• Nenhum resultado encontrado

An original method for producing acetaldehyde and diacetyl by yeast fermentation

N/A
N/A
Protected

Academic year: 2021

Share "An original method for producing acetaldehyde and diacetyl by yeast fermentation"

Copied!
6
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Industrial

Microbiology

An

original

method

for

producing

acetaldehyde

and

diacetyl

by

yeast

fermentation

Irina

Rosca

a

,

Anca

Roxana

Petrovici

a,

,

Mihai

Brebu

a

,

Irina

Stoica

b

,

Bogdan

Minea

a,c

,

Narcisa

Marangoci

a

a“PetruPoni”InstituteofMacromolecularChemistry,AdvancedResearchCenterforBionanoconjugatesandBiopolymers, AleeaGrigoreGhicaVoda,Iasi,Romania

bSCZeelandiaSRL,R&DDepartment,ValeaLupului,Iasi,Romania c“GrigoreT.Popa”UniversityofMedicineandPharmacy,Iasi,Romania

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2June2015 Accepted29February2016 Availableonline25July2016 AssociateEditor:JorgeGonzalo FariasAvendano

Keywords:

Acetaldehyde Diacetyl

YADculturemedium Yeastfermentation

a

b

s

t

r

a

c

t

Inthisstudyanaturalculturemediumthatmimicsthesyntheticyeastpeptoneglucose medium usedforyeastfermentationswasdesignedtoscreenandselectyeastscapable ofproducinghighlevelsofdiacetylandacetaldehyde.Thepresenceofwheypowderand sodiumcitrateinthemediumalongwithmanganeseandmagnesiumsulfateenhanced bothbiomassandaromadevelopment.Atotalof52yeastsstrainswerecultivatedintwo differentculturemedia,namely,yeastpeptoneglucosemediumandyeast acetaldehyde-diacetylmedium.Theinitialscreeningofthestrainswasbasedonthequalitativereaction oftheacetaldehydewithSchiff’sreagent(violetcolor)anddiacetylwithBrady’sreagent (yellowprecipitate).Thefermentedculturemediaof10yeaststrainsweresubsequently analyzedbygaschromatographytoquantifytheconcentrationofacetaldehydeanddiacetyl synthesized.Totaltitratableacidityvaluesindicatedthatatotaltitratableacidityof5.5◦SH, implyingculturemediumatbasicpH,wasmorefavorablefortheacetaldehydebiosynthesis usingstrainD15(Candidalipolytica;96.05mgL−1acetaldehyde)whileatotaltitratableacidity valueof7◦SHfacilitateddiacetylflavorsynthesisbystrainD38(Candidaglobosa;3.58mgL−1 diacetyl).Importantly,theresultspresentedheresuggestthatthiscanbepotentiallyused inthebakingindustry.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Introduction

Yeastsarecommonlyusedasstarterculturesforincreasing product-specificaromaproductionduringvarious fermenta-tionprocesses(cheese,kefir,sourdough,wine,beer,etc.),as

Correspondingauthor.

E-mail:petrovici.anca@icmpp.ro(A.R.Petrovici).

theyarecapableofsynthesizingnaturalflavorslike acetalde-hyde (ethanal) or diacetyl (2,3-butanedione) which inturn servetoenhancethequalityofthefood.1Acetaldehydeisthe

mostimportantcarbonyl compoundproduced during alco-holicfermentationwithfinalconcentrationstypicallyvarying between10and200mgL−1dependingontechnologicalfactors

http://dx.doi.org/10.1016/j.bjm.2016.07.005

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

suchasculturemediumcomposition,pH,fermentation tem-perature,aerationandSO2 concentration,andonthe yeast

strainused.2,3Acetaldehydeisfoundinavarietyoffoodsand

beveragessuchascheese,yogurt,beer,and wine.4,5

Gener-ally,acetaldehydelevelsreachtheirpeakvaluesintheearly fermentationphase;itisthenpartlyreutilizedbytheyeasts duringtherest ofthefermentationprocess.6 Acetaldehyde

isresponsibleforthegreenapplearomainalimentary prod-ucts and, usually, the added acetaldehyde is produced by chemicalsynthesis.Contrarily,byaddingusingacetaldehyde producedbybiosynthesisrenderstheproductsafeforhuman consumption, and the inadvertent addition of the byprod-ucts of chemical acetaldehyde synthesis can be avoided. Diacetylisalmostexclusivelysynthesizedbylacticacid bacte-riaand isthe key flavor compound naturally produced by theLeuconostocsp.7,8 Diacetylisanimportantflavoring

com-pound that determines specific characteristics of products suchasfermentedmilksand,atverylowconcentrations(up to5mgL−1), isalsoresponsible for the characteristic “but-tery”aromaofmilkproducts.9Furthermore,itisknownthat

whileSaccharomycescerevisiaeproduces132.4mgL−1 acetalde-hyde,lessthan1mgL−1diacetylisproducedduringredwine fermentation.10–12 Thus, by using a potential fermentation

mixthatcanproducebothacetaldehydeanddiacetylduring the fermentationprocess,inplace ofachemically synthe-sizedproduct,itispossibletoconfirmtothecurrentglobal trendofreplacingsyntheticproductswithnaturallyobtained products,whileconcurrentlysatisfyingconsumerdemandfor naturalcompoundsinalimentaryproducts.

Therefore,themainobjectiveofthisstudywastoidentify yeastscapableofbiosynthesizinghighamountsof acetalde-hydeanddiacetylandtoassesstheirproposeduseasnatural productsinfermentationproductsduringindustrial produc-tion.Thisisnecessarybecause anyproducton themarket thatalreadycontains thisaromacannotbefurtherusedin patisserieproducts.

Materials

and

methods

Yeaststrains

Theyeastsstrainsutilizedinthisstudywereisolatedfrom var-ioussourcesinthelaboratoriesofBIOALIMENT(biotechnology appliedinfoodindustry–integratedcenterforresearchand education),“DunareadeJos”,UniversityofGalati,Facultyof FoodScienceand Engineering. Everystrainwas assigned a uniquecodeintheMIUGcollectionofthe“DunareadeJos” UniversityofGalati,and simultaneously,auniquecode for themicroorganismcollectionofthe“PetruPoni”Instituteof MacromolecularChemistry(ICMPP).Purestrainswerestored at−80◦C in YPG culturemedium supplemented with20%

glycerol.13Further,thetaxonomicclassificationoftheisolated

yeastswasdeterminedandflavorproductionwasfollowedby gaschromatography(GS).

Cultureconditions

Inthisstudy,wedesignedandusedanaturalculturemedium, yeastacetaldehyde-diacetylmedium(YAD),thatcouldmimic the synthetic YPG culture medium, to select yeast strains

capableofproducinghighlevelsofdiacetylandacetaldehyde. Importantly, the sodium citrate, manganese and magne-sium sulfate, which are part of the YAD culture medium, are consumed by the microorganisms during growth and biosynthesis, thereby rendering the YAD culture medium ‘natural’. For selecting yeast strains capable of producing diacetyl and acetaldehyde, wedesigned a culturemedium with the following composition: 10gL−1 dextrose; 50gL−1 yeast extract; 5gL−1 sodium citrate;10gL−1 whey powder; 0.05gL−1 manganese sulfate; 0.2gL−1 magnesium sulfate. ThepHwasadjustedbetween6and7using0.1NHCl.The culturemediumwassterilizedat120◦Cfor20min,andthis culturemediumwasdesignatedYAD(yeastdiacetyl acetalde-hyde). The dormant yeasts were activated by inoculating theminstandardYPGmediumandtransferredtoYAD cul-turemediumduringtheloggrowthphasebyinoculating5mL ofYADculturemediumwitha20%yeastsuspensionthatwas activatedinYPGmediumfor24handhadanabsorbanceof 0.5at600nm.Thecultureswereincubatedat30◦Cfor48h under static conditions inorder to reducethe evaporation ofvolatilesubstances. Afterfermentation,themediumwas filteredtoremovecellsandsubjectedtoGaschromatography for identification and quantification of acetaldehyde and diacetylproduction.

IdentificationoftheyeaststrainsusingID32CTM

ID32CTMisastandardizedsystemofyeastidentificationthat

uses32miniaturizedassimilationtestsandadatabase.The ID32CTMstripconsistsof32cupules,eachcontaininga

dehy-dratedcarbohydratesubstrate.Asemi-solid,minimalmedium isaddedalongwithasuspensionoftheyeasttobetested. After24–48hofincubation,growthineachcupulewasread usingtheATBExpression,theminiAPIinstrument,orvisually. IdentificationwasperformedusingtheApiwebTM

identifica-tionsoftware.

Detectionofdiacetylandacetaldehydeinculturemedium

DetectionofaldehydeswithSchiff’sreagent

Schiff’stestisaqualitativetestforthepresenceofaldehyde functional groups wherein,acolorlessSchiff reagent turns into acharacteristicvioletcolorwhen aldehydegroups are presentinthesampleadded.14Thereactionwasperformed

byadding500␮LofSchiff’sreagenttothe5mLofmedium fer-mentedfor48hat30◦C.Themediasampleswereassigned scoresbetween0and5basedonreactionintensityat5safter reagent addition, with0denoting noacetaldehyde produc-tion;1–3denotinglowproductionofacetaldehyde,4denoting good productionofacetaldehyde,and5denotingverygood productionofacetaldehyde.Onlysampleswithhighaldehyde content(score5)werefurthertestedtodetermineif acetalde-hydewasindeedpresentinhighamounts.

DetectionofdiacetylwithBrady’sreagent

2,4-Dinitrophenylhydrazine (DNPH, Brady’s reagent) is a chemicalcompoundwhichcanbeusedtoqualitativelydetect the presenceofketoneor aldehyde functional groups.The test isconsidered positiveif ayellow(aliphatic), orange or red (aromatic) precipitate ispresent. DNPH does not react

(3)

withothercarbonyl-containingfunctionalgroupssuchas car-boxylic acids, amidesor esters.15 The test was performed

by adding 250␮L of Brady’s reagent to 2.5mL of medium fermentedfor48hat30◦C.Asdiacetylisanaliphatic com-pound,onlythosestrainsthatgaveayellowprecipitatewere selectedforfurtherinvestigation.SimilartoSchiff’sreaction, thesampleswereevaluatedbasedonintensityoftheyellow precipitateandthis wasassignedascorebetween0and5, where0denotesnodiacetylproduction,1–3lowproduction ofdiacetyl,4goodproductionofdiacetyland5verygood pro-ductionofdiacetyl.Further,resultsfromboththeSchifftest andtheDNPHtestwereconsideredtogetherinordertoselect strainscapableofproducingbothacetaldehydeanddiacetyl. Foridentificationofdiacetylandacetaldehydeintheculture medium,thesamestrainwassimultaneouslyinoculatedinto bothYADandYPGmedia.

Totaltitratableacidity(TTA)

TTA was quantified according to the method of Soxhlet-Henkelusingasodiumhydroxidestandardsolutionto neu-tralizetheacidcontentofthesample(herein,suspensionof theculturemedium).16TheprocedureusedforestimatingTTA

isasfollows.Asolutioncontaining5gofthesampleand45mL ofdistilledwaterintitrationflaskwasstirredonamagnetic stirrerfor2minand2mLofphenolphthaleinadded. Subse-quently,0.25MNaOHsolutionwasaddedtothissuspension untilthesolutionturnedalightpinkcolor.TTAwascalculated usingtheformulaTTA(◦SH)=2×2.5×1,where1isthe

vol-umeof0.25MNaOHconsumedforneutralizationoftheacids inthesample.Alltitrationswereperformedintriplicate.This methodwasalsousedtomonitorhowculturemediumacidity affectedaromabiosynthesisduringfermentation.

Quantificationofdiacetylandacetaldehydeintheculture

medium

Diacetylandacetaldehydeintheculturemediumwere quan-tifiedusinggaschromatography(GS)spectraoftheanalyzed samplesand from equations obtainedfrom thecalibration curvesforacetaldehydeanddiacetyl.Theconcentrationsused forobtainingthecalibrationcurveforacetaldehydewere:5,10, 20,40,80,and200␮LL−1,whilethosefordiacetylwere2.5,5, 10,25,and50␮LL−1.

GSspectrawereobtainedusinganAgilent6890NGas Chro-matographwithanFIDDetectorandaSuprawax-280(100% PEGbonded,crosslinked)60.0m×250␮m×0.25␮mcapillary columnwith the following parameters: He gas flow set at 2mLmin−1,inlettemperature150◦C,splitratio10:1;sample volume1␮L.Thetemperatureprogramstartedat40◦C (main-tainedfor1min),andwasfollowedbyheatingto110◦Cata rateof10◦Cmin−1,andthentill270◦Cat40◦Cmin−1.

Results

and

discussion

Taxonomicclassificationoftheisolatedyeasts

Atotalof52yeastisolatesweretaxonomicallyclassifiedusing theApiwebTMidentificationsoftware(Table1).Thirtyisolates

were identifiedasbelongingtothegenusCandidaspp., ten isolatesbelongedtogenusSaccharomycesspp.(S.cerevisiae),five isolateswereCryptococcusspp.,oneisolatebelongedtogenus

Geotrichum spp.(Geotrichumcapitatum),andsixisolateswere

Rhodotorulaspp.

Yeastselectionbydetectionofacetaldehydeanddiacetylin

culturemedium

Inordertoidentifyyeastisolatescapableofbothacetaldehyde and diacetyl biosynthesisduringfermentation, theisolates were inoculated into both YAD and YPG media and fla-vor biosynthesis was compared between these two media (Tables1 and2)using Schiff’s testand Brady’stest forthe determinationofacetaldehydeanddiacetyl,respectively.

SelectionofyeastsusingSchiff’sreagent

Acetaldehyde biosynthesis depends on the type of carbon and nitrogensourcesinthe medium,incubationtime, agi-tationrate,andincubationtemperature.Therefore,dextrose wasaddedtotheYADmediumasitisaveryaccessible car-bonsourceforyeasts.Wheypowderwasaddedasanatural andveryeconomicalsourceofnitrogen,whilemanganeseand magnesiumsulfatearenecessarygrowthfactorsforyeast cul-ture.Sodiumcitrateintheculturemediumactsasaprecursor forandstimulatesdiacetylbiosynthesis(Table1).17

Giventheaboveandascanobservedfromtheresults pre-sentedinTable1,yeastsinoculatedinYPGdidnotproduce acetaldehyde,whilefermentationinYADculturemediumled tothe biosynthesisofacetaldehydeduetothe presenceof thedextroseandwheypowderinthisculturemedium.Nine yeastsstrainsproduced highlevelsofacetaldehydeinYAD (Schiff’sreactionscore5),andwereselectedforfurther analy-sesbygaschromatography.Thenineyeaststrainsfoundtobe goodproducersofacetaldehydeareasfollows:threestrainsof

S.cerevisiae:D5,D37andD49,twostrainsofCandidalipolytica:

D15andD21,twostrainsofCandidacolliculosa:D17andD30, onestrainofCandidaglobosa:D38,andonestrainofCandida krusei:D50).

SelectionoftheyeastsusingBrady’sreagent

Similartoaldehydeproduction,yeastsinoculatedinYPGdid notsynthesizediacetyl,andonlyonestrainproduceddiacetyl when inoculated in to YAD medium, even though sodium citratewasadded tothemedium.Theyeastisolatewitha scoreof5fordiacetylbiosynthesis(C.lipolytica;D13)wasthen selectedforfurtheranalysisbyGC.

Gaschromatographicanalysis

The acetaldehyde and diacetyl concentrations obtainedby GC,andTTAvaluesoftheselectedisolatesarepresentedin

Table2.

The data presented in Table 2 show that consider-able amounts of acetaldehyde (75.07mgL−1) and diacetyl (3.58mgL−1)wereobtainedwhentheD38isolate(identified asC.globosabytheAPItest)wasusedforfermentationinthe YADmedium.

GC spectrumpeak area of acetaldehyde(retention time approx.4.3min)anddiacetyl(retentiontimeapprox.7.0min)

(4)

Table1–TheyeastsisolatesidentifiedwithID32CTMandtheselectionoftheyeaststrainsforacetaldehydeanddiacetyl

biosynthesisinliquidculturemedium.

No. ICMPP ID code Species ID32CTM (%) YPGculture medium Schiff’sreaction foracetaldehydea YADculture medium Schiff’sreaction foracetaldehydea YPGculture medium Brady’sreaction fordiacetyla YADculture medium Brady’sreaction fordiacetyla 1 D1 Candidafamata 98.7 0 2 1 1 2 D2 Candidarugosa 82.9 0 1 1 1 3 D3 Rhodotorulaminuta 99.9 0 2 1 1 4 D4 Rhodotorulamucilaginosa 91.9 0 1 1 1 5 D5 Saccharomycescerevisiae 98.5 0 5 1 1 6 D6 Candidapelliculosa 99.9 0 4 1 1 7 D7 Cryptococcusuniguttulatus 99.9 0 2 1 1 8 D8 Cryptococcusterreus 99.9 0 1 1 1 9 D9 Candidafamata 99.2 0 2 1 1 10 D10 Candidafamata 98.7 0 2 1 1 11 D11 Candidalipolytica 99.9 0 2 1 1 12 D12 Candidakrusei 85.7 0 1 1 1 13 D13 Candidalipolytica 99.9 0 4 1 1 14 D14 Candidalipolytica 99.9 0 2 1 1 15 D15 Candidalipolytica 99.9 0 5 1 5 16 D16 Candidalipolytica 99.9 0 1 1 1 17 D17 Candidacolliculosa 99.9 0 5 1 1 18 D19 Candidaholmii 87.9 0 2 1 1 19 D20 Candidapelliculosa 87.0 0 1 1 1 20 D21 Candidalipolytica 99.9 0 5 1 1 21 D22 Candidapelliculosa 99.9 0 3 1 1 22 D23 Candidacolliculosa 99.9 0 2 1 1 23 D24 Candidafamata 96.9 0 2 1 1 24 D25 Cryptococcusalbidus 99.5 0 4 1 1 25 D26 Candidalipolytica 99.9 0 3 1 1 26 D27 Candidasphaerica 97.2 0 4 1 1 27 D28 Geotrichumcapitatum 98.1 0 2 1 1 28 D29 Candidalambica 92.7 0 4 1 1 29 D30 Candidacolliculosa 99.9 0 5 1 1 30 D31 Cryptococcusterreus 99.9 0 2 1 1 31 D32 Candidalambica 99.9 0 2 1 1 32 D33 Rhodotorulaminuta 99.9 0 4 1 1 33 D34 Candidalambica 96.4 0 3 1 1 34 D35 Saccharomycescerevisiae 99.6 0 3 1 1 35 D36 Saccharomycescerevisiae 99.7 0 1 1 1 36 D37 Saccharomycescerevisiae 99.7 0 5 1 1 37 D38 Candidaglobosa 99.9% 0 5 1 1 38 D39 Saccharomycescerevisiae 99.6% 0 3 1 1 39 D47 Saccharomycescerevisiae 99.9 0 2 1 1 40 D49 Candidalipolytica 99.9 0 5 1 1 41 D50 Candidakrusei 85.7 0 5 1 1 42 D51 Candidasilvicola 99.9 0 2 1 1 43 D52 Rhodotorulaglutinis 83.1 0 2 1 1 44 D53 Candidafamata 93.2 0 4 1 1 45 D54 Saccharomycescerevisiae 99.9 0 4 1 1 46 D55 Saccharomycescerevisiae 99.4 0 2 1 1 47 D56 Saccharomycescerevisiae 99.9 0 2 1 1 48 D57 Cryptococcuscurvatus 99.9 0 2 1 1 49 D58 Candidapelliculosa 99.9 0 2 1 1 50 D59 Rhodotorulamucilaginosa 88.2 0 3 1 1 51 D60 Rhodotorulamucilaginosa 86.6 0 1 1 1 52 D61 Saccharomycescerevisiae 99.9 0 3 1 1

Theboldvaluesareindicatingtheverygoodproducersofacetaldehyde/diacetyl.

a Theyeaststrainswerenotedas:0,theyeaststrainthatdoesnotproduceacetaldehyde/diacetyl;1to3,lowproducersofacetaldehyde/diacetyl; 4,goodproducersofacetaldehyde/diacetyland5,verygoodproducersofacetaldehyde/diacetyl.

(5)

Table2–Gaschromatographyandtotaltitratableacidity(TTA)valuesforselectedfermentedmediums. No ICMPPID codea ALDbretention timefromGC chromatogram (min) ALDc (␮LL−1) ALDd (mgL−1) DAeretention timefromGC chromatogram (min) DAf (␮LL−1) DAg (mgL−1) TTA (◦SH) 1 D5 4.394 109.85 86.23 6.914 1.72 1.69 23.5 2 D13 4.409 98.41 77.25 6.931 0.82 0.8 30 3 D15 4.388 122.36 96.05 6.964 0.11 0.107 5.5 4 D17 4.386 66.86 52.49 6.923 0.97 0.951 10.5 5 D21 4.387 66.78 52.42 6.999 0.127 0.124 6.5 6 D30 4.402 69.17 54.3 6.938 0.22 0.215 10 7 D37 4.402 60.66 47.62 6.991 0.26 0.255 8.5 8 D38 4.391 95.63 75.07 6.896 3.65 3.58 7 9 D49 4.391 98.47 77.3 6.987 2.07 2.03 6.5 10 D50 4.391 79.56 62.45 6.929 0.072 0.07 7

a Thecodegiventotheyeastsstrainsinmicroorganismscollectionof“PetruPoni”InstituteofMacromolecularChemistry(ICMPP). b Acetaldehyde.

c Theconcentrationofacetaldehydewascalculateusingcalibrationequation. d TheconversionoftheacetaldehydeconcentrationinmgL−1.

e Diacetyl.

f Theconcentrationofdiacetylcalculatedusingcalibrationequation. g TheconversionofthediacetylconcentrationinmgL−1.

30 000 25 000 20 000 15 000 10 000 4.00 4.50 5.00 5.50 6.00 6.50 7.00 Time Standards Response D38 Diacetyl Acetal deh yde

Fig.1–GSspectrumofmediumresultedafterthe fermentationofD38yeaststraininYADmedium.

(Figs. 1 and 2)demonstrated that yeaststrain D15 (identi-fied as C. lipolytica by API test) was the best producer of acetaldehyde (96.05mgL−1) in YAD medium. However, the amount ofdiacetyl producedby thisyeast strain wasvery low(0.107mgL−1)eventhoughtheBradyreactiondata pre-sentedinTable1implyotherwise.Thiscanbeexplainedby thefactthattheBradyreagentreactswithbothketonesand aldehydes,andthepresenceofagreateramountofprecipitate wasduetothepresenceofhighamountsoftheacetaldehyde, ratherthandiacetyl.Therefore,thevolatilesproducedbythis

30 000 25 000 20 000 15 000 10 000 4.00 4.50 5.00 5.50 6.00 6.50 7.00 Time Standards Response D15 Diacetyl Acetal deh yde

Fig.2–GSspectrumofthemediumresultedfromthe fermentationofD15yeaststraininYADmedium.

strain werefurtheranalyzedbyGCinordertoidentifythe typeandconcentrationofthecompoundsproducedduring fermentation.IsolateD38(C.globosa)wasthebestproducerof diacetyl(3.58mgL−1)inthesameculturemedium(YAD), con-firmingthe resultsobtainedwithBrady’sandSchiff’s tests. Importantly,thisD38strainisalsocapableofbiosynthesizing asubstantialamountofacetaldehyde(75.07mgL−1)whichis, albeit,slightlylesserthanthatoftheD15strain.

Giventhattheliteratureonthebiosynthesisofaromafrom yeastsisscant,atbestonthebasisofourresults,wecould dis-cernonlyfewbasicinferences.ThedatapresentedinTable2

suggestthat,withrespecttotheyeaststrainD15,analkaline pHismorefavorablefortheacetaldehydebiosynthesisasthe culturemediumhadaTTAof5.5◦SH.Suchalkalinityis, how-ever,notoptimalforthesynthesisofdiacetyl,astheTTAof themediumfermentedwithD38was7◦SH,implyingthata neutralpHfavorsdiacetylbiosynthesis.

Conclusions

Weproposeanewandoriginalmethodtoproduce acetalde-hydeanddiacetylforuseinthebakeryindustryusingyeast fermentation.Anaturalculturemediumthatmimicsthe syn-theticyeastculture(YPG)wasdevelopedandusedsuccessfully toscreenpotentialisolatesandproducesubstantialamounts ofbothacetaldehydeand diacetyl.Theyeastsspecieswere identifiedusingID32CTMtests;andgaschromatographywas

used toconfirm acetaldehydeand diacetyl production and accuratelyquantifythe amountproducedduring fermenta-tion.AlthoughC.lipolyticawascapableofsynthesizinghigh amountsofacetaldehyde,C.globosacouldbiosynthesize sub-stantial amounts of bothdiacetyl and acetaldehyde under neutralpHconditions.Inthelightoftheseresults,we pro-posethissystemtobetestedforbiotechnologicaltransferto industry-levelfermentersandtobeusedduringthe produc-tionoffermentedproducts.

(6)

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

Thispublicationbenefitedfromthefinancialsupportofthe project“ProgramofExcellencyinthemultidisciplinary doc-toralandpost-doctoralresearchofchronicdiseases”,contract no.POSDRU/159/1.5/S/133377, beneficiary“Gr.T.Popa” Uni-versityofMedicineandPharmacyofIasi,projectco-financed from the EuropeanSocialFund throughthe Sectoral Oper-ationalProgramHumanResourcesDevelopment (SOPHRD) 2007–2013,andbyRomanianNationalAuthorityforScientific Research,CNCS–UEFISCDI, projectnumber PN-II-ID-PCCE-2011-2-0028.

r

e

f

e

r

e

n

c

e

s

1. RomanoP,CapeceA,JespersenL.Taxonomicandecological diversityoffoodandbeverageyeasts.In:QuerolA,FleetGH, eds.TheYeastHandbook.YeastsinFoodandBeverages.Berlin: Springer-Verlag;2006.

2. SwiegersJH,BartowskyPA,HenschkePA,PretoriusIS.Yeast andbacterialmodulationofwinearomaandflavor.AustJ GrapeWineR.2005;11:139–173.

3. PanW,JussierD,TerradeN,YadaRJ,MiradeOrdunaR. Kineticsofsugars,organicacidsandacetaldehydeduring simultaneousyeast-bacterialfermentationsatdifferentpH values.FoodResInt.2011;44:660–666.

4. WeerkampAH,KlijnN,NeeterR,SmitG.Propertiesof mesophiliclacticacidbacteriafromrawmilkandnaturally fermentedrawmilkproducts.NethMilkDairyJ.

1996;50:319–332.

5. YiYoungD,KakudaY,SubdenRE.Higheralcohols,diacetyl, acetoinand2,3-butanediolbiosynthesisingrapes

undergoingcarbonicmaceration.FoodResInt. 2006;39:112–116.

6.CheraitiN,GuezenecS,SalmonJM.Veryearlyacetaldehyde productionbyindustrialSaccharomycescerevisiaestrains:a newintrinsiccharacter.ApplMicrobiolBiotechnol.

2010;86:693–700.

7.SanchezJJ,MartinezB,RodriguezA.Rationalselectionof Leuconostocstrainsformixedstartersbasedonthe physiologicalbiodiversityfoundinrawmilkfermentations. IntJFoodMicrobiol.2005;105:377–378.

8.Alvarez-MartinP,BelenFlorezA,Hernandez-BarrancoA, MayoB.Interactionbetweendairyyeastsandlacticacid bacteriastrainsduringmilkfermentation.FoodControl. 2008;19:62–70.

9.ObermanH,LibudziszZ.Fermentedmilks.In:WoodBJB,ed. MicrobiologyofFermentedFoods.London:BlackieAcademic andProfessional;1998:309–350.

10.YamauchiY,OkamotoT,MurayamaH,KajinoK,NagaraA, NoguchiK.Rapidmaturationofbeerusinganimmobilized yeastbioreactor.2.Balanceoftotaldiacetylreductionand regeneration.JBiotechnol.1995;38:109–116.

11.RegodonMateosJA,Perez-NevadoF,RamirezFernandezM. InfluenceofSaccharomycescerevisiaeyeaststrainonthe majorvolatilecompoundsofwine.EnzymeMicrobTechnol. 2006;40:151–157.

12.SmogrovicovaD.Flavourscience,formationofbeervolatile compoundsatdifferentfermentationtemperaturesusing immobilizedyeasts.In:FerreiraV,LopezR,eds.Flavour Science:ProceedingsfromXIIIWeurmanFlavourResearch Symposium.2014:129–131.

13.SchiraldiC,ValliV,MolinaroA,CarteniM,DeRosaM. ExopolysaccharidesproductioninLactobacillusbulgaricusand Lactobacilluscaseiexploitingmicrofiltration.JIndMicrobiol Biotechnol.2006;33:384–390.

14.WeissL.Histology:CellandTissueBiology.5thed.NewYork: ElsevierBiomedical;1983.

15.KadamSS,TambeST,GrampurohitND,GaikwadDD.Review articleonchemicalimportanceofBrady’sreagent.IntJRes PharmChem.2012;2:1086–1092.

16.CalamariL,GobbiL,BaniP.Improvingthepredictionability ofFT-MIRspectroscopytoassesstitratableacidityincow’s milk.FoodChem.2016;192:477–484.

17.MartinoGP,QuintanaIM,EsparizM,BlancatoVS,MagniC. Aromacompoundsgenerationincitratemetabolismof Enterococcusfaecium:geneticcharacterizationoftypeIcitrate genecluster.IntJFoodMicrobiol.2016;218:27–37.

Referências

Documentos relacionados

É, também, o segundo maior polo industrial e o segundo maior contribuinte das receitas fiscais para o Orçamento Geral do Estado (OGE) das receitas não petrolíferas.

The yield per strawberry plant was higher in soil culture, while there was better fruit quality with regard to total soluble solids, pH, diameter, acidity, titratable total

After this, the data goes through the reservoir-level optimization subroutine, which uses one of the reservoir heads pre-established in Table 2 and goes to the hydraulic

As Áreas 2 e 3 contemplam todas as atividades não letivas, realizadas pelo EE, visando a sua integração na comunidade escolar e no meio onde esta se insere, objetivando

Effects of leaf litter diversity on litter decomposition are frequently positive (Gartner and Cardon 2004; Hättenschwiler et al. 2011), but litter species richness

Baixar livros de Saúde Coletiva Baixar livros de Serviço Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros

Souza informa que já àquela época, para o julgamento do processo, fazia-se necessária a tentativa de reconstrução histórica do fato, cuja pretensão era o conhecimento

Verificou-se que, na implantação da equipe de aprendizagem na unidade, por se tratar de uma metodologia estruturada com fases definidas, dentro de uma seqüência lógica e