• Nenhum resultado encontrado

Solucao impares Calculo 6ed SEC.7.1a7.4

N/A
N/A
Protected

Academic year: 2021

Share "Solucao impares Calculo 6ed SEC.7.1a7.4"

Copied!
24
0
0

Texto

(1)

7

TECHNIQUES OF INTEGRATION

7.1 Integration by Parts

1. Letx = ln {, gy = {2g{  gx ={1g{, y =13{3. Then by Equation 2, U {2ln { g{ = (ln {)1 3{3  U 1 3{3 1 {  g{ = 1 3{3 ln { 13 U {2g{ = 1 3{3 ln { 13 1 3{3  + F = 1 3{3 ln { 19{3+ F  or 13{3ln { 13+ F

Note: A mnemonic device which is helpful for selectingxwhen using integration by parts is the LIATE principle of precedence forx: Logarithmic

Inverse trigonometric Algebraic

Trigonometric Exponential

If the integrand has several factors, then we try to choose among them axwhich appears as high as possible on the list. For example, inU{h2{g{ the integrand is{h2{, which is the product of an algebraic function ({) and an exponential function (h2{). SinceAlgebraic appears beforeExponential, we choosex = {. Sometimes the integration turns out to be similar regardless of the selection ofxandgy, but it is advisable to refer to LIATE when in doubt.

3. Letx = {, gy = cos 5{ g{  gx = g{, y = 15sin 5{. Then by Equation 2, U

{ cos 5{ g{ = 1

5{ sin 5{  U 1

5sin 5{ g{ =15{ sin 5{ +251 cos 5{ + F.

5. Letx = u, gy = hu@2gu  gx = gu, y = 2hu@2. ThenUuhu@2gu = 2uhu@2U2hu@2gu = 2uhu@2 4hu@2+ F. 7. Letx = {2,gy = sin { g{  gx = 2{ g{ and y = 1cos {. Then

L =U{2 sin { g{ = 1

{2cos { +2 U

{ cos { g{ (B). Next let X = {, gY = cos { g{  gX = g{,

Y = 1 sin {, so U { cos { g{ = 1 { sin { 1 U sin { g{ = 1 { sin { +12cos { + F1. Substituting forU{ cos { g{ in (B), we get

L = 1

{2cos { +2 1

{ sin { +12cos { + F1= 1{2cos { +22{ sin { +23cos { + F, where F = 2F1. 9. Letx = ln(2{ + 1), gy = g{  gx = 2 2{ + 1g{, y = {. Then ] ln(2{ + 1) g{ = { ln(2{ + 1) ] 2{ + 12{ g{ = { ln(2{ + 1) ] (2{ + 1)  12{ + 1 g{ = { ln(2{ + 1) ] 1  1 2{ + 1  g{ = { ln(2{ + 1)  { +1 2ln(2{ + 1) + F =1 2(2{ + 1) ln(2{ + 1)  { + F 11. Letx = arctan 4w, gy = gw  gx = 4 1 + (4w)2 gw =1 + 16w4 2gw, y = w. Then ] arctan 4w gw = w arctan 4w ] 4w 1 + 16w2gw = w arctan 4w  18 ] 32w 1 + 16w2gw = w arctan 4w  18ln(1 + 16w2) + F. 295

TX.10

(2)

296 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

13. Letx = w, gy = sec22w gw  gx = gw, y = 12 tan 2w. Then U w sec22w gw =1 2w tan 2w 12 U tan 2w gw = 1 2w tan 2w 14ln |sec 2w| + F.

15. First letx = (ln {)2,gy = g{  gx = 2 ln { ·1{g{, y = {. Then by Equation 2, L =U(ln {)2g{ = {(ln {)2 2U{ ln { ·1 {g{ = {(ln {)2 2 U ln { g{. Next let X = ln {, gY = g{  gX = 1@{ g{, Y = { to getUln { g{ = { ln { U{ · (1@{) g{ = { ln { Ug{ = { ln {  { + F1. Thus, L = {(ln {)2 2({ ln {  { + F 1) = {(ln {)2 2{ ln { + 2{ + F, where F = 2F1. 17. First letx = sin 3, gy = h2g  gx = 3 cos 3 g, y = 12h2. Then

L =Uh2sin 3 g = 1

2h2sin 3 32 U

h2cos 3 g. Next let X = cos 3, gY = h2g  gX = 3 sin 3 g, Y =1 2h2to get U h2cos 3 g =1 2h2cos 3 +32 U

h2sin 3 g. Substituting in the previous formula gives L = 1 2h2sin 3 34h2cos 3 94 U h2sin 3 g = 1 2h2sin 3 34h2cos 3 94L  13

4L = 12h2sin 3 34h2cos 3 + F1. Hence,L= 131h2(2 sin 3  3 cos 3) + F, where F =134F1. 19. Letx = w, gy = sin 3w gw  gx = gw, y = 13cos 3w. Then

U 0 w sin 3w gw =  1 3w cos 3w  0 +13 U 0 cos 3w gw = 1 3  0  +1 9  sin 3w0 = 3= 21. Letx = w, gy = cosh w gw  gx = gw> y = sinh w. Then

U1

0 w cosh w gw = 

w sinh w10U01sinh w gw = (sinh 1  sinh 0) cosh w10= sinh 1  (cosh 1  cosh 0) = sinh 1  cosh 1 + 1.

We can use the denitions ofsinh and cosh to write the answer in terms of h: sinh 1  cosh 1 + 1 =1 2(h1 h1) 12(h1+ h1) + 1 = h1+ 1 = 1  1@h. 23. Letx = ln {, gy = {2g{  gx = 1 {g{, y = {1. By (6), ] 2 1 ln { {2 g{ =  ln {{ 2 1+ ] 2 1 { 2g{ = 1 2ln 2 + ln 1 +   1{ 2 1=  1 2ln 2 + 0  12+ 1 = 1212ln 2. 25. Letx = |, gy = g| h2| = h2|g|  gx = g|, y = 12h2|. Then ] 1 0 | h2| g| = k 1 2|h2| l1 0+ 1 2 ] 1 0 h 2|g| =1 2h2+ 0  1 4 k h2|l1 0=  1 2h214h2+41 =1434h2. 27. Letx = cos1{, gy = g{  gx =  g{ 1  {2,y = {. Then L =]1@2 0 cos 1{ g{ ={ cos1{1@2 0 + ] 1@2 0 { g{  1  {2 =12 ·3 + ] 3@4 1 w 1@21 2gw  , wherew = 1  {2  gw = 2{ g{. Thus, L =  6 +12 U1 3@4w1@2gw = 6 +  w13@4= 6 + 1   3 2 = 16   + 6  33.

TX.10

(3)

SECTION 7.1 INTEGRATION BY PARTS ¤ 297 29.Letx = ln (sin {), gy = cos { g{  gx = cos {

sin {g{, y = sin {. Then

L =Ucos { ln(sin {) g{ = sin { ln(sin {) Ucos { g{ = sin { ln(sin {)  sin { + F.

Another method: Substitute w = sin {, so gw = cos { g{. Then L =Uln w gw = w ln w  w + F (see Example 2) and so

L = sin { (ln sin {  1) + F. 31.Letx = (ln {)2,gy = {4g{  gx = 2 ln { { g{, y = { 5 5. By (6), ] 2 1 { 4(ln {)2g{ ={5 5 (ln {)2 2 1 2 ] 2 1 {4 5 ln { g{ =325(ln 2)2 0  2 ]2 1 {4 5 ln { g{. LetX = ln {, gY = { 4 5 g{  gX = 1{g{, Y = { 5 25. Then ] 2 1 {4 5 ln { g{ =  {5 25ln { 2 1 ] 2 1 {4 25g{ =3225ln 2  0   {5 125 2 1= 32 25ln 2  32 1251251  . SoU12{4(ln {)2g{ =325(ln 2)2 22532ln 2 12531= 325(ln 2)26425ln 2 +12562. 33.Let| ={, so that g| =12{1@2g{ = 1 2{g{ = 12|g{. Thus, U

cos{ g{ =Ucos | (2| g|) = 2U| cos | g|. Now use parts withx = |, gy = cos | g|, gx = g|, y = sin | to getU| cos | g| = | sin | Usin | g| = | sin | + cos | + F1, soUcos{ g{ = 2| sin | + 2 cos | + F = 2{ sin{ + 2 cos{ + F.

35.Let{ = 2, so thatg{ = 2 g. Thus, ]   /2 3cos2g =]   /2 2cos2·1 2(2 g) =12 ] 

/2{ cos { g{. Now use parts withx = {, gy = cos { g{, gx = g{, y = sin { to get

1 2 ] /2{ cos { g{ = 1 2  { sin {/2]  /2sin { g{  = 1 2  { sin { + cos {/2 = 1 2( sin  + cos ) 12  2sin2 + cos2  =1 2( · 0  1) 12  2 · 1 + 0  = 1 2 4 37.Let| = 1 + {> so that g| = g{. Thus,U{ ln(1 + {) g{ =U(|  1) ln | g|. Now use parts with x = ln |> gy = (|  1) g|,

gx = 1 |g|, y =12|2 | to get U (|  1) ln | g| =1 2|2 |  ln | U 1 2|  1  g| = 1 2|(|  2) ln | 14|2+ | + F = 1 2(1 + {)({  1) ln(1 + {) 14(1 + {)2+ 1 + { + F, which can be written as 12({2 1) ln(1 + {) 14{2+12{ +34 + F.

In Exercises 39–42, leti({)denote the integrand andI ({)its antiderivative (withF = 0). 39.Letx = 2{ + 3, gy = h{g{  gx = 2 g{, y = h{. Then

U

(2{ + 3)h{g{ = (2{ + 3)h{ 2Uh{g{ = (2{ + 3)h{ 2h{+ F = (2{ + 1) h{+ F

We see from the graph that this is reasonable, sinceI has a minimum where i changes from negative to positive.

(4)

298 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION 41. Letx =12{2,gy = 2{1 + {2g{  gx = { g{, y =23(1 + {2)3@2. Then U {31 + {2g{ =1 2{2 k 2 3(1 + {2)3@2 l 2 3 U {(1 + {2)3@2g{ =1 3{2(1 + {2)3@223 ·25 ·12(1 + {2)5@2+ F =1 3{2(1 + {2)3@2152(1 + {2)5@2+ F

Another method: Use substitution with x = 1 + {2to get15(1 + {2)5@213(1 + {2)3@2+ F. 43. (a) Takeq = 2 in Example 6 to get

]

sin2{ g{ = 1

2cos { sin { + 12 ]

1 g{ = {2 sin 2{4 + F. (b)Usin4{ g{ = 14cos { sin3{ +34Usin2{ g{ = 14cos { sin3{ +38{ 163 sin 2{ + F. 45. (a) From Example 6,

] sinq{ g{ =  1 qcos { sinq1{ + q  1q ] sinq2{ g{. Using (6), ] @2 0 sin q{ g{ =cos { sinq1{ q @2 0 + q  1q ] @2 0 sin q2{ g{ = (0  0) + q  1q ] @2 0 sin q2{ g{ = q  1 q ] @2 0 sin q2{ g{

(b) Usingq = 3 in part (a), we haveU0@2sin3{ g{ = 23U0@2sin { g{ =23cos {@20 = 23. Usingq = 5 in part (a), we haveU0@2sin5{ g{ = 45U0@2sin3{ g{ =45 ·23 =158.

(c) The formula holds forq = 1 (that is, 2q + 1 = 3) by (b). Assume it holds for some n  1. Then ] @2 0 sin 2n+1{ g{ = 2 · 4 · 6 · · · (2n) 3 · 5 · 7 · · · (2n + 1). By Example 6, ] @2 0 sin 2n+3{ g{ = 2n + 2 2n + 3 ] @2 0 sin 2n+1{ g{ = 2n + 2 2n + 3· 2 · 4 · 6 · · · (2n)3 · 5 · 7 · · · (2n + 1) = 3 · 5 · 7 · · · (2n + 1)[2 (n + 1) + 1]2 · 4 · 6 · · · (2n)[2 (n + 1)] ,

so the formula holds forq = n + 1. By induction, the formula holds for all q  1. 47. Letx = (ln {)q,gy = g{  gx = q(ln {)q1(g{@{), y = {. By Equation 2,

U

(ln {)qg{ = {(ln {)qUq{(ln {)q1(g{@{) = {(ln {)q qU(ln {)q1g{.

49. Utanq{ g{ =Utanq2{ tan2{ g{ =Utanq2{ (sec2{  1) g{ =Utanq2{ sec2{ g{ Utanq2{ g{ = L Utanq2{ g{.

Letx = tanq2{, gy = sec2{ g{  gx = (q  2) tanq3{ sec2{ g{, y = tan {. Then, by Equation 2, L = tanq1{  (q  2)Utanq2{ sec2{ g{

1L = tanq1{  (q  2)L (q  1)L = tanq1{

L = tanq  1q1{ Returning to the original integral,Utanq{ g{ = tan

q1{

q  1 

U

tanq2{ g{.

(5)

SECTION 7.1 INTEGRATION BY PARTS ¤ 299 51.By repeated applications of the reduction formula in Exercise 47,

U (ln {)3g{ = { (ln {)3 3U(ln {)2g{ = {(ln {)3 3{(ln {)2 2U(ln {)1g{ = { (ln {)3 3{(ln {)2+ 6{(ln {)1 1U(ln {)0g{ = { (ln {)3 3{(ln {)2+ 6{ ln {  6U1 g{ = { (ln {)3 3{(ln {)2+ 6{ ln {  6{ + F 53.Area=U05{h0=4{g{. Let x = {, gy = h0=4{g{  gx = g{, y = 2=5h0=4{. Then area=2=5{h0=4{50+ 2=5U05h0=4{g{ = 12=5h2+ 0 + 2=52=5h0=4{5 0 = 12=5h2 6=25(h2 1) = 6=25  18=75h2 or 25 4 754h2 55.The curves| = { sin { and | = ({  2)2intersect atd  1=04748 and

e  2=87307, so area=Ude[{ sin {  ({  2)2] g{ ={ cos { + sin { 1 3({  2)3 e d [by Example 1]  2=81358  0=63075 = 2=18283

57.Y =U012{ cos({@2) g{. Let x = {, gy = cos({@2) g{  gx = g{, y = 2

sin({@2). Y = 2  2 { sin { 2 1 0 2 · 2 ] 1 0 sin { 2  g{ = 2  2  0   4   2 cos { 2 1 0= 4 + 8(0  1) = 4  8 . 59.Volume=U10 2(1  {)h{g{. Let x = 1  {, gy = h{g{  gx =  g{, y = h{. Y = 2(1  {)(h{)0 1 2 U0 1h{g{ = 2  ({  1)(h{) + h{0 1= 2  {h{0 1= 2(0 + h) = 2h 61.The average value ofi({) = {2ln { on the interval [1> 3] is iave= 1

3  1 ] 3 1 { 2ln { g{ =1 2L. Letx = ln {, gy = {2g{  gx = (1@{) g{, y =13{3. SoL =13{3ln {31U13 13{2g{ = (9 ln 3  0) 19{331= 9 ln 3 3 19= 9 ln 3 269. Thus,iave= 12L =12  9 ln 3 26 9  =9 2ln 3 139.

63.Sincey(w) A 0 for all w, the desired distance is v(w) =U0wy(z) gz =U0wz2hzgz.

First letx = z2,gy = hzgz  gx = 2z gz, y = hz. Thenv(w) =z2hzw0+ 2U0wzhzgz. Next letX = z, gY = hzgz  gX = gz, Y = hz. Then

v(w) = w2hw+ 2zhzw 0+ Uw 0hzgz  = w2hw+ 2whw+ 0 +hzw 0  = w2hw+ 2(whw hw+ 1) = w2hw 2whw 2hw+ 2 = 2  hw(w2+ 2w + 2) meters 65.ForL =U14{i00({) g{, let x = {, gy = i00({) g{  gx = g{, y = i0({). Then

L ={i0({)4 1

U4

1 i0({) g{ = 4i0(4)  1 · i0(1)  [i(4)  i(1)] = 4 · 3  1 · 5  (7  2) = 12  5  5 = 2. We used the fact thati00is continuous to guarantee thatL exists.

(6)

300 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

67. Using the formula for volumes of rotation and the gure, we see that

Volume=U0ge2g| U0fd2g| Ufg[j(|)]2 g| = e2g  d2f Ufg[j(|)]2 g|. Let | = i({), which givesg| = i0({) g{ and j(|) = {, so that Y = e2g  d2f  Ude{2i0({) g{.

Now integrate by parts withx = {2, andgy = i0({) g{  gx = 2{ g{, y = i({), and Ue d{2i0({) g{ =  {2i({)e d Ue

d2{ i({) g{ = e2i(e)  d2i(d)  Ue

d2{ i({) g{, but i(d) = f and i(e) = g  Y = e2g  d2f  ke2g  d2f Ue

d2{ i({) g{ l

=Ude2{ i({) g{.

7.2 Trigonometric Integrals

The symbols=s and=c indicate the use of the substitutions{x = sin {> gx = cos { g{}and{x = cos {> gx =  sin { g{}, respectively. 1. Usin3{ cos2{ g{ =Usin2{ cos2{ sin { g{ =U(1  cos2{) cos2{ sin { g{ c

=U(1  x2)x2(gx) =U(x2 1)x2gx =U(x4 x2) gx = 1

5x513x3+ F = 15cos5{ 13cos3{ + F 3. U@23@4sin5{ cos3{ g{ =U3@4

@2 sin5{ cos2{ cos { g{ = U3@4

@2 sin5{ (1  sin2{) cos { g{ s =U12@2x5(1  x2) gx =U12@2(x5 x7) gx =1 6x618x8  2@2 1 =  1@8 6 1@168  1 6 18  = 11 384 5. Let| = {, so g| =  g{ and U sin2({) cos5({) g{ = 1  U sin2| cos5| g| = 1  U

sin2| cos4| cos | g| = 1

 U

sin2| (1  sin2|)2 cos | g| s = 1  U x2(1  x2)2gx = 1  U (x2 2x4+ x6) gx = 1  1 3x325x5+17x7  + F = 1

3sin3| 52 sin5| +71 sin7| + F

= 1

3sin3({) 52 sin5({) +71 sin7({) + F 7. U0@2cos2 g =U@2

0 12(1 + cos 2) g [half-angle identity] =1 2   +1 2sin 2 @2 0 =12  2 + 0   (0 + 0)= 4 9. U0sin4(3w) gw =U 0  sin2(3w)2 gw =U 0 1 2(1  cos 6w) 2 gw =1 4 U 0 (1  2 cos 6w + cos26w) gw =1 4 U 0  1  2 cos 6w +1 2(1 + cos 12w)  gw = 1 4 U 0 3 2 2 cos 6w +12cos 12w  gw =1 4 3 2w 13sin 6w +241 sin 12w  0 =14 3 2  0 + 0   (0  0 + 0)=3 8 11. U(1 + cos )2g =U(1 + 2 cos  + cos2) g =  + 2 sin  +1

2 U

(1 + cos 2) g =  + 2 sin  +1

2 +14sin 2 + F = 32 + 2 sin  +14sin 2 + F 13. U0@2sin2{ cos2{ g{ =U@2 0 14(4 sin2{ cos2{) g{ = U@2 0 14(2 sin { cos {)2g{ =14 U@2 0 sin22{ g{ =1 4 U@2 0 12(1  cos 4{) g{ = 18 U@2 0 (1  cos 4{) g{ = 18  { 1 4sin 4{ @2 0 = 18  2  =  16

TX.10

(7)

SECTION 7.2 TRIGONOMETRIC INTEGRALS ¤ 301 15. ] cos5  sin g = ] cos4  sin cos  g = ] 1  sin22  sin  cos  g s =] (1  x 2)2 x gx =] 1  2xx1@22+ x4gx =] (x1@2 2x3@2+ x7@2) gx = 2x1@24 5x5@2+29x9@2+ F = 2 45x1@2(45  18x2+ 5x4) + F = 452 

sin  (45  18 sin2 + 5 sin4) + F 17.

]

cos2{ tan3{ g{ =] sin3{ cos { g{ c =] (1  x2x)(gx)=] 1x + x  gx =  ln |x| +1 2x2+ F = 12cos2{  ln |cos {| + F 19. ] cos { + sin 2{ sin { g{ =

] cos { + 2 sin { cos {

sin { g{ = ] cos { sin {g{ + ] 2 cos { g{ s =] 1xgx + 2 sin { = ln |x| + 2 sin { + F = ln |sin {| + 2 sin { + F

Or: Use the formulaUcot { g{ = ln |sin {| + F.

21.Letx = tan {, gx = sec2{ g{. ThenUsec2{ tan { g{ =Ux gx =12x2+ F = 12tan2{ + F.

Or: Let y = sec {, gy = sec { tan { g{. ThenUsec2{ tan { g{ =Uy gy = 21y2+ F = 12sec2{ + F.

23.Utan2{ g{ =U(sec2{  1) g{ = tan {  { + F

25.Usec6w gw =Usec4w · sec2w gw =U(tan2w + 1)2sec2w gw =U(x2+ 1)2gx [x = tan w, gx = sec2w gw] =U(x4+ 2x2+ 1) gx =1

5x5+23x3+ x + F = 15tan5w +23tan3w + tan w + F 27.U0@3tan5{ sec4{ g{ =U@3

0 tan5{ (tan2{ + 1) sec2{ g{ = U 3 0 x5(x2+ 1) gx [x = tan {, gx = sec2{ g{] =U03(x7+ x5) gx =1 8x8+16x6  3 0 = 818 +276 =818 +92 =818 +368 = 1178 Alternate solution: U@3 0 tan5{ sec4{ g{ = U@3

0 tan4{ sec3{ sec { tan { g{ = U@3

0 (sec2{  1)2 sec3{ sec { tan { g{ =U12(x2 1)2x3gx [x = sec {, gx = sec { tan { g{] =U2

1(x4 2x2+ 1)x3gx =U12(x7 2x5+ x3) gx =1 8x813x6+14x4 2 1=  32 64 3 + 4  1 813+14  = 117 8 29.Utan3{ sec { g{ =Utan2{ sec { tan { g{ =U(sec2{  1) sec { tan { g{

=U(x2 1) gx [x = sec {, gx = sec { tan { g{] =1

3x3 x + F =13sec3{  sec { + F 31.Utan5{ g{ =U(sec2{  1)2tan { g{ =Usec4{ tan { g{  2Usec2{ tan { g{ +Utan { g{

=Usec3{ sec { tan { g{  2Utan { sec2{ g{ +Utan { g{ =1

4sec4{  tan2{ + ln |sec {| + F [or 14sec4{  sec2{ + ln |sec {| + F ] 33.

] tan3 cos4g =

]

tan3 sec4 g =] tan3 · (tan2 + 1) · sec2 g =Ux3(x2+ 1) gx [x = tan , gx = sec2 g] =U(x5+ x3) gx = 1

6x6+14x4+ F = 16tan6 +14tan4 + F

(8)

302 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

35. Letx = {> gy = sec { tan { g{  gx = g{> y = sec {. Then U

{ sec { tan { g{ = { sec { Usec { g{ = { sec {  ln |sec { + tan {| + F. 37. U@6@2cot2{ g{ =U@2 @6(csc2{  1) g{ =   cot {  {@2@6=0  2  3  6  =3  3 39. Ucot3 csc3 g =Ucot2 csc2 · csc  cot  g =U(csc2  1) csc2 · csc  cot  g

=U(x2 1)x2· (gx) [x = csc , gx =  csc  cot  g] =U(x2 x4) gx = 1

3x315x5+ F = 13csc3 15csc5 + F

41. L =] csc { g{ =] csc { (csc {  cot {)csc {  cot { g{ =]  csc { cot { + csccsc {  cot { 2{g{. Let x = csc {  cot {  gx = ( csc { cot { + csc2{) g{. Then L =Ugx@x = ln |x| = ln |csc {  cot {| + F.

43. Usin 8{ cos 5{ g{2a =U 1 2[sin(8{  5{) + sin(8{ + 5{)] g{ = 12 U sin 3{ g{ +1 2 U sin 13{ g{ = 1 6cos 3{ 261 cos 13{ + F 45. Usin 5 sin  g2b =U 1 2[cos(5  )  cos(5 + )] g = 12 U cos 4 g 1 2 U cos 6 g =1 8sin 4 121 sin 6 + F 47. ] 1  tan2{ sec2{ g{ = ] 

cos2{  sin2{g{ =] cos 2{ g{ = 1

2sin 2{ + F

49. Letx = tan(w2)  gx = 2w sec2(w2) gw. ThenUw sec2(w2) tan4(w2) gw =Ux412gx=101x5+ F = 101 tan5(w2) + F. In Exercises 51–54, leti({)denote the integrand andI ({)its antiderivative (withF = 0).

51. Letx = {2, so thatgx = 2{ g{. Then U { sin2({2) g{ =Usin2x1 2gx  =1 2 U 1 2(1  cos 2x) gx = 1 4  x 1 2sin 2x  + F = 1 4x 14 1 2· 2 sin x cos x  + F = 1 4{214sin({2) cos({2) + F

We see from the graph that this is reasonable, sinceI increases where i is positive and I decreases where i is negative. Note also thati is an odd function and I is an even function.

53. Usin 3{ sin 6{ g{ =U 1 2[cos(3{  6{)  cos(3{ + 6{)] g{ =1 2 U (cos 3{  cos 9{) g{ =1 6sin 3{ 181 sin 9{ + F

Notice thati({) = 0 whenever I has a horizontal tangent.

55. iave =21 U

sin2{ cos3{ g{ =21 U

sin2{ (1  sin2{) cos { g{

= 1 2 U0 0 x2(1  x2) gx [wherex = sin {] = 0

TX.10

(9)

SECTION 7.2 TRIGONOMETRIC INTEGRALS ¤ 303 57. D =] @4 @4(cos 2{  sin2{) g{ =]@4 @4cos 2{ g{ = 2] @4 0 cos 2{ g{ = 2  1 2sin 2{ @4 0 =  sin 2{@40 = 1  0 = 1

59. It seems from the graph thatU02cos3{ g{ = 0, since the area below the

{-axis and above the graph looks about equal to the area above the axis and below the graph. By Example 1, the integral issin { 13sin3{20 = 0. Note that due to symmetry, the integral of any odd power ofsin { or cos { between limits which differ by2q (q any integer) is 0.

61.Using disks,Y =U@2  sin2{ g{ = U@2 12(1  cos 2{) g{ = 12{ 14sin 2{ @2=   2  0 4 + 0  =2 4 63.Using washers, Y =U0@4(1  sin {)2 (1  cos {)2g{ = U@4 0 

(1  2 sin { + sin2{)  (1  2 cos { + cos2{)g{ = U0@4(2 cos {  2 sin { + sin2{  cos2{) g{

= U@4

0 (2 cos {  2 sin {  cos 2{) g{ =   2 sin { + 2 cos { 1 2sin 2{ @4 0 = 2 +2 1 2   (0 + 2  0)= 22 5 2  65.v = i(w) =Uw

0sin $x cos2$x gx. Let | = cos $x  g| = $ sin $x gx. Then v = 1 $ Ucos $w 1 |2g| = $1 1 3|3 cos $w 1 =3$1 (1  cos3$w). 67.Just note that the integrand is odd [i({) = i({)].

Or: If p 6= q, calculate ]  sin p{ cos q{ g{ = ]   1 2[sin(p  q){ + sin(p + q){] g{ = 12  cos(p  q){p  q  cos(p + q){p + q  = 0 Ifp = q, then the rst term in each set of brackets is zero.

69.U cos p{ cos q{ g{ =U 1 2[cos(p  q){ + cos(p + q){] g{. Ifp 6= q, this is equal to 1 2  sin(p  q){ p  q + sin(p + q){p + q  = 0. Ifp = q, we getU 12[1 + cos(p + q){] g{ =12{+  sin(p + q){ 2(p + q)  =  + 0 = .

TX.10

(10)

304 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

7.3 Trigonometric Substitution

1. Let{ = 3 sec , where 0   ? 2 or   ? 32. Then g{ = 3 sec  tan  g and



{2 9 =9 sec2  9 =s9(sec2  1) =9 tan2 = 3 |tan | = 3 tan  for the relevant values of . ]

1

{2{2 9g{ = ]

1

9 sec2 · 3 tan 3 sec  tan  g = 19 ] cos  g =1 9sin  + F = 19  {2 9 { + F

Note that sec( + ) = sec , so the gure is sufcient for the case    ?32 . 3. Let{ = 3 tan , where 2 ?  ?2. Theng{ = 3 sec2 g and



{2+ 9 =9 tan2 + 9 =s9(tan2 + 1) =9 sec2 = 3 |sec | = 3 sec  for the relevant values of . ] {3  {2+ 9g{ = ] 33tan3 3 sec  3 sec2 g = 33 ]

tan3 sec g = 33] tan2 tan  sec  g

= 33U(sec2  1) tan  sec  g = 33U(x2 1) gx [x = sec , gx = sec  tan  g] = 331 3x3 x  + F = 331 3sec3  sec   + F = 33 % 1 3  {2+ 93@2 33   {2+ 9 3 & + F =1 3({2+ 9)3@2 9  {2+ 9 + F or 1 3({2 18)  {2+ 9 + F 5. Letw = sec , so gw = sec  tan  g, w =2   =4, andw = 2   = 3. Then

] 2  2 1 w3w2 1gw = ] @3 @4 1

sec3 tan sec  tan  g = ] @3 @4 1 sec2g = ] @3 @4 cos 2 g =U@4@31 2(1 + cos 2) g = 12   +1 2sin 2 @3 @4 = 1 2 k  3 +12  3 2   4 +12· 1 l =1 2   12+  3 4 12  =  24+  3 8 14 7. Let{ = 5 sin , so g{ = 5 cos  g. Then

] 1

{225  {2 g{ =

U 1

52sin2 · 5 cos 5 cos  g = 125 ] csc2 g =  125cot  + F =  125  25  {2 { + F

(11)

SECTION 7.3 TRIGONOMETRIC SUBSTITUTION ¤ 305 9.Let{ = 4 tan , where 2 ?  ? 2. Theng{ = 4 sec2 g and



{2+ 16 =16 tan2 + 16 =s16(tan2 + 1) =16 sec2 = 4 |sec |

= 4 sec  for the relevant values of . ] g{  {2+ 16 = ] 4 sec2 g 4 sec  = ]

sec  g = ln |sec  + tan | + F1= ln  {2+ 16 4 + {4   + F1 = ln{2+ 16 + {  ln|4| + F1= ln{2+ 16 + {+ F, where F = F1 ln 4. (Since{2+ 16 + { A 0, we don’t need the absolute value.)

11.Let2{ = sin , where 2    2. Then{ =12sin , g{ =12cos  g, and1  4{2=s1  (2{)2= cos . U  1  4{2g{ =Ucos 1 2cos   g =1 4 U (1 + cos 2) g =1 4   +1 2sin 2  + F = 1 4( + sin  cos ) + F =1 4  sin1(2{) + 2{1  4{2+ F 13.Let{ = 3 sec , where 0   ?2 or   ? 32 . Then

g{ = 3 sec  tan  g and{2 9 = 3 tan , so ] 

{2 9

{3 g{ =

]

3 tan 

27 sec33 sec  tan  g = 13 ] tan2 sec2g = 1 3 U sin2 g = 1 3 U 1

2(1  cos 2) g = 16 121 sin 2 + F = 16 16sin  cos  + F = 16sec1{ 3   16  {2 9 { 3{+ F = 16sec1{3    {2 9 2{2 + F

15.Let{ = d sin , g{ = d cos  g, { = 0   = 0 and { = d   =2. Then Ud

0 {2 

d2 {2g{ =U@2

0 d2sin2 (d cos ) d cos  g = d4 U@2 0 sin2 cos2 g = d4 U@2 0 1 2(2 sin  cos ) 2 g = d44] @2 0 sin 22 g = d4 4 ] @2 0 1 2(1  cos 4) g = d 4 8    14sin 4 @2 0 = d84k2  0 0l= 16d4 17.Letx = {2 7, so gx = 2{ g{. Then ] {  {2 7g{ = 12 ] 1  xgx = 12· 2  x + F =s{2 7 + F.

(12)

306 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

19. Let{ = tan , where 2 ?  ? 2. Theng{ = sec2 g and1 + {2= sec , so ]  1 + {2 { g{ = ] sec  tan  sec2 g = ] sec  tan (1 + tan2) g =U(csc  + sec  tan ) g

= ln |csc   cot | + sec  + F [by Exercise 7.2.41] = ln  1 + {2 {  1{   +1 + {1 2 + F = ln  1 + {2 1 {   +1 + {2+ F 21. Let{ = 35sin , so g{ =35cos  g, { = 0   = 0, and { = 0=6   = 2. Then

] 0=6 0 {2  9  25{2 g{ = ] @2 0 3 5 2sin2 3 cos   3 5cos  g  = 9125 ] @2 0 sin 2 g = 9 125 U@2 0 12(1  cos 2) g =2509   1 2sin 2 @2 0 = 9 250  2  0   0= 9 500 23. 5 + 4{  {2= ({2 4{ + 4) + 9 = ({  2)2+ 9. Let {  2 = 3 sin ,  2    2, sog{ = 3 cos  g. Then U  5 + 4{  {2g{ =U s9  ({  2)2g{ =U s9  9 sin2 3 cos  g =U 9 cos2 3 cos  g =U9 cos2 g

=9 2 U (1 + cos 2) g = 9 2   +1 2sin 2  + F =9

2 +94sin 2 + F = 92 +94(2 sin  cos ) + F = 92sin1{  2 3  + 92· {  23 ·  5 + 4{  {2 3 + F = 92sin1{  2 3  + 12({  2)5 + 4{  {2+ F 25. {2+ { + 1 ={2+ { +1 4  +3 4 =  { +1 2 2+3 2 2 . Let { +1 2 =  3 2 tan , so g{ =  3 2 sec2 g and  {2+ { + 1 =3 2 sec . Then [continued]

TX.10

(13)

SECTION 7.3 TRIGONOMETRIC SUBSTITUTION ¤ 307 ] {  {2+ { + 1g{ = ]  3 2tan  12 3 2 sec   3 2 sec2 g =U 3 2 tan  12  sec  g =U 3 2 tan  sec  g  U 1 2sec  g =3

2 sec  12ln |sec  + tan | + F1 ={2+ { + 1 1 2ln23  {2+ { + 1 +2 3  { +1 2 + F1 ={2+ { + 1 1 2ln23  {2+ { + 1 +{ +1 2 + F1 ={2+ { + 1 1 2ln2312ln  {2+ { + 1 + { +1 2  + F1 ={2+ { + 1 1 2ln  {2+ { + 1 + { +1 2  + F, where F = F112ln23 27.{2+ 2{ = ({2+ 2{ + 1)  1 = ({ + 1)2 1. Let { + 1 = 1 sec ,

sog{ = sec  tan  g and{2+ 2{ = tan . Then U 

{2+ 2{ g{ =Utan  (sec  tan  g) =Utan2 sec  g =U(sec2  1) sec  g =Usec3 g Usec  g =1

2sec  tan  +12ln |sec  + tan |  ln |sec  + tan | + F =1

2sec  tan  12ln |sec  + tan | + F =12({ + 1)  {2+ 2{ 1 2ln{ +1 + {2+ 2{ +F 29.Letx = {2,gx = 2{ g{. Then U {1  {4g{ =U 1  x21 2gx  = 1 2 U cos  · cos  g 

wherex = sin , gx = cos  g, ands1  x2= cos 

 = 1

2 U 1

2(1 + cos 2) g =14 +18sin 2 + F = 14 +14sin  cos  + F = 1 4sin1x +14x  1  x2+ F = 1 4sin1({2) +14{2  1  {4+ F 31. (a) Let{ = d tan , where 2 ?  ? 2. Then{2+ d2= d sec  and

U  g{

{2+ d2 =

U d sec2 g d sec  =

U

sec  g = ln|sec  + tan | + F1= ln  {2+ d2 d + {d   + F1 = ln{ +{2+ d2+ F where F = F1 ln |d|

(b) Let{ = d sinh w, so that g{ = d cosh w gw and{2+ d2 = d cosh w. Then

] g{



{2+ d2 =

] d cosh w gw

d cosh w = w + F = sinh1{d+ F. 33.The average value ofi({) ={2 1@{ on the interval [1> 7] is

1 7  1 ] 7 1  {2 1 { g{ = 16 ]  0 tan 

sec  · sec  tan  g 

where{ = sec , g{ = sec  tan  g, s

{2 1 = tan , and  = sec17

 = 1 6 U 0 tan2 g = 16 U 0(sec2  1) g = 16  tan   0 = 1 6(tan   ) = 16  48  sec17

TX.10

(14)

308 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

35. Area of4S RT = 12(u cos )(u sin ) =12u2sin  cos . Area of region S TU =Uu cos u u2 {2g{. Let{ = u cos x  g{ = u sin x gx for   x 2. Then we obtain

U 

u2 {2g{ =Uu sin x (u sin x) gx = u2Usin2x gx = 1

2u2(x  sin x cos x) + F = 1

2u2cos1({@u) +12{ 

u2 {2+ F so area of regionS TU = 12u2cos1({@u) + {u2 {2u

u cos  = 1

2 

0  (u2 + u cos  u sin )=1

2u2 12u2sin  cos  and thus,(area of sector S RU) = (area of 4S RT) + (area of region S TU) =12u2.

37. From the graph, it appears that the curve| = {24  {2and the line| = 2  { intersect at about { = d  0=81 and { = 2, with

{24  {2A 2  { on (d> 2). So the area bounded by the curve and the line is D U2 d  {24  {2 (2  {)g{ =U2 d{2  4  {2g{ 2{ 1 2{2 2 d. To evaluate the integral, we put{ = 2 sin , where 2    2. Then g{ = 2 cos  g, { = 2   = sin11 =  2, and{ = d   =  = sin1(d@2)  0=416. So U2 d{2  4  {2g{ U@2

 4 sin2 (2 cos )(2 cos  g) = 4 U@2  sin22 g = 4 U@2  12(1  cos 4) g = 2 1 4sin 4 @2  = 2  2  0   1 4(0=996)   2=81 Thus,D  2=81 2 · 2 12 · 222d 12d2 2=10.

39. (a) Letw = d sin , gw = d cos  g, w = 0   = 0 and w = {   = sin1({@d). Then ] { 0 s d2 w2gw = ] sin1({@d) 0 d cos  (d cos  g) = d2] sin 1({@d) 0 cos 2 g = d2 2 ] sin1({@d) 0 (1 + cos 2) g = d2 2 k  +1 2sin 2 lsin1({@d) 0 = d 2 2 k

 + sin  cos lsin1({@d) 0 = d22  sin1{ d  + {d·  d2 {2 d   0  = 1 2d2sin1({@d) +12{  d2 {2

(b) The integralU0{d2 w2gw represents the area under the curve | =d2 w2between the vertical linesw = 0 and w = {. The gure shows that this area consists of a triangular region and a sector of the circlew2+ |2= d2. The triangular region has base{ and heightd2 {2, so its area is12{d2 {2. The sector has area12d2 =12d2sin1({@d).

(15)

SECTION 7.3 TRIGONOMETRIC SUBSTITUTION ¤ 309 41.Let the equation of the large circle be{2+ |2= U2. Then the equation of

the small circle is{2+ (|  e)2= u2, wheree =U2 u2is the distance between the centers of the circles. The desired area is

D =Uu u  e +u2 {2U2 {2g{ = 2U0ue +u2 {2U2 {2g{ = 2U0ue g{ + 2U0uu2 {2g{  2Uu 0  U2 {2g{

The rst integral is just2eu = 2uU2 u2. The second integral represents the area of a quarter-circle of radiusu, so its value is 14u2. To evaluate the other integral, note that

U 

d2 {2g{ =Ud2cos2 g [{ = d sin , g{ = d cos  g] =1 2d2 U (1 + cos 2) g = 1 2d2   +1 2sin 2  + F = 1 2d2( + sin  cos ) + F = d2 2 arcsin{d  + d2 2 {dd 2 {2 d + F = d 2 2 arcsin{d  + { 2  d2 {2+ F Thus, the desired area is

D = 2uU2 u2+ 21 4u2  U2arcsin({@U) + {U2 {2u 0 = 2uU2 u2+1 2u2  U2arcsin(u@U) + uU2 u2= uU2 u2+ 2u2 U2arcsin(u@U) 43.We use cylindrical shells and assume thatU A u. {2= u2 (|  U)2  { = ±su2 (|  U)2,

soj(|) = 2su2 (|  U)2and Y =UU+u Uu 2| · 2 s u2 (|  U)2g| =Uu u4(x + U)  u2 x2gx [wherex = |  U] = 4Uuu xu2 x2gx + 4UUu u  u2 x2gx 

wherex = u sin  , gx = u cos  g in the second integral

 = 4k1 3(u2 x2)3@2 lu u+ 4U U@2 @2u2cos2 g = 43(0  0) + 4Uu2 U@2 @2cos2 g = 2Uu2U@2 @2(1 + cos 2) g = 2Uu2   +1 2sin 2 @2 @2= 22Uu2

Another method: Use washers instead of shells, so Y = 8UU0usu2 |2g| as in Exercise 6.2.63(a), but evaluate the

integral using| = u sin .

(16)

310 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

7.4 Integration of Rational Functions by Partial Fractions

1. (a) 2{ ({ + 3)(3{ + 1)= D{ + 3+3{ + 1E (b) 1 {3+ 2{2+ {= 1 {({2+ 2{ + 1)= 1 {({ + 1)2 = D{ + E{ + 1+ F ({ + 1)2 3. (a) { 4+ 1 {5+ 4{3 = {4+ 1 {3({2+ 4)= D{ + E{2 + F{3 + G{ + H{2+ 4 (b) 1 ({2 9)2 = [({ + 3)({  3)]1 2 =({ + 3)21({  3)2 = D{ + 3+({ + 3)E 2 + F{  3+({  3)G 2 5. (a) { 4 {4 1 = ({ 4 1) + 1 {4 1 = 1 + 1

{4 1 [or use long division] = 1 +

1 ({2 1)({2+ 1) = 1 +({  1)({ + 1)({1 2+ 1) = 1 + D{  1+ E{ + 1+ F{ + G{2+ 1 (b) w 4+ w2+ 1 (w2+ 1)(w2+ 4)2 = Dw + Ew2+ 1 + Fw + Gw2+ 4 + Hw + I(w2+ 4)2 7. ] { {  6g{ = ] ({  6) + 6 {  6 g{ = ]  1 + 6{  6  g{ = { + 6 ln |{  6| + F 9. {  9

({ + 5)({  2)= D{ + 5+ E{  2. Multiply both sides by({ + 5)({  2) to get {  9 = D({  2) + E({ + 5)(), or equivalently,{  9 = (D + E){  2D + 5E. Equating coefcients of { on each side of the equation gives us 1 = D + E (1) and equating constants gives us9 = 2D + 5E (2). Adding two times (1) to (2) gives us 7 = 7E E = 1 and hence,D = 2. [Alternatively, to nd the coefcients D and E, we may use substitution as follows: substitute 2 for { in () to get7 = 7E E = 1, then substitute 5 for { in () to get 14 = 7D D = 2.] Thus,

] {  9 ({ + 5)({  2)g{ = ]  2 { + 5+ 1{  2  g{ = 2 ln |{ + 5|  ln |{  2| + F. 11. 1

{2 1= ({ + 1)({  1)1 = D{ + 1+ E{  1. Multiply both sides by({ + 1)({  1) to get 1 = D({  1) + E({ + 1). Substituting1 for { gives 1 = 2E E =12. Substituting1 for { gives 1 = 2D D = 12. Thus,

] 3 2 1 {2 1g{ = ] 3 2  1@2 { + 1+ 1@2{  1  g{ =1 2ln |{ + 1| +12ln |{  1| 3 2 =1 2ln 4 +12ln 2  1 2ln 3 +12ln 1  =1 2(ln 2 + ln 3  ln 4)  or 12ln32 13. ] d{ {2 e{g{ = ] d{ {({  e)g{ = ] d {  eg{ = d ln |{  e| + F

TX.10

(17)

SECTION 7.4 INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS ¤ 311 15. {3 2{2 4 {3 2{2 = 1 + 4 {2({  2). Write 4

{2({  2) = D{ + E{2 + F{  2. Multiplying both sides by{2({  2) gives 4 = D{({  2) + E({  2) + F{2. Substituting0 for { gives 4 = 2E E = 2. Substituting 2 for { gives 4 = 4F F = 1. Equating coefcients of {2, we get0 = D + F, so D = 1. Thus,

] 4 3 {3 2{2 4 {3 2{2 g{ = ] 4 3  1 + 1{+ 2{2  1{  2  g{ =  { + ln |{|  2{ ln |{  2| 4 3 =4 + ln 4 1 2  ln 2  3 + ln 3 2 3 0  =7 6 + ln23 17. 4|2 7|  12 |(| + 2)(|  3) = D| + E| + 2+ F|  3  4|2 7|  12 = D(| + 2)(|  3) + E|(|  3) + F|(| + 2). Setting | = 0 gives 12 = 6D, so D = 2. Setting | = 2 gives 18 = 10E, so E = 9

5. Setting| = 3 gives 3 = 15F, so F = 15. Now ] 2 1 4|2 7|  12 |(| + 2)(|  3)g| = ] 2 1  2 |+ 9@5| + 2+ 1@5|  3  g| =2 ln ||| +9 5ln || + 2| +15ln ||  3| 2 1 = 2 ln 2 +9 5ln 4 +15ln 1  2 ln 1 95ln 3 15ln 2 = 2 ln 2 +18 5 ln 2 15ln 2 95ln 3 = 275 ln 2 95ln 3 = 95(3 ln 2  ln 3) = 95ln83 19. 1 ({ + 5)2({  1) = D{ + 5+({ + 5)E 2 + F{  1  1 = D({ + 5)({  1) + E({  1) + F({ + 5)2. Setting{ = 5 gives 1 = 6E, so E = 16. Setting{ = 1 gives 1 = 36F, so F =361. Setting{ = 2 gives 1 = D(3)(3) + E(3) + F32= 9D  3E + 9F = 9D +1 2 +14 = 9D + 34, so9D = 14 andD = 361. Now ] 1 ({ + 5)2({  1)g{ = ] 1@36 { + 5 ({ + 5)1@6 2 + 1@36{  1  g{ =  136ln |{ + 5| +6({ + 5)1 + 136ln |{  1| + F. 21. { {2+ 4 {3 + 0{2 + 0{ + 4 {3 + 4{ 4{ + 4 By long division,{ 3+ 4 {2+ 4 = { + 4{ + 4{2+ 4 . Thus, ] {3+ 4 {2+ 4g{ = ]  { + 4{ + 4{2+ 4  g{ =] {  4{{2+ 4+{2+ 24 2  g{ = 12{2 4 · 1 2ln{2+ 4 + 4 · 12tan1{2  + F = 12{2 2 ln({2+ 4) + 2 tan1{ 2  + F 23. 5{2+ 3{  2 {3+ 2{2 = 5{ 2+ 3{  2 {2({ + 2) = D{ + E{2 + F{ + 2. Multiply by{2({ + 2) to get5{2+ 3{  2 = D{({ + 2) + E({ + 2) + F{2. Set{ = 2 to get F = 3, and take { = 0 to get E = 1. Equating the coefcients of {2gives5 = D + F  D = 2. So ] 5{2+ 3{  2 {3+ 2{2 g{ = ] 2 { 1{2 + 3{ + 2  g{ = 2 ln |{| + 1{+ 3 ln |{ + 2| + F.

TX.10

N 7.47.4 ININ

(18)

312 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

25. 10

({  1)({2+ 9) = D{  1+ E{ + F{2+ 9 . Multiply both sides by({  1) 

{2+ 9to get

10 = D{2+ 9+ (E{ + F)({  1) (B). Substituting 1 for { gives 10 = 10D D = 1. Substituting 0 for { gives 10 = 9D  F  F = 9(1)  10 = 1. The coefcients of the {2-terms in (B) must be equal, so 0 = D + E  E = 1= Thus, ] 10 ({  1)({2+ 9)g{ = ]  1 {  1+ {  1{2+ 9  g{ = ]  1 {  1{2{+ 9{21+ 9  g{ = ln|{  1| 1 2ln({2+ 9) 13tan1 { 3  + F In the second term we used the substitutionx = {2+ 9 and in the last term we used Formula 10. 27. {3+ {2+ 2{ + 1

({2+ 1)({2+ 2) = D{ + E{2+ 1 + F{ + G{2+ 2 . Multiply both sides by 

{2+ 1{2+ 2to get {3+ {2+ 2{ + 1 = (D{ + E){2+ 2+ (F{ + G){2+ 1

{3+ {2+ 2{ + 1 =D{3+ E{2+ 2D{ + 2E+F{3+ G{2+ F{ + G

{3+ {2+ 2{ + 1 = (D + F){3+ (E + G){2+ (2D + F){ + (2E + G). Comparing coefcients gives us the following system of equations:

D + F = 1 (1) E + G = 1 (2)

2D + F = 2 (3) 2E + G = 1 (4)

Subtracting equation(1) from equation (3) gives us D = 1, so F = 0. Subtracting equation (2) from equation (4) gives us E = 0, so G = 1. Thus, L =] {({32+ {+ 1)({2+ 2{ + 12+ 2) g{ =] {2{+ 1+{21+ 2  g{. For] {2{+ 1g{, let x = {2+ 1 sogx = 2{ g{ and then ] { {2+ 1g{ = 12 ] 1 xgx = 12ln |x| + F = 12ln  {2+ 1+ F. For] 1 {2+ 2g{, use Formula 10 withd =2. So ] 1 {2+ 2g{ = ] 1 {2+22g{ = 12tan 1{ 2+ F. Thus,L = 1 2ln  {2+ 1+ 1 2tan 1{ 2+ F. 29. ] { + 4 {2+ 2{ + 5g{ = ] { + 1 {2+ 2{ + 5g{ + ] 3 {2+ 2{ + 5g{ = 12 ] (2{ + 2) g{ {2+ 2{ + 5+ ] 3 g{ ({ + 1)2+ 4 = 12ln{2+ 2{ + 5 + 3] 2 gx 4(x2+ 1)  where{ + 1 = 2x, andg{ = 2 gx  = 12ln({2+ 2{ + 5) + 3 2tan1x + F = 12ln({2+ 2{ + 5) + 32tan1  { + 1 2  + F 31. 1 {3 1=({  1)({12+ { + 1) = D{  1+ E{ + F{2+ { + 1  1 = D  {2+ { + 1+ (E{ + F)({  1).

Take{ = 1 to get D =13. Equating coefcients of{2and then comparing the constant terms, we get0 = 13+ E, 1 =13 F,

(19)

SECTION 7.4 INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS ¤ 313 soE = 13,F = 23  ] 1 {3 1g{ = ] 1 3 {  1g{ + ] 1 3{ 23 {2+ { + 1g{ =13ln |{  1|  13 ] { + 2 {2+ { + 1g{ = 1 3ln |{  1|  13 ] { + 1@2 {2+ { + 1g{  13 ] (3@2) g{ ({ + 1@2)2+ 3@4 = 1 3ln |{  1| 16ln  {2+ { + 11 2  2  3  tan1 # { +1 2  32 $ + N = 1 3ln |{  1| 16ln({2+ { + 1) 13tan1  1  3(2{ + 1)  + N

33.Letx = {4+ 4{2+ 3> so that gx = (4{3+ 8{) g{ = 4({3+ 2{) g{, { = 0  x = 3, and { = 1  x = 8. Then ] 1 0 {3+ 2{ {4+ 4{2+ 3g{ = ] 8 3 1 x  1 4gx  = 1 4  ln |x|83= 1 4(ln 8  ln 3) = 14ln 83. 35. 1 {({2+ 4)2 = D{ + E{ + F{2+ 4 + G{ + H({2+ 4)2  1 = D({2+ 4)2+ (E{ + F){({2+ 4) + (G{ + H){. Setting { = 0 gives1 = 16D, so D =161. Now compare coefcients.

1 = 1 16({4+ 8{2+ 16) + (E{2+ F{)({2+ 4) + G{2+ H{ 1 = 1 16{4+12{2+ 1 + E{4+ F{3+ 4E{2+ 4F{ + G{2+ H{ 1 =1 16+ E  {4+ F{3+1 2+ 4E + G  {2+ (4F + H){ + 1 SoE +161 = 0  E = 161,F = 0, 12+ 4E + G = 0  G = 14, and4F + H = 0  H = 0. Thus, ] g{ {({2+ 4)2 = ]  1 16 { + 1 16{ {2+ 4+ 1 4{ ({2+ 4)2  g{ = 116ln |{|  116· 12ln{2+ 4  1 4  12  1 {2+ 4+ F = 116ln |{|  132ln({2+ 4) + 1 8({2+ 4)+ F 37. {2 3{ + 7 ({2 4{ + 6)2 = D{ + E{2 4{ + 6+({2F{ + G 4{ + 6)2  {2 3{ + 7 = (D{ + E)({2 4{ + 6) + F{ + G  {2 3{ + 7 = D{3+ (4D + E){2+ (6D  4E + F){ + (6E + G). So D = 0, 4D + E = 1  E = 1, 6D  4E + F = 3  F = 1, 6E + G = 7  G = 1. Thus, L =] ({{22 4{ + 6) 3{ + 72g{ =] {2 4{ + 61 +({2 4{ + 6){ + 1 2  g{ =] ({  2)12+ 2g{ +] ({2 4{ + 6){  2 2g{ +] ({2 4{ + 6)3 2 g{ = L1+ L2+ L3. [continued]

TX.10

N 7.47.4 ININ

(20)

314 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION L1= ] 1 ({  2)2+22g{ = 12tan 1{  2 2  + F1 L2= 12 ] 2{  4 ({2 4{ + 6)2g{ = 12 ] 1 x2 gx = 12   1x  + F2= 2({2 4{ + 6)1 + F2 L3= 3 ] 1 k ({  2)2+22l2g{ = 3 ] 1 [2(tan2 + 1)]2  2 sec2 g {  2 =s2 tan , g{ =s2 sec2 g  = 3  2 4 ] sec2 sec4g = 3  2 4 ] cos2 g = 32 4 ] 1 2(1 + cos 2) g = 3  2 8   +1 2sin 2  + F3= 3  2 8 tan1  {  2 2  + 3  2 8 1 2 · 2 sin  cos   + F3 = 3  2 8 tan1  {  2 2  + 3  2 8 ·{2{  2 4{ + 6·  2  {2 4{ + 6+ F3 = 3  2 8 tan1  {  2 2  +4({3({  2)2 4{ + 6)+ F3 So L = L1+ L2+ L3 [F = F1+ F2+ F3] = 1 2tan1  {  2 2  +2({2 4{ + 6)1 + 3  2 8 tan1  {  2 2  +4({3({  2)2 4{ + 6)+ F =  42 8 + 3  2 8  tan1{  2 2  + 3({  2)  24({2 4{ + 6)+ F = 7  2 8 tan1  {  2 2  +4({23{  8 4{ + 6)+ F 39. Letx ={ + 1. Then { = x2 1, g{ = 2x gx  ] g{ {{ + 1 = ] 2x gx (x2 1) x = 2 ] gx x2 1= ln  x  1x + 1 + F = ln{ + 1  1 { + 1 + 1   + F. 41. Letx ={, so x2= { and g{ = 2x gx. Thus,

] 16 9 { {  4g{ = ] 4 3 x x2 42x gx = 2 ] 4 3 x2 x2 4gx = 2 ] 4 3  1 +x24 4 

gx [by long division] = 2 + 8] 4

3

gx

(x + 2)(x  2) (B)

Multiply 1

(x + 2)(x  2) = Dx + 2+ Ex  2by(x + 2)(x  2) to get 1 = D(x  2) + E(x + 2). Equating coefcients we getD + E = 0 and 2D + 2E = 1. Solving gives us E =14 andD = 14, so 1

(x + 2)(x  2) = 1@4x + 2+ 1@4x  2and (B) is 2 + 8]4 3  1@4 x + 2+ 1@4x  2  gx = 2 + 8k1 4ln |x + 2| +14ln |x  2| l4 3= 2 + k 2 ln |x  2|  2 ln |x + 2|l4 3 = 2 + 2  lnx  2x + 2 4 3= 2 + 2  ln2 6  ln15  = 2 + 2 ln2@6 1@5 = 2 + 2 ln5 3 or 2 + ln 5 3 2= 2 + ln25 9

(21)

SECTION 7.4 INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS ¤ 315 43.Letx =3{2+ 1. Then {2= x3 1, 2{ g{ = 3x2gx  ] {3g{ 3  {2+ 1= ] (x3 1)3 2x2gx x = 32 ] (x4 x) gx = 3 10x534x2+ F = 103({2+ 1)5@334({2+ 1)2@3+ F

45.If we were to substitutex ={, then the square root would disappear but a cube root would remain. On the other hand, the substitutionx =3{ would eliminate the cube root but leave a square root. We can eliminate both roots by means of the substitutionx =6{. (Note that 6 is the least common multiple of 2 and 3.)

Letx =6{. Then { = x6, sog{ = 6x5gx and{ = x3,3{ = x2. Thus, ] g{  { 3{= ] 6x5gx x3 x2 = 6 ] x5 x2(x  1)gx = 6 ] x3 x  1gx = 6] x2+ x + 1 + 1 x  1 

gx [by long division] = 61 3x3+12x2+ x + ln |x  1|  + F = 2{ + 33 { + 66 { + 6 ln6{  1 + F 47.Letx = h{. Then{ = ln x, g{ = gx x  ] h2{g{ h2{+ 3h{+ 2= ] x2(gx@x) x2+ 3x + 2= ] x gx (x + 1)(x + 2)= ]  1 x + 1+ 2x + 2  gx = 2 ln |x + 2|  ln |x + 1| + F = ln (hh{{+ 2)+ 12 + F

49.Letx = tan w, so that gx = sec2w gw. Then

] sec2w tan2w + 3 tan w + 2gw = ] 1 x2+ 3x + 2gx = ] 1 (x + 1)(x + 2)gx. Now 1 (x + 1)(x + 2) = Dx + 1+ Ex + 2  1 = D(x + 2) + E(x + 1). Settingx = 2 gives 1 = E, so E = 1. Setting x = 1 gives 1 = D. Thus, ] 1 (x + 1)(x + 2)gx = ]  1 x + 1 1x + 2  gx = ln |x + 1|ln |x + 2|+F = ln |tan w + 1|ln |tan w + 2|+F. 51.Letx = ln({2 { + 2), gy = g{. Then gx = 2{  1

{2 { + 2g{, y = {, and (by integration by parts) ] ln({2 { + 2) g{ = { ln({2 { + 2) ] 2{2 { {2 { + 2g{ = { ln({2 { + 2)  ]  2 + {  4 {2 { + 2  g{ = { ln({2 { + 2)  2{ ] 12(2{  1) {2 { + 2g{ + 72 ] g{ ({ 1 2)2+74 = { ln({2 { + 2)  2{  1 2ln({2 { + 2) + 72 ]  7 2 gx 7 4(x2+ 1) 5 7 where{  1 2= s 7 2 x, g{ =s7 2 gx, ({ 1 2)2+74=74(x2+ 1) 6 8 = ({ 1 2) ln({2 { + 2)  2{ +  7 tan1x + F = ({ 1 2) ln({2 { + 2)  2{ +  7 tan12{  1 7 + F

TX.10

N 7.47.4 ININ

(22)

316 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

53. From the graph, we see that the integral will be negative, and we guess

that the area is about the same as that of a rectangle with width2 and height0=3, so we estimate the integral to be (2 · 0=3) = 0=6. Now

1

{2 2{  3 =({  3)({ + 1)1 = D{  3+ E{ + 1

1 = (D + E){ + D  3E, so D = E and D  3E = 1 D =1 4 andE = 14, so the integral becomes

] 2 0 g{ {2 2{  3= 14 ] 2 0 g{ {  3 14 ] 2 0 g{ { + 1 = 14 k ln |{  3|  ln |{ + 1|l2 0= 14  ln{  3{ + 1 2 0 = 1 4  ln1 3 ln 3  = 1 2ln 3  0=55 55. ] g{ {2 2{ = ] g{ ({  1)2 1= ] gx x2 1 [putx = {  1] = 12lnx  1x + 1 + F [by Equation 6] =12ln{  2{  + F 57. (a) Ifw = tan{ 2  , then{

2 = tan1w. The gure gives cos{2=  1 1 + w2 andsin { 2  = w 1 + w2. (b)cos { = cos  2 · { 2  = 2 cos2{ 2   1 = 2  1  1 + w2 2  1 = 1 + w2 2  1 = 1  w1 + w22 (c) { 2 = arctan w  { = 2 arctan w  g{ =1 + w2 2gw 59. Letw = tan({@2). Then, using the expressions in Exercise 57, we have

] 1 3 sin {  4 cos {g{ = ] 1 3  2w 1 + w2   4  1  w2 1 + w2  2 gw 1 + w2 = 2 ] gw 3(2w)  4(1  w2) = ] gw 2w2+ 3w  2 = ] gw (2w  1)(w + 2)= ]  2 52w  11  15w + 21 

gw [using partial fractions] = 1

5 k

ln |2w  1|  ln |w + 2|l+ F = 15ln2w  1w + 2 + F = 15ln2 tan ({@2)  1tan ({@2) + 2  + F 61. Letw = tan ({@2). Then, by Exercise 57,

] @2 0 sin 2{ 2 + cos { g{ = ] @2 0 2 sin { cos { 2 + cos { g{ = ] 1 0 2 · 2w1 + w2 · 1  w1 + w22 2 + 1  w1 + w22 2 1 + w2gw = ] 1 0 8w(1  w2) (1 + w2)2 2(1 + w2) + (1  w2)gw =] 1 0 8w · 1  w2 (w2+ 3)(w2+ 1)2gw = L

TX.10

(23)

SECTION 7.4 INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS ¤ 317 If we now letx = w2, then 1  w

2 (w2+ 3)(w2+ 1)2 = 1  x (x + 3)(x + 1)2 = Dx + 3+ Ex + 1+ F (x + 1)2 

1  x = D(x + 1)2+ E(x + 3)(x + 1) + F(x + 3). Set x = 1 to get 2 = 2F, so F = 1. Set x = 3 to get 4 = 4D, so D = 1. Set x = 0 to get 1 = 1 + 3E + 3, so E = 1. So L =]1 0  8w w2+ 3 8ww2+ 1+(w28w+ 1)2  gw =  4 ln(w2+ 3)  4 ln(w2+ 1)  4 w2+ 1 1 0 = (4 ln 4  4 ln 2  2)  (4 ln 3  0  4) = 8 ln 2  4 ln 2  4 ln 3 + 2 = 4 ln2 3 + 2 63.By long division, { 2+ 1 3{  {2 = 1 + 3{ + 13{  {2. Now 3{ + 1

3{  {2 = 3{ + 1{(3  {) = D{ + E3  {  3{ + 1 = D(3  {) + E{. Set { = 3 to get 10 = 3E, so E = 103. Set{ = 0 to get1 = 3D, so D =13. Thus, the area is

] 2 1 {2+ 1 3{  {2g{ = ] 2 1  1 + 13 {+ 10 3 3  {  g{ ={ +1 3ln |{| 103 ln |3  {| 2 1 =2 +1 3ln 2  0  1 + 0 10 3 ln 2  = 1 +11 3 ln 2 65. S + V

S [(u  1)S  V] = DS +(u  1)S  VE  S + V = D [(u  1)S  V] + ES = [(u  1)D + E] S  DV  (u  1)D + E = 1, D = 1  D = 1, E = u. Now w =] S + V S [(u  1)S  V]gS = ]  1 S +(u  1)S  Vu  gS = ] gS S + uu  1 ] u  1 (u  1)S  VgS sow =  ln S + u

u  1ln|(u  1)S  V| + F. Here u = 0=10 and V = 900, so w =  ln S + 0=1

0=9ln|0=9S  900| + F =  ln S 19ln(|1| |0=9S + 900|) =  ln S 19ln(0=9S + 900) + F. Whenw = 0, S = 10,000, so 0 =  ln 10,000 19ln(9900) + F. Thus, F = ln 10,000 +19ln 9900 [ 10=2326], so our equation becomes w = ln 10,000  ln S +1 9ln 9900 19ln(0=9S + 900) = ln 10 ,000 S + 19ln0=9S + 9009900 = ln 10,S000+ 19ln0=1S + 1001100 = ln 10,S000+ 19ln 11S + 1000,000

67. (a) In Maple, we denei({), and then use convert(f,parfrac,x); to obtain

i({) = 24,110@48795{ + 2  668@3232{ + 1  9438@803{  7,155+ (22,098{ + 48,935)@260,015{2+ { + 5 In Mathematica, we use the command Apart, and in Derive, we use Expand.

TX.10

(24)

318 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION (b) ] i({) g{ = 24,110 4879 ·15ln|5{ + 2| 668323·12ln|2{ + 1| 80,1559438 ·13ln |3{  7| +260,0151 ] 22,098{ +12  + 37,886  { +1 2 2 +19 4 g{ + F =24,110 4879 ·15ln|5{ + 2| 668323·12ln|2{ + 1| 80,1559438 ·13ln|3{  7| + 1 260,015  22,098 ·1 2ln  {2+ { + 5+ 37,886 ·t4 19tan1  1  19@4  { +1 2  + F =4822 4879ln|5{ + 2| 334323ln|2{ + 1| 80,1553146 ln|3{  7| +260,01511,049 ln  {2+ { + 5 + 75,772 260,01519tan1 k 1  19(2{ + 1) l + F Using a CAS, we get

4822 ln(5{ + 2) 4879  334 ln(2{ + 1)323  3146 ln(3{  7)80,155 + 11,049 ln({260,0152+ { + 5)+ 3988  19 260,015 tan1  19 19 (2{ + 1) 

The main difference in this answer is that the absolute value signs and the constant of integration have been omitted. Also,

the fractions have been reduced and the denominators rationalized.

69. There are only nitely many values of{ where T({) = 0 (assuming that T is not the zero polynomial). At all other values of {, I ({)@T({) = J({)@T({), so I ({) = J({). In other words, the values of I and J agree at all except perhaps nitely many values of{. By continuity of I and J, the polynomials I and J must agree at those values of { too.

More explicitly: ifd is a value of { such that T(d) = 0, then T({) 6= 0 for all { sufciently close to d. Thus, I (d) = lim{dI ({) [by continuity ofI ]

= lim{dJ({) [wheneverT({) 6= 0]

= J(d) [by continuity ofJ]

7.5 Strategy for Integration

1. Letx = sin {, so that gx = cos { g{. ThenUcos {(1 + sin2{) g{ =U(1 + x2) gx = x +13x3+ F = sin { +13sin3{ + F. 3.

] sin { + sec {

tan { g{ =

] sin {

tan {+ sec {tan { 

g{ =](cos { + csc {) g{ = sin { + ln |csc {  cot {| + F 5. ] 2 0 2w (w  3)2 gw = ] 1 3 2(x + 3) x2 gx  x = w  3, gx = gw  =] 1 3  2 x+ 6x2  gx =  2 ln |x|  6x 1 3 = (2 ln 1 + 6)  (2 ln 3 + 2) = 4  2 ln 3 or 4  ln 9

7. Letx = arctan |. Then gx = g|

1 + |2  ] 1 1 harctan | 1 + |2 g| = ] @4 @4h xgx =hx@4 @4= h@4 h@4.

TX.10

Referências

Documentos relacionados

Considerando o histórico recente da produtividade das lavouras de milho divulgado pela Conab, entre as safras 2008/2009 e 2018/2019, a produtividade média por hectare saltou de 60

Vemos que assim possibilita-se à sociedade a defesa dos direitos difusos, sendo por isso meio eficaz na defesa do patrimônio histórico e cultural e instrumento processual para que

Análise das Preferências dos Usuários do Transporte Rodoviário de Passageiros: Estudo de Caso na Linha Florianópolis SC – Porto Alegre RS Esta dissertação foi julgada adequada

Conduz que o princípio da proveniência aparece como aquele que direcionou a prática organizativa da Arquivologia, essa ideia de separar quem produziu nos condiz a entender sobre

55.1a that teacher education programs [Carrier: educ.sys.] are [Proc.: relational: intensive: attrib.] academically weak, highly theoretical, and largely divorced

O agente delituoso passa a ser considerado uma coisa e todos os direitos que lhe são auferidos pelo Estado Social Democrático de Direito passam a não mais existir no momento da

No decorrer desta pesquisa, me foi possível diagnosticar o tem sido veiculado, na cultura escolar, sobre a temática indígena, abordando o ensino de História na

Dessa maneira, a interpretação do livro Morto até o anoitecer 2007 e seu universo de leitores bem como os usuários das adaptações da série televisa True Blood 2008-2014 forneceu