 15.6 10.0 0.19 2011 32 1.01 0.58 22.9 14.1 −0.47

SIMDualKc(Weietal., 2015) 2008,T1 18 0.99 0.93 10.7 6.0 0.80 2008,T2 18 0.98 0.84 12.5 8.4 0.54 2009 21 0.97 0.95 7.8 3.5 0.90 2010,T1 33 1.00 0.84 9.2 5.5 0.79 2010,T2 33 1.02 0.83 8.6 5.1 0.76 2011 32 1.03 0.86 9.3 4.8 0.76

aspreviouslydiscussed,themodelinternallyadjustsCCxwithout

apparentreason.InSIMDualKc,differently,theKcbcurvesarebuilt

takingintoconsiderationtheKcbvaluesfortheinitial(Kcb ini),mid

(Kcbmid)andend(Kcbend)stages,withKcbmidandKcbendadjusted

forclimate(Allenetal.,1998,2005)and forcropdensityusing

theobservedfractionofgroundcoverandplantheight(Allenand

Pereira,2009;Rosaetal.,2012).Thereferreddifferentapproaches

arethecauseforthedifferentcropcoefficientcurvesrepresented

inFig.3.

ThecalibratedKc,Tr xwas1.12(Table4),thatishigherthanKcb

mid=1.05obtainedbyWeietal.(2015)whencalibrating

SIMDu-alKcforthesameobservationdatasets.Thedifferenceisexplained

bythefactthatKcbmidreferstotheentiremidseasonwhileKc,Tr x

isthemaximumvalueofKc,TrforCC=100%.InFig.3Kcbmid<1.05,

becauseitisadjustedtoclimateandtocropdensity.AquaCropdid

notcomputeanystressresultingthatKc,TrandKc,Tr actcurvesare

coincident.Differently,SIMDualKcadjustedKcbforanyoccasion

whenastressoccurred,inthepresentapplicationforonlyshort

periods(Fig.3b,dandf).ResultsshowthatKc,Trduringthe

mid-seasonwashigherthanKcbduetothehigherKc,Tr xadopted.The

calibrationcouldhaveselectedasmallerKc,Tr xbutthiswouldlead

topoorresultsforbiomassandyieldpredictionssincethe

vari-ousmodelparametersareinterlinked.Inaddition,asdiscussedby

Pereiraetal.(2015b)theprocedurerelativetotheinternal adjust-mentofKc,Tr xforeverycrophavingCC<100%,shouldberevised

sinceitmakesthiscalibrationadifficulttaskwithinsufficient

con-trolbytheuser.

ThesoilevaporationcoefficientKe(Fig.3)ishighestduringthe

initialstage,continuestobehighbutdecreasesduringthecrop

developmentstage,and becomes small during themidseason,

whenthesoilis wellcovered bythecrop, increasingagainbut

fewduringthelateseason.Thisbehavioriscommontoboth

mod-elsandallcropseasons.Numerouspeaksareshownasresponses

tosoilwettingsbyprecipitation.However,therearedifferences

betweentheKevaluescomputedbybothmodels.Duringthe

ini-tialand cropdevelopmentstages,KefromAquaCrop arehigher

thanKefromSIMDualKc(Fig.3).Bythemid-andlate-season,when

themaximumfcorCCisattained,AquaCropcomputesgenerally

lowerKevaluesandlessKepeaksthanSIMDualKc,thusshowing

apoorreactiontotheprecipitationorirrigationeventsoccurring

then.ThereferreddifferencesinKeresultsalongthecropseasonare

verylikelyduetothedifferencesinmodellingapproachesused,as

discussedinSection2.2,includingdifferencesincalibration

param-eters,moreexigentincaseofSIMDualKc,aspreviouslydiscussed

forabarleyapplication(Pereiraetal.,2015b).

WhenusingdefaultparameterstheKc,TrandKevalueschange

relativetothosecomputedwhencalibratedvalueswereused.This

isexpectedsincebaseparametersusedincomputationsare

differ-ent;theKc,Trcurveisshifteddownandtotheright(Fig.3a,c,eand

g)similarlytotheshiftoftheCCcurve(Fig.1).TheKepeaksare

aboutthesameduringtheinitialstagebutareincreasedwhenthe

Kc,Trcurvesobtainedwithdefaultvaluesarebelowthosecomputed

withcalibratedparameters.However,thisbehaviordoesnotjustify

theupwardordownwardshiftsoftheASWsimulationwithdefault

parametersinFig.2a,c,e,andgorin“goodness-of-fit”indicators

inTable6.

Fig.3aandbshowsthatKc,Trvaluesareverydifferentfromthose

oftheKcbvaluesresultinginTa=Kc,TrETobeingmuchsmallerthan

Tc=KcbEToduringtheinitialandfirstpartofthecropdevelopment

stages,whenKefromAquaCropwerelargerthanforSIMDualKc.It

resulted(Ke+Kc,Tr)tobelikelysmallerthan(Kcb+Ke)duringthis

period,thusindicatinglesswaterusebythen,whichmayexplain

thecorrespondingover-estimationof ASW(Fig.2).For thelast

partofthecropdevelopmentandthemid-seasonKc,Tris larger

thanKcbwhileKeisreduced.Thus(Ke+Kc,Tr)becomeslargerthan

(Kcb+Ke)and theover-estimationof ASWturnsinto an

under-estimation. During thelate-season, (Ke+Kc,Tr) keep larger than

(Kcb+Ke).Therefore,thereisatrendforETcact=(Ke+Kc,Tr)ETotobe

initiallyunder-estimated,thusleadingtoasmallsoilwater

deple-tionand,therefore,toanover-estimationofASWduringthefirst

halfofthecropseason.ETc actbecomesprogressivelyhigherand

likelyover-estimatedinthesecondhalfofthecropseasonwhen,

duetoincreasedwaterdepletion,ASWbecomesunder-estimated.

ThisbehaviorisapparentforallcasesinFig.2butover-and

under-estimationsvaryinintensity,whichisnotexplainedwithresults

inFig.3.Moreover,thebehaviorofthemodelwhenusingdefault

parameters,which produceKc,Trcurves withmuchsmaller

val-ues,isnotexplainable.Itmaydependuponinternaladjustments

unknownfortheuser.In ourconditionofmodelusers,we just

considernecessaryadeepchangeinproceduresandabetter

con-troloftheparameterizationbytheusers.Otherwise,thesoilwater

computationsshouldbeusedonlyforBWP*calibrationaimingat

biomassandyieldpredictions.

3.4. Soilevaporationtesting

TheAquaCropmodelwastestedforsoilevaporationcomputed

withEq.(2) comparedwithmicrolysimeter observationsofsoil

evaporation(Fig.4).Es simulationsshow thatthe model tends

(11)

a)

b)

c)

d)

e)

0 1 2 3 4 5 6 7 24 /0 6 01 /0 7 08 /0 7 15 /0 7 22 /0 7 29 /0 7 05 /0 8 12 /0 8 19 /0 8 26 /0 8 02 /0 9 09 /0 9 16 /0 9 23 /0 9 30 /0 9 07 /1 0 Soi lev apor a on (mm) 0 1 2 3 4 5 6 7 24 /0 6 01 /0 7 08 /0 7 15 /0 7 22 /0 7 29 /0 7 05 /0 8 12 /0 8 19 /0 8 26 /0 8 02 /0 9 09 /0 9 16 /0 9 23 /0 9 30 /0 9 07 /1 0 Soi lev ap or a on (m m ) 0 1 2 3 4 5 6 7 14 /0 6 21 /0 6 28 /0 6 05 /0 7 12 /0 7 19 /0 7 26 /0 7 02 /0 8 09 /0 8 16 /0 8 23 /0 8 30 /0 8 06 /0 9 13 /0 9 20 /0 9 27 /0 9 Soil ev ap or a on (mm ) 0 1 2 3 4 5 6 7 25 /0 6 02 /0 7 09 /0 7 16 /0 7 23 /0 7 30 /0 7 06 /0 8 13 /0 8 20 /0 8 27 /0 8 03 /0 9 10 /0 9 17 /0 9 24 /0 9 01 /1 0 08 /1 0 Soil ev ap or ao n (m m) 0 1 2 3 4 5 6 7 22/06 29/06 06/07 13/07 20/07 27/07 03/08 10/08 17/08 24/08 31/08 07/09 14/09 21/09 28/09 So il eva po ra on (mm )

Fig.4. Dailysoilevaporation(Es)dynamicsalongsoybeansseasonswhenusingtheAquaCropafteradequatecalibration( )andSIMDualKc(----)comparedwith

microlysimetersobservations()for:(a)T1in2008,calibration,(b)T2in2008;(c)2009,(d)T1in2010,and(e)2011(SIMDualKcdatafromWeietal.,2015)

during the mid- and late-season. This type of behaviour was

expectedbecausemicrolysimeterevaporationishigherthansoil

evaporationsincethelatterisaffectedbywateruptakebyroots

activeintheevaporativesoillayerwhilethoserootsdonotexistin

themicrolysimeters.AsimilarbehaviourwasobservedbyWeietal.

(2015)whenusingSIMDualKcbutunder-estimationsweresmaller

(Fig. 4).Relative toothercrops, under-estimationsof lysimeter

observationswerereportedbyKlockeetal.(1990,1996),Jaraetal.

(1998)and,formaizeinthesameexperimentalarea,byZhaoetal. (2013).Inadditiontounder-estimations,alargevariabilityofEs

measuredvaluesiscommonlyreported.

Thelargerunder-estimationsby AquaCroprelative to

SIMD-ualKc maybe explained by different approaches relative to Es

computations,mainlyreferringtothereductioncoefficientKr

(pre-viouslydiscussed in Section 2.2)since theKe values computed

bybothmodelsdonotshowlargedifferencesasanalysedbefore

(Section3.3).ThelimitationsofEsestimationbyAquaCropwere

discussedbyPereiraetal.(2015b)forabarleyapplicationunder

contrastingwetnessanddrynessconditions.

Table7presentstheresultsofthe“goodness-of-fit”indicators

oftheEsestimationswhenusingbothmodels.Resultsshowthat,

aftercalibration,AquaCroppresentsacleartendencyfor

under-estimationofEs,withlowervaluesofbfor2010and2011,which

aretheseasonswhenmostobservationswereperformedduring

midandlate seasons(Fig.4dand e).Theseseasonswerethose

whereworseresultswereobtainedforsimulatingASWasreported

inSection3.2.ThismayindicatethatwhenEsislargely

underesti-mated,particularlyinthoseseasons,thesimulationofASWisalso

under-estimated(seeFig.2eandg).Intheseyears,R2 variedin

awiderange,thusreflectingabiasintheestimation,particularly

duringthesecondhalfofthecropseason.Consequently,errorsare

high,bothRMSEandARE;however,RMSEaresmallerin2010and

2011relativeto2008and2009,whichlikelydependonthesize

(12)

Table7

Indicatorsof“goodness-of-fit”relativetosimulatingsoilevaporationwithAquaCropandSIMDualKcmodels. Yearand

treatment

Numberof observations

b R2 RMSE(mmd−1) ARE(%) EF

AquaCrop Usingdefaultparameters 2008,T1 65 0.96 0.72 0.66 59.7 0.61

2008,T2 54 1.08 0.84 0.48 68.2 0.72 2009 82 1.04 0.72 0.76 78.8 0.65 2010,T1 47 1.16 0.71 0.55 57.1 0.18 2011 42 1.42 0.77 0.69 68.2 -0.17 Usingcalibrated parameters 2008,T1 65 0.88 0.73 0.68 71.9 0.59 2008,T2 54 0.98 0.81 0.52 72.7 0.68 2009 82 0.89 0.76 0.66 56.0 0.74 2010,T1 47 0.84 0.65 0.50 66.3 0.31 2011 42 0.66 0.73 0.45 80.4 0.50

SIMDualKc(Weietal., 2015) 2008,T1 65 0.97 0.85 0.52 57.7 0.76 2008,T2 54 0.99 0.89 0.48 60.1 0.73 2009 82 0.96 0.79 0.65 56.4 0.74 2010,T1 47 0.90 0.86 0.38 60.5 0.62 2011 42 0.95 0.84 0.24 39.5 0.85

largelyrefertotheperiodswhenthecanopycoverwaslowandEs

waslarge(Fig.4a,bandc).Asexpected,theEFvaluesaresmallerfor

2010and2011becausethereferredunder-estimationofEsleads

tolargerresidual’svariance.

Lessexpectedaretheresultswhendefaultvalueswereused

withAquaCrop.For2008and2009resultsonR2,RMSE,AREand

EFaresimilartothoserelativetousingcalibratedparametersbutb

valuesindicateatendencyforover-estimationofEs.Incontrast,for

2010and2011,largerRMSEandsmallerAREvalueswereobtained,

aswellasanimportantover-estimationwithb=1.41for2011.Low

EFvaluesresulted,witha negativevaluefor 2011.Thecontrast

betweenresultsfor2011whenusingcalibratedordefaultvaluesis

enormousintermsofbvalues,RMSEandEFvalues.Thisexplains

whysimulationsofASWin2011werealsocontrasting,withworse

resultswhenusingcalibratedparameters(Table6).Thisbehaviour

isthereforeassociatingtheASWsimulationwiththeEsestimation,

thusindicatingthat betterASWsimulation resultsareobtained

whenEsvaluesarehighduringthemid-andlate-seasonsincea

worseASWunder-estimationoccursduringthesecropstages.This

identifiesaprobleminthecomputationofEs,asalreadydiscussed

byPereiraetal.(2015b),thatmayrelatetothealreadydiscussed

mechanisticapproachusedforcomputingthereductioncoefficient

Kr(Section2.2).Thus,itisadvisablethatmodeldevelopersrevise

theEsestimationprocedures.

WhenusingtheSIMDualKcmodel,resultspresented byWei

etal. (2015)show aslight tendencyfor under-estimation,

par-ticularly during 2010 (Table 7). As previously pointed out,

under-estimationislikelyduethefactthatmostofEsobservations

wereperformedduringmidandlateseasonswhenmicrolysimeters

areexpectedtoevaporatemorethanthesurroundingsoilwhere,in

additiontoevaporation,waterisalsoextractedbycroproots.The

RMSEandAREvaluesaresmallerthanthosebyAquaCrop(Table7)

whileR2andEFvaluesareconsistentlyhigher.Thesegoodresults

evidencethegoodnessoftheFAOdualKcapproachrelativetothe

Esestimation.

Table8presentstheresultsofcomparingAquaCropand

SIM-DualKcsimulated Es and Es/ETc act for the various cropstages

andallseasonsandtreatments.Duringtheinitialstage,theratios

Es/ETcactcomputedwithAquaCropareconsistently higherthan

thoseobtainedwithSIMDualKc,howeverwithsmalldifferencesin

termsoftheEsamount(Fig.3),whichisevensmallerincaseof

AquaCropforthe2008-T1and2009experiments.Thisbehaviour

resultsfromanunderestimationofthetranspirationduringthat

periodbecauseTaiscomputedfromCC(Eq.(1)),whichisextremely

smallduringtheinitialcropstage.Itresults,therefore,averylarge

proportionofEsrelativetoETc.act,rangingfrom91%to97%while

thatpercentage variesfrom72% to85%withSIMDualKc. These

resultsindicatethatTaareunder-estimatedbyAquaCropduring

theinitialcropstage.

Duringthecropdevelopmentstage,theEsvaluessimulatedwith

AquaCropweresmallerthanthoseobtainedwithSIMDualKcinthe

lastpartofthiscropstage(Fig.3),withtheratiosEs/ETc.act

consis-tentlysmaller(Table8).Thismaybeduetoanoverestimationof

TaduringthatsameperiodasdiscussedinSection3.3.During

mid-seasonthesametrendisobservedbutwithaverylowEsandEs/ETc

actvaluescomputedwithAquaCrop,alsoconsistentlysmallerthan

forSIMDualKc(Table8andFig.4).Thesedifferencesarecoherent

relativetoresultsinFig.3,previouslydiscussed.Thetendencyof

AquaCropforunderestimatingEswasmaintainedduringthe

late-season(Fig.4),exceptforthecropseasonof2009,whichisalso

likelyrelatedtothesameinsufficienciesindescribingtheKc,Trcurve

discussedin Section3.3.Consequently,for allcropseasons,the

totalevaporationdepthsandtheratiosEs/ETc actareconsistently

smallerwhencomputedwithAquaCrop(Table8).Thedifference

washigherfortheT2-2010dataset,withAquaCropcomputing

almosthalfoftheEscomputedbySIMDualKc.Therefore,itislikely

thatEscomputationswhenthecanopycoveriscompleteorisnear

completionaretoomuchdependentonCCandlittleonthesoil

evaporativecharacteristics,i.e.,therespectiveparameterization,

referredbefore,isinsufficientrelativetothatproposedbyAllen

etal.(1998,2005)andadoptedinSIMDualKc(Rosaetal.,2012).

ConclusionsreportedbyFarahanietal.(2009),Katerjietal.(2013),

andParedesetal.(2014b),aswellastheanalysisbyPereiraetal. (2015b),showthattheproceduresforestimationofEsinAquaCrop

arequestionableandshouldbeimproved.

3.5. Soybeanbiomassandyieldpredictions

Theobservedfinalharvestedbiomass(B)andyield(Ya)usedto

testtheAquaCroppredictionsarepresentedinTable9.Thehighest

yieldwasobtainedwiththetreatmentT1in2010(4230kgha−1)

whilethelowestrefersto2011(3222kgha−1).Differencesinyield

maybepartially explainedbydifferencesinclimaticconditions

alongthecropseasons.Sinceradiationandtemperatureaverages

alongthosereferredcropseasonsareverysimilar(Table1),

differ-encesinYamayrelatetothediurnalandnocturnaltemperatures

asdiscussedbyTao etal.(2008)relative totheHebeiprovince

orasreportedbyPutehetal.(2013)forMalaysia,namely

refer-ringtohightemperaturestressduringthereproductivegrowth

stage.Differencesincropmanagementmayalsohavecontributed

todifferencesinyield.

AquaCroppredictionsofboth biomassandyield whenusing

onlydefaultparametersshowacleartrendforunder-estimation,

(13)

Table8

Soilevaporationandevaporationratio(Es/ETcact)simulatedwhenusingAquaCrop(Aqua)andSIMDualKc(SIM)modelsaftercalibration,foreachdevelopmentstageandfor

theentireseason.

Year/treatment Cropstage

Initial Cropdevelopment Mid-season Lateseason Entireseason

Aqua SIM* Aqua SIM* Aqua SIM* Aqua SIM* Aqua SIM*

2008,T1 Es(mm) 62 66 33 36 1 7 5 6 101 115 Es/ETcact(%) 97 85 36 40 1 6 15 19 31 36 2008,T2 Es(mm) 61 57 31 30 1 7 5 7 98 101 Es/ETcact(%) 97 83 35 34 1 5 14 20 30 32 2009 Es(mm) 72 73 33 38 7 10 6 1 118 122 Es/ETcact(%) 91 80 37 43 5 7 14 4 33 35 2010,T1 Es(mm) 45 44 30 32 2 2 3 7 80 85 Es/ETcact(%) 92 72 24 28 3 3 9 24 27 30 2010,T2 Es(mm) 46 46 14 23 1 3 3 7 64 79 Es/ETcact(%) 91 72 12 22 1 4 9 24 21 28 2011 Es(mm) 47 43 51 52 1 9 2 2 101 106 Es/ETc act(%) 97 80 40 43 1 7 5 7 29 32

*AdaptedfromWeietal.(2015).

Table9

Deviationsbetweenpredictedandobservedsoybeanfinalbiomassandyield(kgha−1),whenusingdefaultandcalibratedparameters,comparedwithStewart’sandSIMDualKc combination.

Year Observed* (kgha−1)

AquaCrop Stewart’smodelwithT

datafromSIMDualKc

Defaultparameters Calibrated

Predicted Deviation Predicted Deviation Predicted Deviation

(kgha−1) (kgha−1) % (kgha−1) (kgha−1) % (kgha−1) (kgha−1) %

Dryfinalabove groundbiomass,B 2008–T1 9631(±690) 6532 −3099 32.2 9742 111 1.2 2008–T2 8948(±906) 6509 −2439 27.3 9722 774 8.6 2009 9118(±651) 6387 −2731 30.0 9425 307 3.4 2010–T1 11840(±617) 6530 −5310 44.8 9731 −2109 17.8 2010–T2 10965(±598) 6949 −4016 36.6 10143 −822 7.5 2011 10757(±510) 6536 −4221 39.2 9830 −927 8.6

Dryfinalyield,Y 2008–T1 3778(±272) 2613 −1165 30.8 3703 −75 2.0 4046 267 7.1

2008–T2 3549(±358) 2607 −942 26.5 3698 149 4.2 4009 461 13.0

2009 3454(±246) 2192 −1262 36.5 3522 68 2.0 3689 234 6.8

2010–T1 4230(±222) 2556 −1674 39.6 3731 −499 11.8 4443 214 5.1

2010–T2 3578(±196) 2819 −759 21.2 3884 306 8.6 4260 682 19.1

2011 3222(±151) 2550 −672 20.9 3637 415 12.9 3374 152 4.7

*Driedat65±5C;Standarddeviationbetweenbrackets.

biomass and yield, respectively (Table 9). In contrast, when

themodelwasappropriatelycalibrated thedeviations between

observedandpredictedbiomasswereverysmall,generallysmaller

than9%.Relativetothefinal yield,deviations werebelow8.6%

exceptfortwocases,whentheywereof11.8%and12.9%.Results

maybeconsideredexcellentfor 2008and 2009and reasonably

goodfor2010and2011.Itmaybenoticedthattheseresultsrelate

tothequalityofsoilwatersimulations,notgoodfor2010and2011

(Fig.2andTable6).TheworseBand Yaresultsmayhavebeen

influencedbythedifficultiesinachievingagoodpartitionofETc

act,withpoorestimation ofEs and Ta,thelattercontributingto

theestimationofBandYa.Nevertheless,ifgoodBandYa

estima-tionscouldbeachievedthisisduetothesatisfactorycalibrationof

BWP*,whichhighlyinfluencesbiomassandyieldestimation.One

mayhypothesizethatifabetterestimationofEsandTacouldbe

achieved,betterestimationsofthefinalbiomassandyieldwould

havebeenattained.

ThebiomassRMSEis1056kgha−1,whichrepresentlessthan

12% of the observed final biomass while for the final yield it

was quite low, 302kgha−1, thus representing 8% of the

aver-agedobservedyield.Resultsfallwithinthecategoryof“verygood

modellingresults”asproposedbyHansonetal.(1999)sincethe

deviationswerelowerthan15%oftheobservedvaluesexceptfor

onepredictionofB.DespitethelowaccuracyoftheASW

simu-lations,indicativeofpoorEsandTaestimation,yieldpredictions

could bevery good due to an appropriate BWP* calibration. If

defaultparametersareusedthenBandYaestimationshavemuch

largererrors,probablynotacceptableformostapplications.

Similar yield predictions, with RMSE=381kgha−1, were

obtainedbyWeietal.(2015)withthesamedatasetsbutusingthe

Stewarts’modelcombinedwiththeSIMDualKcmodel,however

withalargerover-prediction.UsingtheCROPGRO-soybeanmodel,

Calvi ˜no et al. (2003) reportedRMSE=512kgha−1, i.e.,

approxi-mately18% of theaverageobserved Ya,while Liu et al.(2013)

foundRMSErepresenting15to22%oftheaverageYainNortheast

China.Stöckleetal.(2003)appliedtheCropSystmodelandreported

RMSEcorrespondingto14%oftheaverageYa.Mohantyetal.(2012)

whenusingtheAPSIMmodelreportedanunder-estimationofonly

100kgha−1,i.e.,lessthan6%ofYa.Overall,resultsofthepresent

studyfallwithinthereportedsoybeanapplications,thus

indicat-ingthatAquaCropmaybefurtherusedforyieldpredictionswhen

appropriatelycalibrated.

4. Conclusions

TheAquaCropmodelwasparameterizedusingfouryearsoffield

observationsofasoybeancropintheNorthChinaPlain.Themodel

wastestedusingdefaultandcalibratedparametersandcompared

withthesoilwaterbalancemodelSIMDualKc(Weietal.,2015),that

Imagem

Fig. 1. Best and worse simulated canopy cover (CC) curves when using default parameters (—) and after calibration ( ) compared with observed values ( ): (a) T1 in 2008, and (b) T2 in 2010.
Fig. 2. Observed ( ) and simulated ( ) daily available soil water (ASW) with AquaCrop, on the left, compared with SIMDualKc, on the right (data from Wei et al., 2015):
Fig. 3. Seasonal variation of the soil evaporation coefficient (K e ) and crop coefficients (K cb or K c,Tr ) relative to: (a, b) T1 in 2008, calibration; (c, d) 2009, (e, f) T2 in 2010, and (g, h) 2011
Fig. 4. Daily soil evaporation (E s ) dynamics along soybeans seasons when using the AquaCrop after adequate calibration ( ) and SIMDualKc (----) compared with microlysimeters observations () for: (a) T1 in 2008, calibration, (b) T2 in 2008; (c) 2009, (d)

Referências

Documentos relacionados

Los índices de Flesch y Flesch-Kincaid también se utilizaron en otro estudio que trató de medir el grado de dificultad del TCLE o los años de estudio necesarios para su

Since the calculation of the irrigation water depth involves the knowledge of the actual soil water content before irrigation, of the soil water content at field capacity, and of

The first signs of declining soil water are leaf rolling and sto- Figure 2 – Relationship between the normalized transpiration rate (NTR) and the fraction of transpirable soil

The performance of the CROPGRO-Drybeans model for the prediction of soil water balance, as well as growth components and bean crop yield, was assessed using data from two

The values of latent heat flux (LE) and sensible heat flux (H) followed the distributions of rainfall, stored soil water and LAI (Figures 1D-F); in periods with low soil

This study investigated water potentials in the soil (matric, osmotic and total) and in bell pepper plants (osmotic and total) irrigated with water of six levels of

The soil samples were used to estimate the soil microbial biomass carbon and nitrogen, soil basal respiration, metabolic quotient and soil enzymatic activity, through hydrolysis

The performance of the CROPGRO-Drybean model for the prediction of soil water balance, as well as growth components and bean crop yield, was assessed using data from two