• Nenhum resultado encontrado

Further properties of Osler's generalized fractional integrals and derivatives with respect to another function

N/A
N/A
Protected

Academic year: 2021

Share "Further properties of Osler's generalized fractional integrals and derivatives with respect to another function"

Copied!
35
0
0

Texto

(1)

FURTHER PROPERTIES OF OSLER’S GENERALIZED FRACTIONAL INTEGRALS AND DERIVATIVES

WITH RESPECT TO ANOTHER FUNCTION RICARDO ALMEIDA

ABSTRACT. In this paper we discuss fractional integrals and fractional derivatives of a function with respect to an-other function. We present some fundamental properties for both types of fractional operators, such as Taylor’s theorem, Leibniz and semigroup rules. We also provide a numerical tool to deal with these operators, by approximating them with a sum involving integer-order derivatives.

1. Introduction. Fractional calculus is an important research field, not only in pure mathematics, but in applied mathematics, physics, biology, engineering, economics, etc., as well. In fact, by considering derivatives and integrals of arbitrary real or complex order, we may model more efficiently certain real phenomena. Applications have been found, e.g., in human body modeling [9, 19], heat conduction [8], viscoelasticity [12, 30], time series analysis [3, 29], circuits [21], material sciences [28], shear waves [7], etc.

The subject is as old as calculus itself, and goes back to Leibniz and L’Hˆopital, when the meaning of the derivative of order 1/2 was discussed. Since then, many definitions of fractional integrals and fractional derivatives have appeared, each one with its own advantages [1, 16, 31]. However, fractional operators do not share the same properties and because of this we find a large number of works for similar problems. One way to overcome this issue is to define general forms of fractional integrals and fractional derivatives, by considering 2010 AMS Mathematics subject classification. Primary: 26A33, 26A24, 41A58. Keywords and phrases. Fractional integral, fractional derivative, Taylor’s theorem, semigroup law, expansion formulas.

Work supported by Portuguese funds through the CIDMA — Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (FCT-Funda¸c˜ao para a Ciˆencia e a Tecnologia), within project UID/MAT/04106/2019. The author is grateful to an anonymous referee for helpful comments and suggestions.

Received by the editors on September 5, 2018, and in revised form on February 13, 2019.

DOI:10.1216/RMJ-2019-49-8-2459 Copyright 2019 Rocky Mountain Mathematics Consortiumc

(2)

the derivative and integral with respect to another function ψ. For some choices of ψ, we obtain some well known definitions, like the Riemann–Liouville [10, 15, 18, 20, 35], the Hadamard [4, 5, 13] and the Erd´elyi–Kober fractional operators [14, 32]. This approach is not very common yet, and much work remains to be done. We mention the papers [22, 23, 26], where a similar concept of fractional derivative was studied, and a Leibniz and chain formulas were proven. In [6], a Taylor’s formula is extended to the same type of derivative operator, and in [11], summation formulas are obtained by using the generalized chain rule. In [17, 34], that concept of fractional derivative is generalized by means of a representation based on the Pochhammer’s contour of integration.

Throughout this paper, except otherwise stated, α denotes a positive real number, and n := [α] + 1 is an integer number. Also, f ∈ L1[a, b] is

a function and ψ ∈ C1[a, b] is another function satisfying the condition

ψ0(x) > 0, for every x ∈ [a, b]. We start by reviewing the definitions needed in the sequel, which can be found, e.g., in [16, 31].

Definition 1. [16] The left and right Riemann–Liouville fractional integrals of f of order α > 0, with respect to function ψ, are given by

Ia+α,ψf (x) := 1 Γ(α) Z x a ψ0(t)(ψ(x) − ψ(t))α−1f (t) dt, for x ≥ a, and Ib−α,ψf (x) := 1 Γ(α) Z b x ψ0(t)(ψ(t) − ψ(x))α−1f (t) dt, for x ≤ b, respectively.

For example, for β > 0, we have the two following formulas (see [16, Property 2.18]): (1) Ia+α,ψ(ψ(x) − ψ(a))β−1= Γ(β) Γ(β + α)(ψ(x) − ψ(a)) β+α−1 and (2) Ib−α,ψ(ψ(b) − ψ(x))β−1= Γ(β) Γ(β + α)(ψ(b) − ψ(x)) β+α−1.

(3)

The semigroup property is valid for fractional integrals. Given β > 0, and a continuous function f , the following relations hold (see [16, Lemma 2.26]):

Ia+α,ψIa+β,ψf (x) = Ia+α+β,ψf (x) and Ib−α,ψIb−β,ψf (x) = Ib−α+β,ψf (x). For what concerns fractional derivatives, we also have the left and right fractional operators.

Definition 2. [16] The left and right Riemann–Liouville fractional derivatives of f of order α > 0, with respect to function ψ, are given by

Da+α,ψf (x) :=  1 ψ0(x) d dx n Ia+n−α,ψf (x) = 1 Γ(n − α)  1 ψ0(x) d dx nZ x a ψ0(t)(ψ(x) − ψ(t))n−α−1f (t) dt, for x ≥ a, and Db−α,ψf (x) :=  − 1 ψ0(x) d dx n Ib−n−α,ψf (x) = 1 Γ(n−α)  − 1 ψ0(x) d dx nZ b x ψ0(t)(ψ(t)−ψ(x))n−α−1f (t) dt, for x ≤ b, respectively.

Here, function ψ is assumed to be of class Cn. In order to simplify

notation, we shall write fψ[n](x) :=  1 ψ0(x) d dx n f (x).

It is clear that, when α is a positive integer number, then Dm,ψa+ f (x) = fψ[m](x) and Db−m,ψf (x) = (−1)mfψ[m](x).

This subject was extensively studied by Osler in the seventies. In par-ticular, Osler considered various generalizations of important formulae like the Leibniz or the chain rules. Also, Osler gave generalizations of many results of the classical differential calculus like the Taylor and Laurent series. For a more detailed discussion we refer the papers [22, 23, 24, 25, 26, 27].

(4)

As it was proven in [2], if f is a function on class Cn, then for every α > 0, (3) Dα,ψa+f (x) = 1 Γ(n−α) Z x a ψ0(t)(ψ(x) − ψ(t))n−α−1fψ[n](t) dt + n−1 X k=0 fψ[k](a) Γ(k + 1 − α)(ψ(x) − ψ(a)) k−α and (4) Dα,ψb− f (x) = 1 Γ(n−α) Z b x (−1)nψ0(t)(ψ(t) − ψ(x))n−α−1fψ[n](t) dt + n−1 X k=0 (−1)kf[k] ψ (b) Γ(k + 1 − α)(ψ(b) − ψ(x)) k−α.

These new fractional operators are called left and right Caputo fractional derivatives of f of order α, with respect to function ψ, and are denoted by the symbolsCDα,ψ a+ andCD α,ψ b− respectively: CDα,ψ a+f (x) = 1 Γ(n−α) Z x a ψ0(t)(ψ(x) − ψ(t))n−α−1fψ[n](t) dt and CDα,ψ b− f (x) = 1 Γ(n−α) Z b x (−1)nψ0(t)(ψ(t) − ψ(x))n−α−1fψ[n](t) dt. Since we are interested in studying the fractional case, we assume from now on that α /∈ N.

The remainder of this paper is organized as follows. In Section 2, some properties of fractional integrals are studied, and in Section 3, some properties of fractional derivatives are also studied. In the following Section 4, a relation between these fractional operators is given. In Section 5, we present an approximation formula for each fractional operator, involving integer order derivatives only.

2. Properties of the fractional integrals. In this section, we deduce some properties for fractional integrals, like the Leibniz rule and the Taylor’s theorem, and also determine the fractional integrals of some fundamental functions. Since there are two types of fractional integrals (left and right), and the proofs are similar, we will state without proof

(5)

the results for the right fractional integrals. From now on, given a real α > 0, we assume that function ψ is at least of class Cn.

Lemma 1. For every λ 6= 0 and α > 0, Ia+α,ψEα(λ(ψ(x) − ψ(a))α) = 1 λ(Eα(λ(ψ(x) − ψ(a)) α) − 1) and Ib−α,ψEα(λ(ψ(b) − ψ(x))α) = 1 λ(Eα(λ(ψ(b) − ψ(x)) α) − 1).

Proof. Using formula (1), we deduce the following Ia+α,ψEα(λ(ψ(x) − ψ(a))α) = Ia+α,ψ ∞ X k=0 λk(ψ(x) − ψ(a))kα Γ(kα + 1) = ∞ X k=0 λk(ψ(x) − ψ(a))kα+α Γ(kα + α + 1) = 1 λ(Eα(λ(ψ(x) − ψ(a)) α) − 1).  For our next example, we recall the lower incomplete gamma function γ:

γ(v, z) := Z z

0

tv−1exp(−t) dt, v > 0.

Lemma 2. For every λ 6= 0 and α > 0,

Ia+α,ψexp(λ(ψ(x) − ψ(a))) =exp(λ(ψ(x) − ψ(a)))

λαΓ(α) γ(α, λ(ψ(x) − ψ(a))) and Ib−α,ψexp(λ(ψ(b) − ψ(x))) =exp(λ(ψ(b) − ψ(x))) λαΓ(α) γ(α, λ(ψ(b) − ψ(x))). Proof. By definition, Ia+α,ψexp(λ(ψ(x) − ψ(a))) = 1 Γ(α) Z x a ψ0(t)(ψ(x) − ψ(t))α−1exp(λ(ψ(t) − ψ(a))) dt.

(6)

Making the changing of variables λ(ψ(x) − ψ(t)) = u, we obtain the

desired formula. 

Theorem 3. Assume that f has continuous derivative for t ∈ [a, b]. Then, given two differentiable functions f and ψ,

lim α→0+I α,ψ a+f (x) = f (x) and lim α→0+I α,ψ b− f (x) = f (x).

Proof. Using integration by parts, we obtain Ia+α,ψf (x) = 1 Γ(α+1)  (ψ(x) − ψ(a))αf (a) + Z x a (ψ(x) − ψ(t))αf0(t) dt  , and making α → 0+, the proof ends.

 Theorem 4. Let (fk) be a sequence of continuous functions on [a, b].

If (fk) converges uniformly to a function f , then, for all x ∈ [a, b], we

have the following: Ia+α,ψf (x) = lim k→∞I α,ψ a+ fk(x) and I α,ψ b− f (x) = limk→∞I α,ψ b− fk(x).

Proof. Observe that f is a continuous function on [a, b]. Then, |Ia+α,ψf (x)−I α,ψ a+ fk(x)| ≤ 1 Γ(α) Z x a ψ0(t)(ψ(x)−ψ(t))α−1|f (t)−fk(t)| dt ≤(ψ(x)−ψ(a)) α Γ(α+1) kf −fkk,

which converges to zero as k goes to infinity. 

Theorem 5. If f is a continuous function on [a, b], then Ia+α,ψf (x) and Ib−α,ψf (x) are well defined for every x ∈ [a, b]. Moreover,

kIa+α,ψf k ≤ Kkf k and kI α,ψ

b− f k ≤ Kkf k,

(7)

Proof. Given any x ∈ [a, b], we have that |Ia+α,ψf (x)| ≤ kf k Γ(α) Z x a ψ0(t)(ψ(x) − ψ(t))α−1dt ≤(ψ(x) − ψ(a)) α Γ(α + 1) kf k ≤ (ψ(b) − ψ(a))α Γ(α + 1) kf k. 

From the proof of Theorem 5, we see that if f is a continuous function, then

(5) Ia+α,ψf (a) = Ib−α,ψf (b) = 0.

If f is not continuous, then (5) may fail. In fact, using formula (1), we see that lim x→a+I α,ψ a+(ψ(x) − ψ(a)) β−1=    ∞ if β + α − 1 < 0, Γ(1 − α) if β + α − 1 = 0, 0 if β + α − 1 > 0. Theorem 6. If f is continuous, then, for every positive integer m, we have  1 ψ0(x) d dx m Ia+m,ψf (x) =  − 1 ψ0(x) d dx m Ib−m,ψf (x) = f (x).

Proof. Differentiating the fractional integral, we obtain  1 ψ0(x) d dx m Ia+m,ψf (x) =  1 ψ0(x) d dx m−1 1 (m − 2)! Z x a ψ0(t)(ψ(x) − ψ(t))m−2f (t) dt =  1 ψ0(x) d dx m−2 1 (m − 3)! Z x a ψ0(t)(ψ(x) − ψ(t))m−3f (t) dt = · · · = 1 ψ0(x) d dx Z x a ψ0(t)f (t) dt = f (x). 

Corollary 7. If f is continuous, then, for every positive integer m and every real α > m, we have

 1 ψ0(x) d dx m Ia+α,ψf (x) = Ia+α−m,ψf (x)

(8)

and  − 1 ψ0(x) d dx m Ib−α,ψf (x) = Ib−α−m,ψf (x).

Theorem 8. If f is a function of class Cm

, with m ∈ N, then Ia+m,ψ  1 ψ0(x) d dx m f (x) = f (x) − m−1 X k=0 f[k](a) k! (ψ(x) − ψ(a)) k and Ib−m,ψ  − 1 ψ0(x) d dx m f (x) = f (x) − m−1 X k=0 (−1)kf[k](b) k! (ψ(b) − ψ(x)) k.

Proof. Integrating by parts, we get Ia+m,ψ  1 ψ0(x) d dx m f (x) = 1 (m − 1)! Z x a (ψ(x) − ψ(t))m−1 d dt  1 ψ0(t) d dt m−1 f (t)  dt = 1 (m − 2)! Z x a (ψ(x) − ψ(t))m−2 d dt  1 ψ0(t) d dt m−2 f (t)  dt −f [m−1](a) (m − 1)! (ψ(x) − ψ(a)) m−1 = 1 (m − 3)! Z x a (ψ(x) − ψ(t))m−3d dt  1 ψ0(t) d dt m−3 f (t)  dt − m−1 X k=m−2 f[k](a) k! (ψ(x) − ψ(a)) k = · · · = Z x a d dtf (t) dt − m−1 X k=1 f[k](a) k! (ψ(x) − ψ(a)) k = f (x) − m−1 X k=0 f[k](a) k! (ψ(x) − ψ(a)) k.  Corollary 9. If f is a function of class Cm, with m ∈ N, then Ia+α+m,ψ  1 ψ0(x) d dx m f (x) = Ia+α,ψf (x)− m−1 X k=0 f[k](a) Γ(α+k+1)(ψ(x)−ψ(a)) α+k

(9)

and Ib−α+m,ψ  − 1 ψ0(x) d dx m f (x) = Ib−α,ψf (x) − m−1 X k=0 (−1)kf[k](b) Γ(α + k + 1)(ψ(b) − ψ(x)) α+k.

Proof. By the semigroup law and Theorem 8, we obtain Ia+α+m,ψ  1 ψ0(x) d dx m f (x) = Ia+α,ψ  Ia+m,ψ  1 ψ0(x) d dx m f (x)  = Ia+α,ψ  f (x) − m−1 X k=0 f[k](a) k! (ψ(x) − ψ(a)) k  = Ia+α,ψf (x) − m−1 X k=0 f[k](a) Γ(α + k + 1)(ψ(x) − ψ(a)) α+k. 

Theorem 10. Let f and g be two continuous functions on [a, b]. Then, Z b a f (x)Ia+α,ψg(x) dx = Z b a Ib−α,ψ f (x) ψ0(x)  g(x)ψ0(x) dx and Z b a f (x)Ib−α,ψg(x) dx = Z b a Ia+α,ψ f (x) ψ0(x)  g(x)ψ0(x) dx.

Proof. Using the Dirichlet’s formula, we deduce Z b a f (x)Ia+α,ψg(x) dx = 1 Γ(α) Z b a Z x a f (x)ψ0(t)(ψ(x) − ψ(t))α−1g(t) dt dx = 1 Γ(α) Z b a Z b x f (t)ψ0(x)(ψ(t) − ψ(x))α−1g(x) dt dx = Z b a Ib−α,ψ f (x) ψ0(x)  g(x)ψ0(x) dx. 

(10)

Theorem 11. Suppose that function f ◦ ψ−1 is analytic on [ψ(a), ψ(b)]. Then, for all x ∈ [a, b],

Ia+α,ψf (x) = ∞ X k=0 Dk(f ◦ ψ−1)ψ(a) Γ(k + α + 1) (ψ(x) − ψ(a)) k+α and Ib−α,ψf (x) = ∞ X k=0 (−1)kDk(f ◦ ψ−1)ψ(b) Γ(k + α + 1) (ψ(b) − ψ(x)) k+α.

Proof. Once f ◦ ψ−1 is analytic, we can consider the series f (x) = (f ◦ ψ−1)(ψ(x)) = ∞ X k=0 Dk(f ◦ ψ−1)ψ(a) k! (ψ(x) − ψ(a)) k.

Applying formula (1), we deduce the desired result.  Theorem 12. Suppose that function f ◦ ψ−1 is analytic on [ψ(a), ψ(b)]. Then, for all x ∈ [a, b],

Ia+α,ψf (x) = ∞ X k=0 −α k Dk(f ◦ ψ−1)ψ(x) Γ(k + α + 1) (ψ(x) − ψ(a)) k+α and Ib−α,ψf (x) = ∞ X k=0 (−1)k−α k Dk(f ◦ ψ−1)ψ(x) Γ(k + α + 1) (ψ(b) − ψ(x)) k+α, where −α k  =(−1) kΓ(k + α) Γ(α)k! . Proof. By the definition of fractional integral,

Ia+α,ψf (x) = 1 Γ(α) Z x a ψ0(t)(ψ(x) − ψ(t))α−1(f ◦ ψ−1)ψ(t) dt = 1 Γ(α) Z x a ψ0(t)(ψ(x) − ψ(t))α−1 × ∞ X k=0 (−1)kDk(f ◦ ψ−1)ψ(x) k! (ψ(x) − ψ(t)) kdt

(11)

= ∞ X k=0 (−1)kDk(f ◦ ψ−1)ψ(x) Γ(α)k! × Z x a ψ0(t)(ψ(x) − ψ(t))k+α−1dt = ∞ X k=0 −α k Dk(f ◦ ψ−1)ψ(x) Γ(k + α + 1) (ψ(x) − ψ(a)) k+α.  Theorem 13. Let f, g : [a, b] → R be two functions with

(1) f ◦ ψ−1 is analytic at y for all y ∈ [ψ(a), ψ(b)], and (2) g is continuous on [a, b].

Then, for x ∈ [a, b], Ia+α,ψ(f · g)(x) = ∞ X k=0 −α k  Dk(f ◦ ψ−1)ψ(x) · Ia+α+k,ψg(x) and Ib−α,ψ(f · g)(x) = ∞ X k=0 (−1)k−α k  Dk(f ◦ ψ−1)ψ(x) · Ib−α+k,ψg(x).

Proof. Once f ◦ ψ−1 is analytic,

f (t) = ∞ X k=0 (−1)kDk(f ◦ ψ−1)ψ(x) k! (ψ(x) − ψ(t)) k. Therefore, Ia+α,ψ(f · g)(x) = ∞ X k=0 (−1)kDk(f ◦ ψ−1)ψ(x) k!Γ(α) × Z x a ψ0(t)(ψ(x) − ψ(t))α+k−1g(t) dt = ∞ X k=0 (−1)kΓ(α + k)Dk(f ◦ ψ−1)ψ(x) k!Γ(α) · I α+k,ψ a+ g(x) = ∞ X k=0 −α k  Dk(f ◦ ψ−1)ψ(x) · Ia+α+k,ψg(x). 

(12)

Figure 1. Fractional derivative of f (x) = (ψ(x) − ψ(0))3. 3. Properties of the fractional derivatives. We proceed our study by considering now the fractional derivative operator. First, we evaluate the fractional derivative of some important functions. Then, we study in which cases we can use the semigroup law for fractional derivatives. Other properties are also considered, like an integration by parts formula involving these fractional operators.

Lemma 14. (See [16, Property 2.20]) For any β > 0, the two following formulas hold: Da+α,ψ(ψ(x) − ψ(a))β−1= Γ(β) Γ(β − α)(ψ(x) − ψ(a)) β−α−1 and Dα,ψb−(ψ(b) − ψ(x))β−1= Γ(β) Γ(β − α)(ψ(b) − ψ(x)) β−α−1.

For example, in Figure 1, we plot the graphs of the fractional derivative of order α of function f (x) = (ψ(x) − ψ(0))3, with x ∈ [0, 10].

The kernel is the function ψ(x) =√3x + 1. As it can be observed, as α

goes to 1, the graph of the fractional derivative D0+α,ψf (x) approaches the graph of fψ[1]= 3(ψ(x) − ψ(0))2.

Lemma 15. For every λ ∈ R and α > 0 (α /∈ N), Dα,ψa+Eα(λ(ψ(x) − ψ(a))α) = λEα(λ(ψ(x) − ψ(a))α) +

(ψ(x) − ψ(a))−α Γ(1 − α)

(13)

and

Dα,ψb− Eα(λ(ψ(b) − ψ(x))α) = λEα(λ(ψ(b) − ψ(x))α) +

(ψ(b) − ψ(x))−α

Γ(1 − α) . Proof. Using Lemma 14, we obtain

Dα,ψa+Eα(λ(ψ(x) − ψ(a))α) = ∞ X k=0 λk Γ(kα + 1)D α,ψ a+(ψ(x) − ψ(a)) kα = ∞ X k=0 λk(ψ(x) − ψ(a))kα−α Γ(kα − α + 1) = λ ∞ X k=0 λk(ψ(x) − ψ(a))kα Γ(kα + 1) + (ψ(x) − ψ(a))−α Γ(1 − α) = λEα(λ(ψ(x) − ψ(a))α) + (ψ(x) − ψ(a))−α Γ(1 − α) . 

Lemma 16. For every λ 6= 0 and α > 0 (α /∈ N), Dα,ψa+ exp(λ(ψ(x)−ψ(a))) =exp(λ(ψ(x) − ψ(a)))

λ−αΓ(−α) γ(−α, λ(ψ(x)−ψ(a)))

and

Dα,ψb− exp(λ(ψ(b)−ψ(x))) =exp(λ(ψ(b) − ψ(x)))

λ−αΓ(−α) γ(−α, λ(ψ(b)−ψ(x))).

Proof. Integrating by parts and differentiating the result, we obtain Da+α,ψexp(λ(ψ(x) − ψ(a))) =  1 ψ0(x) d dx n 1 Γ(n − α)  (ψ(x) − ψ(a))n−α n − α + Z x a λψ0(t)(ψ(x) − ψ(t)) n−α n − α × exp(λ(ψ(t) − ψ(a))) dt !

(14)

=  1 ψ0(x) d dx n−1 (ψ(x) − ψ(a))n−α−1 Γ(n − α) + λ Γ(n − α) Z x a ψ0(t)(ψ(x) − ψ(t))n−α−1 × exp(λ(ψ(t) − ψ(a))) dt ! = ?

Integrating again by parts,

? =  1 ψ0(x) d dx n−1 (ψ(x)−ψ(a))n−α−1 Γ(n−α) + λ Γ(n−α) " (ψ(x)−ψ(a))n−α n−α + Z x a λψ0(t)(ψ(x)−ψ(t)) n−α n−α exp(λ(ψ(t)−ψ(a))) dt #! =  1 ψ0(x) d dx n−2 (ψ(x)−ψ(a))n−α−2 Γ(n−α−1) +λ (ψ(x)−ψ(a))n−α−1 Γ(n−α) + λ 2 Γ(n−α) Z x a ψ0(t)(ψ(x)−ψ(t))n−α−1exp(λ(ψ(t)−ψ(a))) dt ! .

Repeating this procedure, we conclude that

? = n−1 X k=0 λk(ψ(x) − ψ(a)) k−α Γ(k − α + 1) + λ n Γ(n − α) Z x a ψ0(t)(ψ(x) − ψ(t))n−α−1exp(λ(ψ(t) − ψ(a))) dt. In a similar way as was done in the proof of Lemma 2, we can prove

λn Γ(n − α) Z x a ψ0(t)(ψ(x) − ψ(t))n−α−1exp(λ(ψ(t) − ψ(a))) dt =exp(λ(ψ(x) − ψ(a))) λ−αΓ(n − α) γ(n − α, λ(ψ(x) − ψ(a))).

(15)

Figure 2. Fractional derivative of f (x) = exp(ψ(x) − ψ(0)).

Using the recurrence relation for the lower incomplete gamma function (see [33, Equation (1.4)]) γ(s + 1, z) = sγ(s, z) − zsexp(−z), we deduce that exp(λ(ψ(x) − ψ(a))) λ−αΓ(n − α) γ(n − α, λ(ψ(x) − ψ(a))) =exp(λ(ψ(x) − ψ(a))) λ−αΓ(−α) γ(−α, λ(ψ(x) − ψ(a))) − n−1 X k=0 λk(ψ(x) − ψ(a)) k−α Γ(k − α + 1) . Therefore, we conclude that

Dα,ψa+ exp(λ(ψ(x) − ψ(a)))

=exp(λ(ψ(x) − ψ(a)))

λ−αΓ(−α) γ(−α, λ(ψ(x) − ψ(a))). 

In Figure 2 we show the graphs of the fractional derivatives of the function f (x) = exp(ψ(x) − ψ(0)), with x ∈ [0, 10], with respect to the kernel ψ(x) =√3x + 1, for different values of α.

(16)

Theorem 17. Assume that f ∈ Cn[a, b]. Then, lim α→(n−1)+D α,ψ a+f (x) = f [n−1] ψ (x) and lim α→(n−1)+D α,ψ b−f (x) = (−1) n−1f[n−1] ψ (x).

In addition, if f(n)is continuously differentiable, then

lim α→n−D α,ψ a+f (x) = f [n] ψ (x) and lim α→n−D α,ψ b− f (x) = (−1) nf[n] ψ (x).

Proof. Using formula (3), we deduce that lim α→(n−1)+D α,ψ a+f (x) = lim α→(n−1)+ 1 Γ(n − α) Z x a ψ0(t)(ψ(x) − ψ(t))n−α−1fψ[n](t) dt + n−1 X k=0 fψ[k](a) Γ(k + 1 − α)(ψ(x) − ψ(a)) k−α ! = Z x a ψ0(t)fψ[n](t) dt + fψ[n−1](a) = fψ[n−1](x),

since Γ(k) = ∞, for k ∈ Z−∪ {0}. Suppose now that f ∈ Cn+1[a, b].

Integrating by parts, we get 1 Γ(n−α) Z x a ψ0(t)(ψ(x) − ψ(t))n−α−1fψ[n](t) dt = f [n] ψ (a) Γ(n − α + 1)(ψ(x) − ψ(a)) n−α + 1 Γ(n − α + 1) Z x a (ψ(x) − ψ(t))n−α d dtf [n] ψ (t) dt, and so lim α→n−D α,ψ a+f (x) = f [n] ψ (a) + Z x a d dtf [n] ψ (t) dt = f [n] ψ (x). 

(17)

Theorem 18. Suppose that function f ◦ ψ−1 is analytic in a neighbor-hood of ψ(a) (resp. ψ(b)). Then,

(1) limx→a+Da+α,ψf (x) = ∞ unless f (a) = 0 and Dk(f ◦ψ−1)ψ(a) = 0,

for every k = 1, . . . , n − 1.

(2) limx→b−Dα,ψb−f (x) = ∞ unless f (b) = 0 and Dk(f ◦ψ−1)ψ(b) = 0,

for every k = 1, . . . , n − 1. Proof. Since f ◦ ψ−1 is analytic,

f (x) = ∞ X k=0 Dk(f ◦ ψ−1)ψ(a) k! (ψ(x) − ψ(a)) k, and so Dα,ψa+f (x) = ∞ X k=0 Dk(f ◦ ψ−1)ψ(a) Γ(k + 1 − α) (ψ(x) − ψ(a)) k−α,

proving the desired result. 

Theorem 19. Let (fk) be a sequence of continuous functions on [a, b]

such that Dα,ψa+fk exists for all k ∈ N. If (fk) converges uniformly to

a function f and (Dα,ψa+fk) converges uniformly on [a + , b], for all

0 <  < b − a, then

Da+α,ψf (x) = lim

k→∞D

α,ψ

a+fk(x), x > a.

Also, if Dα,ψb− fk exists for all k ∈ N and (Dα,ψb−fk) converges uniformly

on [a, b − ], for all 0 <  < b − a, then Dα,ψb− f (x) = lim k→∞D α,ψ b− fk(x), x < b. Proof. By Theorem 4, Ia+n−α,ψf (x) = lim k→∞I n−α,ψ a+ fk(x).

On the other hand, since Da+α,ψfk(x) =  1 ψ0(x) d dx n Ia+n−α,ψfk(x)

(18)

and (Da+α,ψfk) converges uniformly on every compact subinterval of (a, b],

we may interchange the limit operator and the differential operator,

concluding the desired formula. 

Theorem 20. Suppose that f ∈ Cn[a, b] and let

K =(ψ(b) − ψ(a))

n−α

Γ(n − α + 1) . If f(k)(a) = 0, for every k = 0, 1, . . . , n−1, then Dα,ψ

a+f (x) is well defined

for every x ∈ [a, b] and kDa+α,ψf k ≤ Kkfψ[n]k. If f(k)(b) = 0, for every

k = 0, 1, . . . , n−1, then Dα,ψb− f (x) is well defined and kDb−α,ψf k ≤ Kkfψ[n]k. Proof. Using formula (3), we deduce the result.  Observe that the condition

f(k)(a) = 0 for every k = 0, 1, . . . , n − 1

is essential. For example, if we consider f (x) = Eα(λ(ψ(x) − ψ(a))α),

then f ∈ Cn[a, b] but

lim

x→a+D α,ψ

a+f (x) = ∞.

Theorem 21. Let f ∈ C1[a, b] and α ∈ (0, 1).

(1) If f0 is nonnegative and f (a) ≥ 0, then Dα,ψa+f is nonnegative. (2) If f0 is nonpositive and f (b) ≥ 0, then Db−α,ψf is nonnegative. Proof. The result follows using the following formula:

Dα,ψa+f (x) = 1 Γ(1−α) Z x a (ψ(x)−ψ(t))−αf0(t) dt+ f (a) Γ(1−α)(ψ(x)−ψ(a)) −α.  Theorem 22. Let f ∈ C[a, b] and g ∈ Cn[a, b] such that Da+α,ψg and Dα,ψb− g exist on [a, b]. Then,

Z b a f (x)Dα,ψa+g(x) dx = Z b a Dα,ψb−  f (x) ψ0(x)  g(x)ψ0(x) dx

(19)

and Z b a f (x)Dα,ψb−g(x) dx = Z b a Dα,ψa+ f (x) ψ0(x)  g(x)ψ0(x) dx.

Proof. Since g is of class Cn, thenCDa+α,ψg andCDα,ψb−g are continu-ous functions on [a, b] (see [2, Theorem 2]). Also, by (3) and (4), we conclude that g[k]ψ (a) = gψ[k](b) = 0, for all k = 0, 1, . . . , n − 1. Therefore, by [2, Theorem 12] Z b a f (x)Da+α,ψg(x) dx = Z b a f (x)CDα,ψa+g(x) dx = Z b a Dα,ψb− f (x) ψ0(x)  g(x)ψ0(x) dx. 

Theorem 23. Suppose that function f ◦ ψ−1 is analytic on [ψ(a), ψ(b)]. Then, for all x ∈ [a, b],

(6) Da+α,ψf (x) = ∞ X k=0 Dk(f ◦ ψ−1)ψ(a) Γ(k − α + 1) (ψ(x) − ψ(a)) k−α and Dα,ψb−f (x) = ∞ X k=0 (−1)kDk(f ◦ ψ−1)ψ(b) Γ(k − α + 1) (ψ(b) − ψ(x)) k−α.

Proof. Considering the series f (x) = (f ◦ ψ−1)(ψ(x)) = ∞ X k=0 Dk(f ◦ ψ−1)ψ(a) k! (ψ(x) − ψ(a)) k

and Lemma 14, we obtain formula (6). 

Theorem 24. Suppose that function f ◦ ψ−1 is analytic on [ψ(a), ψ(b)]. Then, for all x ∈ [a, b],

Dα,ψa+f (x) = ∞ X k=0 α k Dk(f ◦ ψ−1)ψ(x) Γ(k − α + 1) (ψ(x) − ψ(a)) k−α

(20)

and Db−α,ψf (x) = ∞ X k=0 (−1)kα k Dk(f ◦ ψ−1)ψ(x) Γ(k − α + 1) (ψ(b) − ψ(x)) k−α.

Proof. By definition of fractional derivative, Dα,ψa+f (x) =  1 ψ0(x) d dx n Ia+n−α,ψf (x) =  1 ψ0(x) d dx n ∞ X k=0 α−n k Dk(f ◦ψ−1)ψ(x) Γ(k+n−α+1) (ψ(x)−ψ(a)) k+n−α = ∞ X k=0 α−n k  1 Γ(k+n−α+1)  1 ψ0(x) d dx n Dk(f ◦ψ−1)ψ(x)(ψ(x)−ψ(a))k+n−α = ∞ X k=0 α−n k Xn j=0 n j Dk+j(f ◦ψ−1)ψ(x) Γ(k+j −α+1) (ψ(x)−ψ(a)) k+j−α = ∞ X k=0 ∞ X j=0 α−n k n j Dk+j(f ◦ψ−1)ψ(x) Γ(k+j −α+1) (ψ(x)−ψ(a)) k+j−α, since n j  = 0, j > n.

Letting k0= k + j and using the identity [31, Equation (1.53)]

p X l=0 a l  b p−l  =a+b p  , we obtain Dα,ψa+f (x) = ∞ X k0=0 k0 X k=0 α−n k  n k0−k Dk 0 (f ◦ ψ−1)ψ(x) Γ(k0− α + 1) (ψ(x) − ψ(a)) k0−α = ∞ X k0=0 α k0 Dk 0 (f ◦ ψ−1)ψ(x) Γ(k0− α + 1) (ψ(x) − ψ(a)) k0−α . 

(21)

Theorem 25. Let β > 0 and m = [β] + 1 be two reals.

(1) If f (x) = Ia+α+β,ψg(x), for some continuous function g : [a, b] → R, then

(7) Da+α,ψDa+β,ψf (x) = Dα+β,ψa+ f (x).

(2) If f (x) = Ib−α+β,ψg(x), for some continuous function g : [a, b] → R, then

Db−α,ψDb−β,ψf (x) = Dα+β,ψb− f (x). Proof. Evaluating the left-hand side of equation (7): Dα,ψa+Dβ,ψa+f (x) =  1 ψ0(x) d dx n Ia+n−α,ψ  1 ψ0(x) d dx m Ia+m−β,ψIa+α+β,ψg(x) =  1 ψ0(x) d dx n Ia+n−α,ψ  1 ψ0(x) d dx m Ia+m,ψIa+α,ψg(x) =  1 ψ0(x) d dx n Ia+n−α,ψIa+α,ψg(x) =  1 ψ0(x) d dx n Ia+n,ψg(x) = g(x). On the other hand,

Dα+β,ψa+ f (x) =  1 ψ0(x) d dx [α+β]+1 Ia+[α+β]+1−α−β,ψIa+α+β,ψg(x) = g(x). Therefore, Da+α,ψDa+β,ψf (x) = Dα+β,ψa+ f (x).  Theorem 26. Let λ > −1 and β ∈ R with β < λ + 1.

(1) If f (x) = (ψ(x) − ψ(a))λg(ψ(x) − ψ(a)), for some function g of

form g(x) =P∞

k=0anxk, then

Da+α,ψDa+β,ψf (x) = Dα+β,ψa+ f (x).

(2) If f (x) = (ψ(b) − ψ(x))λg(ψ(b) − ψ(x)), for some function g of

form g(x) =P∞

k=0anx k, then

(22)

Proof. Since f (x) = ∞ X k=0 an(ψ(x) − ψ(a))k+λ, we get that Dβ,ψa+f (x) = ∞ X k=0 an Γ(k + λ + 1) Γ(k + λ + 1 − β)(ψ(x) − ψ(a)) k+λ−β.

Since k + λ − β > −1, for all k ∈ N ∪ {0}, Dα,ψa+Dβ,ψa+f (x) = ∞ X k=0 an Γ(k+λ+1) Γ(k+λ+1−β−α)(ψ(x)−ψ(a)) k+λ−β−α = Dα+β,ψa+ f (x). 

Theorem 27. Given a positive integer m, we have

 1 ψ0(x) d dx m Dα,ψa+f (x) = Da+m+α,ψf (x) and  − 1 ψ0(x) d dx m Dα,ψb−f (x) = Dm+α,ψb− f (x). Proof. It is straightforward. 

Theorem 28. Let f be a function of class Cm

, with m ∈ N. Then, Dα,ψa+  1 ψ0(x) d dx m f (x) = Da+α+m,ψf (x) − m−1 X k=0 f[k](a) Γ(k + 1 − α − m)(ψ(x) − ψ(a)) k−α−m and Dα,ψb−  − 1 ψ0(x) d dx m f (x) = Dm+α,ψb− f (x) − m−1 X k=0 (−1)kf[k](b) Γ(k + 1 − α − m)(ψ(b) − ψ(x)) k−α−m.

(23)

Proof. Using Theorems 6 and 8, together with Lemma 14, we deduce the following: Dα,ψa+  1 ψ0(x) d dx m f (x) =  1 ψ0(x) d dx n Ia+n−α,ψ  1 ψ0(x) d dx m f (x) =  1 ψ0(x) d dx n+m Ia+m,ψIa+n−α,ψ  1 ψ0(x) d dx m f (x) = Da+α+m,ψIa+m,ψ  1 ψ0(x) d dx m f (x) = Da+α+m,ψ  f (x) − m−1 X k=0 f[k](a) k! (ψ(x) − ψ(a)) k  = Da+α+m,ψf (x) − m−1 X k=0 f[k](a) Γ(k + 1 − α − m)(ψ(x) − ψ(a)) k−α−m 

Therefore, we verify that fractional operator Da+α,ψ commutes with (1/ψ0(x) d/dx)monly if f[k](a) = 0, for every k = 0, . . . , m − 1.

4. Fractional integrals and fractional derivatives. Similarly to ordinary integrals and ordinary derivatives, fractional integration and fractional differentiation are inverse operations, as we shall see below.

Theorem 29. If f is continuous, then, for every x, Da+α,ψIa+α,ψf (x) = Dα,ψb− Ib−α,ψf (x) = f (x).

Proof. By definition and using Theorem 6, we have Dα,ψa+Ia+α,ψf (x) =  1 ψ0(x) d dx n Ia+n−α,ψIa+α,ψf (x) =  1 ψ0(x) d dx n Ia+n,ψf (x) = f (x). 

(24)

Theorem 30. Let f ∈ Cn[a, b] be a function such that Dα,ψ a+f and

Dα,ψb− f exist on [a, b]. Then, Ia+α,ψD α,ψ a+f (x) = I α,ψ b− D α,ψ b− f (x) = f (x).

Proof. Since f is of class Cn, by (3), we have that

Da+α,ψf (x) =CDα,ψa+f (x) and fψ[k](a) = 0 for all k = 0, 1, . . . , n − 1. Therefore, by [2, Theorem 4]

Ia+α,ψDa+α,ψf (x) = Ia+α,ψCDα,ψa+f (x) = f (x).  Theorem 31. If f is continuous, then given m ∈ N with m ≥ n, we have Dα,ψa+f (x) =  1 ψ0(x) d dx m Ia+m−α,ψf (x) and Dα,ψb− f (x) =  − 1 ψ0(x) d dx m Ib−m−α,ψf (x).

Proof. Using the semigroup law for fractional integrals and Theorem 6, we deduce the following:

 1 ψ0(x) d dx m Ia+m−α,ψf (x) =  1 ψ0(x) d dx n 1 ψ0(x) d dx m−n Ia+m−n,ψf (x)Ia+n−α,ψf (x) =  1 ψ0(x) d dx n Ia+n−α,ψf (x) = D α,ψ a+f (x). 

Theorem 32. Let f be a continuous function, β > 0 a real with α+β < n, and m = [β] + 1.

(1) If Dβ,ψa+f is a continuous function, then

Da+α,ψDa+β,ψf (x) = Da+α+β,ψf (x) − m X k=1 Dβ−k,ψa+ f (a) Γ(1 − α − k)(ψ(x) − ψ(a)) −α−k.

(25)

(2) If Dβ,ψb−f is a continuous function, then Dα,ψb− Db−β,ψf (x) = Db−α+β,ψf (x) − m X k=1 Db−β−k,ψf (b) Γ(1 − α − k)(ψ(b) − ψ(x)) −α−k.

Proof. Using Theorem 30, we get Dα,ψa+Dβ,ψa+f (x) =  1 ψ0(x) d dx n Ia+n−α,ψDa+β,ψf (x) =  1 ψ0(x) d dx n Ia+n−α−β,ψIa+β,ψDβ,ψa+f (x) =  1 ψ0(x) d dx n Ia+n−α−β,ψ  f (x)− m X k=1 Dβ−k,ψa+ f (a)(ψ(x)−ψ(a)) β−k Γ(β−k+1)  =  1 ψ0(x) d dx n Ia+n−α−β,ψf (x) − m X k=1 Dβ−k,ψa+ f (a)  1 ψ0(x) d dx n(ψ(x)−ψ(a))n−α−k Γ(n−α−k+1) = Da+α+β,ψf (x)− m X k=1 Dβ−k,ψa+ f (a) Γ(1−α−k)(ψ(x)−ψ(a)) −α−k.

We remark that, by Theorem 6, and using the fact that n = [α + β] + m, for some m ∈ N,  1 ψ0(x) d dx n Ia+n−α−β,ψf (x) =  1 ψ0(x) d dx [α+β]+1 1 ψ0(x) d dx m−1 Ia+m−1,ψIa+[α+β]+1−α−β,ψf (x) =  1 ψ0(x) d dx [α+β]+1 Ia+[α+β]+1−α−β,ψf (x) = Dα+β,ψa+ f (x). 

5. Expansion formulas for fractional integrals and deriva-tives. In this section, we present a decomposition formula for the fractional operators, involving integer order derivatives only. This way,

(26)

we can rewrite any given fractional problem depending on a fractional integral or a fractional derivative by replacing the fractional operator with our formula. The result then is an ordinary problem that we can solve by any known standard technique.

Theorem 33. Let f be a function of class C1 and N a positive integer.

Then, Ia+α,ψf (x) = AN(ψ(x)−ψ(a))αf (x)− N X k=1 Bk(ψ(x)−ψ(a))α−kVk(t)+EN(t) and Ib−α,ψf (x) = AN(ψ(b)−ψ(x))αf (x)− N X k=1 Bk(ψ(b)−ψ(x))α−kWk(t)+EN(t), where AN := 1 Γ(α + 1)  1 + N X k=1 (−1)kα k  , Bk:= (−1)k Γ(α + 1) α k  , k = 1, . . . , N, Vk(t) := Z x a kψ0(t)(ψ(t) − ψ(a))k−1f (t) dt, k = 1, . . . , N, Wk(t) := Z b x kψ0(t)(ψ(b) − ψ(t))k−1f (t) dt, k = 1, . . . , N, and lim

N →∞EN(t) = limN →∞EN(t) = 0 for all t ∈ [a, b].

Proof. Integrating by parts, we obtain the formula Ia+α,ψf (x) = f (a) Γ(α + 1)(ψ(x)−ψ(a)) α+ 1 Γ(α + 1) Z x a (ψ(x)−ψ(t))αf0(t) dt. Using the binomial theorem, we get that

(ψ(x) − ψ(t))α= (ψ(x) − ψ(a))α  1 −ψ(t) − ψ(a) ψ(x) − ψ(a) α = ∞ X k=0 (ψ(x) − ψ(a))α−k(−1)kα k  (ψ(t) − ψ(a))k.

(27)

If we define the error function EN by the expression EN(t) :=(ψ(x)−ψ(a)) α Γ(α+1) ∞ X k=N +1 (−1)k (ψ(x)−ψ(a))k α k Z x a (ψ(t)−ψ(a))kf0(t) dt, then we obtain Ia+α,ψf (x) = f (a) Γ(α + 1)(ψ(x) − ψ(a)) α+(ψ(x) − ψ(a)) α Γ(α + 1) × N X k=0 (−1)k (ψ(x) − ψ(a))k α k Z x a (ψ(t) − ψ(a))kf0(t) dt + EN(t).

Decomposing the infinite sum, integrating, and doing another integration by parts allows us to write

Ia+α,ψf (x) = f (a) Γ(α+1)(ψ(x)−ψ(a)) α +(ψ(x)−ψ(a)) α Γ(α+1) Z x a f0(t) dt+ N X k=1 (−1)k(ψ(x)−ψ(a))α−k Γ(α+1) α k  ×  (ψ(x)−ψ(a))kf (x)− Z x a kψ0(t)(ψ(t)−ψ(a))k−1f (t) dt  +EN(t) = AN(ψ(x)−ψ(a))αf (x)− N X k=1 Bk(ψ(x)−ψ(a))α−kVk(t)+EN(t).

To end the proof, let us see that lim

N →∞EN(t) = 0 for all t ∈ [a, b].

For that purpose, let

M := max

t∈[a,b]

|f0(t)|.

Attending that, for all t ∈ [a, x], ψ(t) − ψ(a) ψ(x) − ψ(a) ≤ 1,

(28)

and that (see [31, Equation (1.51)], α k  ≤ c k1+α as k → ∞, we deduce that ∞ X k=N +1 α k  ≤ Z ∞ N c kα+1dk = c αNα,

for k sufficiently large. So, in conclusion, we have the following upper-bound:

|EN(t)| ≤ M c

(ψ(x) − ψ(a))α(x − a) αΓ(α + 1)Nα ,

which converges to zero, as N goes to infinity.  We now show the accuracy of the given method. Fix the kernel ψ(x) =√3x + 1, with x ∈ [0, 10], and the functions f (x) = (ψ(x) − ψ(0))3

and g(x) = (ψ(10) − ψ(x))3. We present the obtained results for the

fractional order α = 0.5 (Figure 3). The continuous curves are the plots of I0+0.5,ψf (x) and I10−0.5,ψg(x), given by (1), (2), and the dashed lines are the numerical results from Theorem 33 for different values of N . We also display the error of the approximation as the absolute value of the dif-ference between the exact expression and the numerical approximation. Next, we obtain the expansion formulas for the left and right fractional derivatives.

Theorem 34. Let f be a function of class Cn+1

and N ∈ N with N ≥ n + 1. Then, Dα,ψa+f (x) = n X k=0 Ak,N(ψ(x) − ψ(a))k−αf [k] ψ (x) − N X k=n+1 Bk(ψ(x) − ψ(a))n−α−kVk(t) + EN(t) and Dα,ψb− f (x) = n X k=0 (−1)kAk,N(ψ(b) − ψ(x))k−αf [k] ψ (x) − N X k=n+1 Bk(ψ(b) − ψ(x))n−α−kWk(t) + EN(t),

(29)

I0+0.5,ψf (x) error for I0+0.5,ψf (x)

I10−0.5,ψg(x) error for I10−0.5,ψg(x) Figure 3. Left and right fractional integrals of order α = 0.5. where Ak,N:= 1 Γ(k−α+1)  1 + N X j=n−k+1 (−1)j+k−n k−α j +k−n  , Bk:= (−1)k−n Γ(1−α)  −α k−n  , Vk(t) := Z x a (k − n)ψ0(t)(ψ(t) − ψ(a))k−n−1f (t) dt, Wk(t) := Z b x (k − n)ψ0(t)(ψ(b) − ψ(t))k−n−1f (t) dt,

(30)

and

lim

N →∞EN(t) = limN →∞EN(t) = 0 for all t ∈ [a, b].

Proof. Starting with (3), and integrating by parts, we arrive at

Da+α,ψf (x) = n−1 X k=0 fψ[k](a) Γ(k+1−α)(ψ(x)−ψ(a)) k−α + 1 Γ(n−α) Z x a ψ0(t)(ψ(x)−ψ(t))n−α−1fψ[n](t) dt = n X k=0 fψ[k](a) Γ(k+1−α)(ψ(x)−ψ(a)) k−α +(ψ(x)−ψ(a)) n−α Γ(n+1−α) Z x a  1−ψ(t)−ψ(a) ψ(x)−ψ(a) n−α d dtf [n] ψ (t) dt.

By the binomial theorem, and splitting the sum and performing an integration by parts, we get

Dα,ψa+f (x) = n X k=0 fψ[k](a) Γ(k+1−α)(ψ(x)−ψ(a)) k−α + N X k=0 (−1)k(ψ(x)−ψ(a))n−α−k Γ(n+1−α) n−α k  × Z x a (ψ(t)−ψ(a))k d dtf [n] ψ (t) dt+EN(t) = n X k=0 fψ[k](a) Γ(k+1−α)(ψ(x)−ψ(a)) k−α+(ψ(x)−ψ(a))n−α Γ(n+1−α) Z x a d dtf [n] ψ (t) dt + N X k=1 (−1)k(ψ(x)−ψ(a))n−α−k Γ(n+1−α) n−α k  ×  (ψ(x)−ψ(a))kfψ[n](x) − Z x a kψ0(t)(ψ(t)−ψ(a))k−1fψ[n](t)  dt+EN(t)

(31)

= n−1 X k=0 fψ[k](a) Γ(k+1−α)(ψ(x)−ψ(a)) k−α+A n,N(ψ(x)−ψ(a))n−αf [n] ψ (x) − N X k=1 (−1)k(ψ(x)−ψ(a))n−α−k Γ(n−α) n−α−1 k−1  × Z x a (ψ(t)−ψ(a))k−1d dtf [n−1] ψ (t) dt+EN(t), where EN(t) := (ψ(x) − ψ(a))n−α Γ(n + 1 − α) × ∞ X k=N +1 (−1)kn−α k Z x a  ψ(t) − ψ(a) ψ(x) − ψ(a) k d dtf [n] ψ (t) dt. Observe that k Γ(n + 1 − α) n−α k  = k Γ(n + 1 − α) Γ(n + 1 − α) Γ(n − α − k + 1)k! = 1 Γ(n − α) n−α−1 k−1  .

Splitting the sum again into the first term k = 1 and the remaining terms k = 2, . . . , N , and then using integration by parts, we get

Da+α,ψf (x) = n−1 X k=0 fψ[k](a) Γ(k+1−α)(ψ(x)−ψ(a)) k−α +An,N(ψ(x)−ψ(a))n−αf [n] ψ (x) +(ψ(x)−ψ(a)) n−α−1 Γ(n−α) Z x a d dtf [n−1] ψ (t) dt − N X k=2 (−1)k(ψ(x)−ψ(a))n−α−k Γ(n−α) n−α−1 k−1  ×  (ψ(x)−ψ(a))k−1fψ[n−1](x) − Z x a (k−1)ψ0(t)(ψ(t)−ψ(a))k−2fψ[n−1](t)  dt+EN(t)

(32)

= n−2 X k=0 fψ[k](a) Γ(k+1−α)(ψ(x)−ψ(a)) k−α + n X k=n−1 Ak,N(ψ(x)−ψ(a))k−αf [k] ψ (x) − N X k=2 (−1)k−1(ψ(x)−ψ(a))n−α−k Γ(n−α−1) n−α−2 k−2  × Z x a (ψ(t)−ψ(a))k−2d dtf [n−2] ψ (t) dt+EN(t).

Repeating this procedure, we arrive at the desired formula. For the error, let M := max

t∈[a,b] dtdf [n] ψ (t) . Then, |EN(t)| ≤ M c (ψ(x) − ψ(a))n−α(x − a) (n − α)Γ(n − α + 1)Nn−α, and so lim N →∞EN(t) = 0. 

To test the result, we again consider ψ(x) =√3x + 1, with x ∈ [0, 10],

and the function f (x) = (ψ(x) − ψ(0))3. In Figure 4, we exhibit the graphs of the left fractional derivatives for order α = 0.5 with three different values of N . We do the same in Figure 5 for α = 1.5.

D0+0.5,ψf (x) error for D 0.5,ψ 0+ f (x)

(33)

D0+1.5,ψf (x) error for D0+1.5,ψf (x) Figure 5. Left fractional derivatives of order α = 1.5.

REFERENCES

1. M.S. Abdelouahab and N.E. Hamri, The Gr¨unwald–Letnikov fractional-order derivative with fixed memory length, Mediterr. J. Math. 13 (2016), 557–572.

2. R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 460–481.

3. M.A. Balci, Fractional virus epidemic model on financial networks, Open Math. 14 (2016), no. 1, 1074–1086.

4. P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl. 269 (2002), no. 1, 1–27.

5. P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl. 269 (2002), no. 2, 387–400.

6. L.M.B.C. Campos, On generalizations of the series of Taylor, Lagrange, Laurent and Teixeira, Internat. J. Math. Math. Sci. 13 (1990), no. 4, 687–708.

7. J.M. Carcione, Theory and modeling of constant-Q P- and S-waves using fractional time derivatives, Geophys. 74 (2009), no. 1, T1–T11.

8. W. Chen and G. Pang, A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction, J. Comput. Phys. 309 (2016), 350–367.

9. Y. Cho, I. Kim and D. Sheen, A fractional-order model for MINMOD millennium, Math. Biosci. 262 (2015), 36–45.

10. A. El-Ajou, O.A. Arqub, Z.A. Zhour and S. Momani, New results on fractional power series: theories and applications, Entropy 15 (2013), 5305–5323.

(34)

the generalized chain rule for fractional derivatives, J. Complex Anal. (2014), art. id. 820951, 7 pp.

12. N.M. Grahovac and M.M. ˇZigi´c, Modelling of the hamstring muscle group by use of fractional derivatives, Comput. Math. Appl. 59 (2010), no. 5, 1695–1700.

13. F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Difference Equ. (2012), art. id. 142, 8 pp.

14. S.L. Kalla and V.S. Kiryakova, An H-function generalized fractional calculus based upon compositions of Erd´elyi–Kober operators in Lp, Math. Japonica 35

(1990), 1–21.

15. L. Khitri-Kazi-Tani and H. Dib, On the approximation of Riemann–Liouville integral by fractional nabla h-sum and applications, Mediterr. J. Math. 14 (2017), no. 2, art. id. 86, 21 pp.

16. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam (2006).

17. J.-L. Lavoie, T.J. Osler and R. Tremblay, Fundamental properties of fractional derivatives via Pochhammer integrals, pp. 323–356 in Fractional calculus and its applications (West Haven, Connecticut, 1974), Lecture Notes in Mathematics 457, Springer (1975).

18. C. Li, D. Qian and Y.Q. Chen, On Riemann–Liouville and Caputo derivatives, Discrete Dyn. Nat. Soc. (2011), art. id. 562494, 15 pp.

19. R.L. Magin and M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus, J. Vib. Control 14 (2008), no. 9-10, 1431–1442.

20. S. Min, Some algebra of Leibniz rule for fractional calculus, Int. J. Innov. Sci. Math. 4 (2016), no. 6, 204–208.

21. M.A. Moreles and R. Lainez, Mathematical modelling of fractional order circuit elements and bioimpedance applications, Commun. Nonlinear Sci. Numer.

Simul. 46 (2017), 81–88.

22. T.J. Osler, Leibniz rule for fractional derivatives and an application to infinite series, SIAM J. Appl. Math. 18 (1970), 658–674.

23. T.J. Osler, The fractional derivative of a composite function, SIAM J. Math. Anal. 1 (1970), 288–293.

24. T.J. Osler, Leibniz the chain rule and Taylor’s theorem for fractional derivatives. Doctoral thesis. New York University (1970).

25. T.J. Osler, Taylor’s series generalized for fractional derivatives and applica-tions, SIAM J. Math. Anal. 2 (1971), 37–48.

26. T.J. Osler, A further extension of the Leibniz rule to fractional derivatives and its relation to Parseval’s formula, SIAM J. Math. Anal. 3 (1972), 1–16.

27. T.J. Osler, A correction to Leibniz rule for fractional derivatives, SIAM J. Math. Anal. 4 (1973), 456–459.

28. E. Reyes-Melo, J. Martinez-Vega, C. Guerrero-Salazar and U. Ortiz-Mendez, Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials, J. Appl. Polymer Sci. 98 (2005), no. 2, 923–935.

(35)

29. H.E. Roman and M. Porto, Fractional derivatives of random walks: time series with long-time memory, Phys. Rev. E 78 (2008), art. id. 031127.

30. Y.A. Rossikhin and M.V. Shitikova, Analysis of two colliding fractionally damped spherical shells in modelling blunt human head impacts, Cent. Eur. J. Phys. 11 (2013), no. 6, 760–778.

31. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional integrals and derivatives. Translated from the 1987 Russian original. Gordon and Breach, Yverdon (1993).

32. I.N. Sneddon, The use in mathematical analysis of Erd´elyi–Kober operators and some of their applications, pp. 37–79 in Fractional calculus and its applications (West Haven, Connecticut, 1974), Lecture Notes in Math. 457, Springer (1975).

33. N.M. Temme, Computational aspects of incomplete gamma functions with large complex parameters, pp. 551–562 in Approximation and computation (West Lafayette, Indiana, 1993), R.V.M. Zahar ed., Birkh¨auser, Boston (1994).

34. R. Tremblay, Une contribution `a la th´eorie de la d´eriv´ee fractionnaire, Ph. D. thesis, Laval University, Canada (1974).

35. J.J. Trujillo and M. Rivero and B. Bonilla, On a Riemann–Liouville generalized Taylor’s formula, J. Math. Anal. Appl. 231 (1999), no. 1, 255–265. Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, Aveiro, Por-tugal

Referências

Documentos relacionados

Desvia para a direita o plano de polarisação da luz, tendo um poder rotatório molecular (a)=10,42 por uma extensão de 100 m,]1. Segundo Gubler,o Eucalyptol associado ao &#34;alcool

Este procedimento de cálculo, foi adoptado por outros países e adaptado ao tipo de tipologias estruturais locais ( Albuquerque, P.. Em suma, a avaliação da segurança sísmica segundo

O CNAD avaliará o pedido do médico e poderá autorizar a administração da substância e/ou método proibido se os seguintes critérios estiverem presentes: - o praticante desportivo

Tem estudantes que manejam redes sociais, controlam blogs, mas quando são questionados sobre conceitos ou sobre como usar os elementos do blog, das redes, de forma mais efetiva,

As discussões de base fundamentalmente teóricas empreendidas nas seções anteriores convergem aqui para a descrição semântica dos verbos selecionados no corpus e para a construção

A relevância deste trabalho é contribuir no campo da cardiologia preventiva, viabili- zando o acesso do paciente ao conhecimento das DCV’s por meio da educação em saúde da

Os conteúdos iniciais de formação musical, da prática vocal e também de consciência corporal são extremamente valiosos como primeira abordagem da aprendizagem musical, e