• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número2"

Copied!
6
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Schinus

terebinthifolius

administration

prevented

behavioral

and

biochemical

alterations

in

a

rotenone

model

of

Parkinson’s

disease

Adriana

Sereniki

a

,

Cybelle

F.B.

Linard-Medeiros

a

,

Shirliane

N.

Silva

b

,

Juciene

B.R.

Silva

a

,

Tadeu

J.S.

Peixoto

Sobrinho

b

,

Juliano

R.

da

Silva

a

,

Lariza

D.S.

Alves

a

,

Soraya

S.

Smaili

c

,

Almir

G.

Wanderley

a,b,∗

,

Simone

S.L.

Lafayette

a,b

aDepartamentodeCiênciasFarmacêuticas,UniversidadeFederaldePernambuco,Recife,PE,Brazil

bDepartamentodeFisiologiaeFarmacologia,UniversidadeFederaldePernambuco,Recife,PE,Brazil

cDepartamentodeFarmacologia,UniversidadeFederaldeSãoPaulo,SãoPaulo,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8July2015 Accepted30November2015 Availableonline29January2016

Keywords:

Antioxidanteffects Lipidicperoxidation Parkinson’sdisease Rotenone

Schinusterebinthifolius

a

b

s

t

r

a

c

t

Parkinson’sdiseaseisaneurodegenerativedisordercharacterizedbymotorimpairment,cognitive declineandpsychiatricsymptoms.SchinusterebinthifoliusRaddi,Anacardiaceae,hadbeenstudiedfor itsanti-inflammatoryandantioxidantproperties,andinthisstudy,thestembarkwasevaluatedforthe neuroprotectiveeffectsonbehavioralandbiochemicalalterationsinducedbyadministrationsofrotenone inrats.Behavioralevaluationswereperformedusingopen-fieldandrotarod.Theinvitroandinvivo

antioxidantactivitiesweredeterminedbytheDPPHradicalscavengingactivityandlipidperoxidation methodrespectively.Theadministrationofrotenone(3mg/kg,s.c.)producedhypolocomotion,increaseof immobilityandmuscleincoordination,whilethetreatmentwithS.terebinthifoliusstembarkextract(150, 300and600mg/kgp.o.)forsevendayspreventedrotenone-induceddysfunctionalbehavior.Biochemical analysisofthesubstantianigra,striatumandcortexrevealedthatrotenoneadministrationsignificantly increasedlipidperoxidation,whichwasinhibitedbytreatmentwithalldosesofS.terebinthifolius.The resultssuggestedneuroprotectiveeffectofS.terebinthifoliuspossiblymediatedthroughitsantioxidant activity,indicatingapotentialtherapeuticbenefitofthisspeciesinthetreatmentofParkinson’sdisease. ©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

The increase of elderly populationhas led to an increasing incidenceofneurodegenerativediseasesworldwide,leading,thus, totheinterestin studiesforpreventionandtreatmentofthese pathologies.Naturalconstituentsderivedfromplantsare impor-tanttoinvestigate,sincestudieshaveshownthatthesecompounds exhibitedarangeofbiologicalactivities,withtherapeuticpotential, forinstanceantioxidantandanti-inflammatoryeffects.

Parkinson’sdisease(PD)isoneifthemajorneurodegenerative disorder in the entire world and is characterized by progres-sivedegenerationof dopamine-containingneurons thatproject from substantia nigra pars compacta to the striatum. Besides, motorimpairment(bradykinesia,rigidity,tremoratrestand dis-turbancesinbalance),cognitivedeclineandpsychiatricsymptoms (likedepression)arethecardinalsymptomsofthepathology(Dutta

Correspondingauthor.

E-mail:almir.wanderley@ufpe.br(A.G.Wanderley).

and Mohanakumar, 2015; Fernandez, 2015).Main mechanisms have beenproposed toexplain the eventsculminating in neu-ronal death in PD, which are associated with oxidative stress, mitochondrialdysfunction,neuroinflammationand environmen-talexposures,likepesticides,contributingfortheappearanceof behavioral and biochemical alterations (Dauer andPrzedborski, 2003; Renaud et al., 2015). Several animal models have been usedtomimetizeandelucidatethepathogenesisofPD,inspecial rotenone,MPTPand6-hydroxydopamine(DauerandPrzedborski, 2003;Blesaetal.,2012).

Rotenone(Derrissp.,Fabaceae)hasbeenapotenthydrophobic pesticideanditsenvironmentalexposuremimicstheclinicaland pathologicalfeaturesofPD,suchasbehavioral,biochemicaland pathologicalchanges,providingareproducibleanimalmodelfor PD(Betarbetetal.,2000).Itprovokedneurodegenerationvia mul-tiplemechanisms,mainlybyinhibitionofcomplexI,increaseof oxidativestressandinductionofapoptosis(Zaitoneetal.,2012; vonWrangeletal.,2015).

SchinusterebinthifoliusRaddi,Anacardiaceae,isanativeplantof SouthAmerica(Corrêa,1974).InBrazilitispopularlycalledAroeira

http://dx.doi.org/10.1016/j.bjp.2015.11.005

(2)

orCabuí.Infolkmedicine,ithasbeenusedforthetreatmentof ulcers,respiratoryproblems,woundsandarthritis(Morton,1978) andasanantiseptic,antiinflammatoryandhaemostatic(Medeiros etal.,2007).Manyofitspropertiesorhealingeffectsattributed byfolkmedicineareassociatedtothepresenceofpolyphenolsin theplant,whichgivetheplantitsantioxidantproperties(Medeiros etal.,2007;Abdouetal.,2015).Theaimofthisstudywasto investi-gatethepossibleneuroprotectiveeffectsofS.terebinthifoliusinthe behavioractivityandontheoxidativestressinducedbyrotenone asexperimentalmodelofParkinson’sdiseaseinrats.

Materialsandmethods

Plantmaterial

StembarkofSchinusterebinthifoliusRaddi,Anacardiaceae,were collectedintheremains oftheAtlanticrainforestlocatedinthe municipality of Cabo de Santo Agostinho, Pernambuco, Brazil betweenFebruaryandApril2013(8◦2033′′Sand345659′′W).A voucherspecimenwasauthenticatedintheDepartmentofBotany oftheFederalUniversityofPernambucobythecuratorM. Bar-bosaandwasdepositedatGeraldoMarizHerbariumunderrecord n◦.8758.Extractionwasperformedbymacerationandairdried, and500gofpulverizedS.terebinthifoliusbarkwasaddedto1.0lof ethanol70%atroomtemperature,for7days,andwasoccasionally shaken.Inthelaboratory,thecrudeethanolicextractwas evapo-ratedtodrynessunderreducedpressureforthetotalelimination ofalcohol,followedbylyophilization,yieldingapproximately35g ofdryresidue.ThelyophilizedextractofS.terebinthifoliuswaskept atroomtemperatureuntiluseandsuspendedindistilledwater.

Highperformanceliquidchromatography(HPLC)analysis

Themainphytochemicalmarkers(gallicacid,ellagicacid, cate-chinandepicatechin)inS.terebinthifoliussampleswereanalyzed bywaybywayofliquid chromatography-diodearraydetection (LC-DAD)analysisusingaShimadzusystem(LC-20AT)equipped witha photo diodearray detector (SPD-M20A).The chromato-graphicseparationwasperformedusingaGeminiRP-18column 5␮mparticlesizeand250mm×4.60mmi.d.(Phenomenex), pro-tectedbyaguardcolumnofthesamematerial.Agradientelution wasperformedbyvaryingtheproportionofSolventA(0.5%acetic acidindistilled water, v/v) and solventB(methanol)at a flow rateof0.8ml/minfollowinggradientprogram:20–40%B(10min), 40–60%B(10min),60%B(10min),60–40%B(10min),and40–20% B(10min). Thedried extracts and standardswere dissolvedin methanol:water(20/80,v/v)andfilteredthroughamembraneof 0.45␮m(Millipore®,USA)priortoinjectionof20␮l.Thepeaks ofeachmarkingondrysubstancewereidentifiedbycomparing retentiontimesandUVspectraofDAD.

Animals

Adultmale Wistarrats(Rattus norvegicusvar.albinus),age3 monthsandweighingbetween250and300g,wereobtainedfrom theDepartmentof PhysiologyandPharmacology attheFederal Universityof Pernambuco,Brazil.The animalsweremaintained instandardenvironmentalconditions(22±2◦C,12:12hdark/light cycle).Commercialfood(Presence®,Purina,Brazil)andwaterwere

availableadlibitum.AllprotocolswereapprovedbytheAnimal Experimentation Ethics Committee of theFederal University of Pernambuco,underlicensen◦.23076.050131/2013-82in accor-dancewiththeNationalInstituteofHealthGuidefortheCareand UseofLaboratoryAnimals.

Drugs

Butylated hydroxytoluene (BHT), 2,2-diphenyl-1-picrylhydrazyl (DPPH), malondialdehyde (MDA), thiobarbituric acid(TBA),epinephrine,1,1,3,3-tetrametoxipropane(TMP),Tween 80, DMSO and rotenone,were purchased fromSigma–Aldrich®

(St.Louis,MO,USA).Rotenonewasdissolvedinsunfloweroilone daybeforebeginning treatment.On subsequentdays, solutions remainedintherefrigerator(4◦C).Sunfloweroilwasobtainedin localmarket.

Experimentalgroups

The animals were randomly divided into five experimental groups (n=10). Rats from Group 1 received water by gavage (1ml/kg)and1hlaterasubcutaneous(s.c.)administrationofthe vehicle(90%,w/vsunfloweroil,+10%w/vDMSO)forsevendays. Group2alsoreceivedwaterbygavageandrotenone(3mg/kg,s.c.) diluted invehicle after1hduring sevendays. Groups 3,4 and 5receivedbygavage150,300or600mg/kgofS.terebinthifolius, respectively,suspendedinwater,and1hlaterweregiventhem rotenone(3mg/kg,s.c.)alsoduringsevendays.24hafterthelast dayoftreatment,theratswereevaluatedwithbehavioraltestsand biochemicalassays(Linard-Medeirosetal.,2015).

Openfieldtest

TheopenfieldtestwascarriedouttoBroadhurst(1957)and

Bernardi andPalermo-Neto(1979).Toquantifyexploratoryand generallocomotor activity,each ratwas placed intothecenter ofanopen-fieldarena(acircularwoodenboxwithadiameterof 100cmand40cmhigh,withfloordividedinto19regions).Rats wereassessedindividuallyfor5min,whilefourparameterswere analyzed:(i)latencytostartthemovement(timetoleavetheinner circle,ins),(ii)locomotionfrequency(numberofsquarecrossed withfourpaws),(iii)rearingfrequency(numberoftimesthe ani-malstoodontheirhindpaws)and(iv)immobilitytime(lackof movementduringtesting,ins).Theapparatuswascleanedwitha 5%ethanolsolutionbeforebehavioraltestingtoeliminatepossible biasduetoodorsleftbypreviousrat.

Rotarodactivitytest

Inordertoquantifymotordeficiency,therotarodtestwasused atafixedspeed,accordingtoMonvilleetal.(2006).Toperformthis test,theanimalwasplacedwithallfourpawsonabarwitha diam-eterof7cmandset25cmabovethefloor.Thebarrotatedataspeed of25rpm.Beforebeingsubmittedtothedifferenttreatments,the ratsweretrainedintwosessionsof180seachforhabituation. Ani-malswereplacedontherotatingbarandthetimespentonthe rotatingbarwasrecorded.Acut-offtimeof180swasmaintained throughouttheexperiment.Theaverageresultswererecordedas timeoffall.

Biochemicalanalysis

(3)

DPPHradicalscavengingactivityinvitro

Antioxidant radicalscavenging activity was evaluated using DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals (Brand-Williams etal.,1995).1mlofDPPHsolution(30mM,in95%ethanol)was incubatedwith2.5mlofvaryingconcentrationsofS.terebinthifolius

extract(2.5–250␮g/ml).Thereactionmixturewasshakenwelland incubatedfor 30minat roomtemperature,and theabsorbance of the resulting solution was read at 515nm against a blank. Theradicalscavengingactivitywasmeasuredasanabsorbance decreaseofDPPHandwascalculatedusingthefollowingequation: (Absorbanceofcontrol−Absorbanceoftest)×100/Absorbanceof control.Thesyntheticantioxidantbutylatedhydroxytoluene(BHT) wasincludedinexperimentsasapositivecontrol.TheEC50value

foreachsample(treereplicates),wascalculatedfromacalibration curve obtained for the percentage of radical scavenging activ-ity versus concentration of the sample required to reduce the absorbanceofthenegativecontrol(DPPHsolution)by50%.The BHTcurveantioxidantwasy=15.695ln(x)+16.477(R2=0.9544).

TheS.terebinthifolius extract curvewasy=18.322ln(x)−24.936 (R2=0.9026).

Measurementoflipidperoxidationinvivo

Thequantitativemeasurementoflipidperoxidationinthe subs-tantianigra,striatumandcortexwasperformedaccordingtothe methoddescribedbyBuegeandAust(1978).Theamountof malon-dialdehyde(MDA)oflipidperoxidationwasmeasuredbyreaction withthiobarbituricacid.Briefly,aliquots(500␮l)ofsupernatant were placed in test tubes and added to 1ml of TBA reagent: 0.38%(w/w)TBA,250ml of1Nhydrochloricacid,15%(w/w)of trichloroaceticacidand20mlof2%(w/v)ethanolicBHT.The solu-tion wasshaken and heated to 100◦C for 15min, followed by coolinginanicebath.Then,1.5mlofn-butanolwasadded.The mixturewasshakenandcentrifugedto3000×gfor20min.After centrifugation,theupperlayerwascollectedandassessedwitha spectrophotometer(CARY3EUV–VisibleSpectrophotometer Var-ian,Inc. Brazil)at532nm.ResultsofTBARSofsubstantia nigra, striatumandcortexwereexpressedasnmolMDA/mgproteinusing astandardcurvegeneratedwithdifferentconcentrationsof 1,1,3,3-tetramethoxypropanesolution.

Statisticalanalysis

Datawereexpressedasmean±standarderrorofmean(SEM). Thedifferencebetweengroupswasanalyzedbyone-way analy-sisofvariance(ANOVA)followedbyposthocNewman–Keulstest. ThecomparisonswerecarriedoutbyGraphPadPrism® 5.0 and

significantatp≤0.05.

Results

Highperformanceliquidchromatography(HPLC)analysis

Fromthecomparisonofretentiontimeswithextractstandards previouslyinjectedintotheHPLC,itwaspossibletoconfirmthat,S. terebinthifoliussampledemonstratedthepresenceofphenolicacids (gallicacid,4.66min;ellagicacid, 7.51min)and alsoflavonoids (catechin,10.24min;epicatechin19.05min)(Fig.1).

EffectsofS.terebinthifoliusonbehavioraltests

Rotenoneadministration(3mg/kg,s.c.)during7 days signif-icantlyreduced thefrequencies of locomotion and rearing and increasedthetimeofimmobilityandlatencytostartthe move-ment in theopen field test. Pre-treatment with thestem bark

400000 350000 300000 250000 200000 150000 100000 50000 0

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Time (min)

28 30 32 34 36 38 40

Area

1

2 3

4

4.66 min Lambda max: 224 272 208 191 357 Lambda min: 209 241 192 356 359

10.24 min Lambda max: 225 278 380 389 391 Lambda min: 225 191 379 388 390

19.10 min Lambda max: 231 278 202 199 195 Lambda min: 261 203 201 197 193

7.51 min Lambda max: 223 272 356 360 364 Lambda min: 251 191 355 359 363 400

300

200

100

0

200 225 250 275 300 325 350 375 400 200 225 250 275 300 325 350 375 400

200 225 250 275 300 325 350 375 400 200 225 250 275 300 325 350 375 400 300

250

200

150

100

50

0

300

400

350

300

250

200

150

100

50

0

400

350

300

250

200

150

100

50

0

–50 250

200

150

100

50

0 400

250

200

150

100

50

0

250

200

150

100

50

0 300

200

100

0

1

3 4

2

Fig.1. ChromatogramofSchinusterebinthifoliusstembarkdetectedat278nm. Peaks:gallicacid(Rt=4.66),catechin(7.51),epicatechin(10.24)andellagicacid (Rt=19.05)obtainedbyHPLCmethod.

(150,300and600mg/kg)significantlyimprovedlocomotor activ-ityandrearinganddecreasedthetimeofimmobilityandlatency tostartthemovementwhencomparedtorotenoneanimals. How-ever, thelower dose of theextract (150mg/kg) was unableto preventtherotenone-inducedlocomotordeficitsintheopenfield test(Fig.2a–d).

Onrotarodtest,rotenoneadministration(3mg/kg,s.c.)induced asignificantdecreaseinthetimeofpermanencyoftheanimals comparedwithcontrolratsduringtheobservationinthe appa-ratus.Dailypre-treatmentof300and600mg/kgdoseswasable toincrease thetime ofpermanency incomparison torotenone group.However,thelowerdoseoftheextractwasunableto pre-venttherotentone-inducedlocomotordeficitsintheopenfieldtest (Fig.3).

Reductionof2,2-diphenyl-1-picrylhydrazylradicalinvitro

(4)

*

*

*

*

#

# #

#

#

#

# #

# #

100 80 60 40 20 0

25 20 15 10 5 0

Locomotion frequency (units)

Latency to star

t the

mo

vement (s)

Rear

ing frequency (times)

7 days

Immobility time (s)

7 days

7 days 7 days

a

c

d

b

200

150

100 50

0

10 8 6 4 2 0

Control Rotenone St 150mg + rotenone St 300mg + rotenone St 600mg + rotenone

Fig.2.EffectofSchinusterebinthifolius(St,150,300and600mg/kg,p.o.)onopenfieldtestinratsbeforerotenone(3mg/kg,s.c.)administration.(a)Totalambulatoryactivity, (b)rearingfrequency,(c)immobilitytimeand(d)latencytostartdemovement.Thevaluesareexpressedasmean±S.E.M.(n=10/group).One-wayANOVAfollowedby Newman–Keulstest(*p≤0.05vs.controlgroupand#p0.05vs.rotenonegroup).

*

*

#

#

Control Rotenone St 150mg + rotenone

St 300mg + rotenone St 600mg + rotenone

100 80

Motor perf

or

mance (s)

40 60

20

0

7 days

Fig.3.EffectofSchinusterebinthifolius(St,150,300and600mg/kg,p.o.)onrotarod testinratsbeforerotenone(3mg/kg,s.c.)administration.Thevaluesareexpressed asmean±S.E.M.(n=10/group).One-wayANOVAfollowedbyNewman–Keulstest (*p≤0.05vs.controlgroupand#p0.05vs.rotenonegroup).

synthetic antioxidant BHT showed EC50 25.768±0.147␮g/ml. This activity was about 2.1 times smaller when compared to

S.terebinthifolius.

Measurementoflipidperoxidationinvivo(TBARS)

Rotenoneadministration(3mg/kg)during7daysprovokedan increaseonoxidativestressasindicatedbythesignificantincrease ofMDAconcentrations in substantianigra, striatumand cortex whencomparedtocontrolgroup.However,thepre-treatmentwith alldosesofS.terebinthifoliuswasabletoinhibitthelipid peroxida-tionincomparisontorotenoneanimals(Fig.4a–c).

Discussion

This report showed the neuroprotective effect of S. tere-binthifolius in Parkinson’s diseaseusing the model of rotenone subcutaneousadministrationduring7days.AlldosesofS. tere-binthifolius(150,300and600mg/kg)significantlypreventedmotor deficitsintheopenfieldandrotarodtests,andmainly,wasableto inhibittheoxidativestressinducedbysystemicrotenone adminis-trationobservedininvivoTBARSmethod.Itwasalsodemonstrated theinvitroantioxidanteffectofS.terebinthifolius,aswellitsmainly compoundsinHPLCmethod.Theantioxidantactivityoftheextract wasalsomeasuredintheDPPHradicalassay,whichprimarily eval-uatesprotonradical-scavengingability.

Rotenone is a potent inhibitor of complex I (NADH: ubiquinoneoxidoreductase)of themitochondrial electron trans-portchain. Inrats,this toxincausesa syndromethat replicates both neuropathological findings and behavioral symptoms of Parkinson’sdisease.Applicationoflowdosesofrotenoneinvitro

andinvivohavebeenshowntoaffectmanyofthemechanisms involvedinthepathogenesisofParkinson’sdisease,suchasaltered calcium signaling, induction of oxidative stress and apoptosis, lossoftyrosinehydroxlase,proteasomaldysfunction,nigraliron accumulationandtheformationoffibrillarcytoplasmicinclusions thatcontainubiquitinand␣-synuclein(vonWrangeletal.,2015).

(5)

*

*

*

#

#

#

#

#

#

#

#

#

Control Rotenone St 150mg + rotenone

St 300mg + rotenone St 600mg + rotenone

1.0 0.8 0.6 0.4 0.2 0.0 1.0 0.8

0.6

0.4 0.2

0.0

1.0 0.8 0.6 0.4 0.2 0.0

nMol MD

A/mg protein

nMol MD

A/mg protein

nMol MD

A/mg protein

a

b

c

Fig.4.EffectofSchinusterebinthifolius(St,150,300and600mg/kg,p.o.)onlipid peroxidationlevelsinratsbeforerotenone(3mg/kg,s.c.)administration.(a) Subs-tantianigra,(b)striatumand(c)cortexofbrainrats.Thevaluesareexpressed asmean±S.E.M.(n=10/group).One-wayANOVAfollowedbyNewman–Keulstest (*p≤0.05vs.controlgroupand#p0.05vs.rotenonegroup).

largelyaresultoftheperoxidationofpolyunsaturatedfattyacids with more than two double bonds (Sanders and Greenamyre, 2013).

Inourstudy,administrationofrotenonepromotedincreased levelsofMDAinsubstantianigra,striatumand cortex, suggest-ing an increased lipid peroxidation and, thus, oxidative stress. In this way, there was an increase in brain MDA levels (an indicatorof lipid peroxidationdue tofree radicals) which was inhibited by theadministration of stem bark of all doses of S. terebinthifolius,suggestingitsantioxidantaction.Indeed,recently

Costaet al.(2015) shown thatextract fromdifferenttissues of

S. terebinthifolius present antioxidant activity by DPPH radical assay. Abdou et al. (2015) investigated the curative and pro-tectiveeffects of S. terbenthifolius ethanolic extract (350mg/kg,

p.o.)againstCCl4-inducedacutehepatotoxicityinratsandshown

that the administration significantly reinstated the antioxidant capacity.Oxidativestressduetoanincreaseinfreeradical gen-erationoranimpairedendogenousantioxidantmechanismisan

importantfactorthathadbeenimplicatedinvarious neurodegen-erativediseases (Sanders and Greenamyre,2013;Solanki etal., 2015).

Thebrainishighlysusceptibletofreeradicaldamagebecause ofitshighutilizationofoxygenandthepresenceofarelatively lowconcentrationofantioxidantenzymesandfreeradical scaven-gers.Thereisagrowinginterestinestablishingtherapeuticand dietarystrategiestocombatoxidativestressinduceddamageto thecentralnervoussystem(Gaoetal.,2012;Virmanietal.,2013). Studiesin humansandanimals havesuggested thatflavonoids, a large group of polyphenolic compounds found in fruits and vegetablesarecapableofcounteractingneuronalinjury,thereby delayingtheprogressionofneurodegenerativediseases, motivat-ingresearcheseffortstoidentifythemechanismsofneuronaldeath aswelltodiscovernewcompoundstocontrolthem(Duttaand Mohanakumar,2015;Chenetal.,2015;Solankietal.,2015;Renaud etal.,2015).

ThemajorcompoundsofstembarkofS.terebinthifoliusRaddi areflavonoids(cathechinandepicatechin)andphenolicsacids (gal-licacidandellagicacid).Catechinsarepowerfulantioxidantsand freeradicalscavengersinvitroassaysandinvivomodels(Srividhya etal.,2009;Solankietal.,2015).Ithasbeenfoundthatcatechins havemuchhigherantioxidantactivityincomparisontovitamins Cand Einvitro.Thechemicalstructureshavebeencontributed tothiseffecttochelatemetalions,preventthegenerationoffree radicals,allowthedisplacementofelectronsandprovidehigh reac-tivitytoeliminatethefreeradicals(Mandeletal.,2006;Khanand Mukhtar,2007;Senthil,2008).Furthermore,thecatechinsand epi-catechinswerealsoabletoindirectlymodulateexpressionofsome protectiveenzymesantioxidants(HidgonandFrei,2003;Weinreb etal.,2004).Thechronictreatmentwithcatechinspreventedthe declineintheactivityofSODandGSHenzymesintheserumof oldmice,preventingalsosignificantlyincreasedTBARSinthe hip-pocampusoftheseanimals(AbdElMohsenetal.,2002;Mandel etal.,2006).Otherwise,gallicacidandellagicacidarehydrolyzed tanninsofnaturalproductsfoundinabundanceingrapes,tea,fruit and wine (Singhet al., 2004). Theseacids wereable toreduce theproductionofROSandsuperoxide,suchashydrogen perox-ide,hydroxyl radicals and hypochlorous acid;alsodue to their antimutagenicandanticarcinogenicactivities(Kim,2007).Inthe cognitiveimpairmentinducedbyanotheranimalmodelof Parkin-son’sdiseaseinanimals,6-OHDA,thetreatmentwithgallicacid significantlyreduced thelevel of TBARSin theratbrains(Kim, 2007).

Inconclusion,theresultsofthisstudyconfirmthatthe subcuta-neousadministrationofrotenoneinratsinducesneurobehavioral andbiochemicalchangesmimickingthoseobservedinParkinson’s disease.TreatmentofratswithS.terebinthifoliusproduced signif-icantneuroprotectionprobablymediatedthroughitsantioxidant activity.Takentogether,ourdatasuggestedneuroprotectiveeffects ofS.terebinthifoliusRaddi,probablymediatedthroughits antiox-idantactivity.Thus, thepresent workbroughtoutnewinsights forthetreatmentofneurodegenerativediseasesandhighlighted thepharmacologicalpropertiesforParkinson’sdiseaseandother neurodegenerativepathologies.

Author’scontributions

(6)

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TheauthorswouldliketothankCAPESforfinancialsupport.The authorsalsowouldliketodedicatethispapertoSimoneSetteLopes Lafayette.

References

AbdElMohsen,M.M.,Kuhnle,G.,Rechner,A.R.,Schroeter,H.,Rose,S.,Jenner,P., Rice-Evans,C.A.,2002.Uptakeandmetabolismofepitatechinanditsaccessto thebrainafteroralingestion.FreeRadic.Biol.Med.33,1693–1702.

Abdou,R.H.,Saleh,S.Y.,Khalil,W.F.,2015.Toxicologicalandbiochemical stud-iesonSchinus terebinthifoliusconcerningitscurative andhepatoprotective effectsagainstcarbontetrachloride-inducedliverinjury.Pharmacogn.Mag.11, S93–S101.

Bernardi,M.M.,Palermo-Neto,J.,1979.Effectsofabruptandgradualwithdrawal fromlong-termhaloperidoltreatmentonopenfieldbehaviorofrats. Psy-chopharmacology65,247–250.

Betarbet,R.,Sherer,T.B.,Mackenzie,G.,Garcia-Osuma,M.,Panov,A.V.,Greenamyre, J.T.,2000.Chronicsystemicpesticideexposurereproducesfeaturesof Parkin-son’sdisease.Nat.Neurosci.3,1301–1306.

Blesa,J.,Phani,S.,Jackson-Lewis,V.,Przedborski,S.,2012.Classicandnewanimal modelsofParkinson’sdisease.J.Biomed.Biotechnol.2012(ID),845618. Brand-Williams,W.,Cuvelier,M.E.,Berset,C.,1995.Useoffreeradicalmethodto

evaluateantioxidantactivity.Lebensm-Wiss.U.Technol.28,25–30.

Broadhurst,P.L.,1957.Determinationofemotionalityintherat.I.Situationalfactors. Br.J.Psychol.48,1–12.

Buege,J.A.,Aust,S.D.,1978.Microssomallipidperoxidation.MethodsEnzymol.52, 302–310.

Chen,M.,Wang,T.,Yue,F.,Li,X.,Wang,P.,Li,Y.,Chan,P.,Yu,S.,2015.Tea polyphe-nolsalleviatemotorimpairments,dopaminergicneuronalinjury,andcerebral

␣-synucleinaggregationinMPTP-intoxicatedParkinsonianmonkeys.

Neuro-science286,383–392.

Corrêa,M.P.,1974.DicionáriodeplantasúteisdoBrasiledasplantasexóticas culti-vadas,vol.3.ImprensaNacional,RiodeJaneiro,Brazil,pp.125–126. Costa,C.O.D’S.,Ribeiro,P.R.,Loureiro,M.B.,Simões,R.C.,Castro,R.D.,Fernandez,

L.G.,2015.Phytochemicalscreening,antioxidantandantibacterialactivitiesof extractspreparedfromdifferenttissuesofSchinusterebinthifoliusRaddithat occursinthecoastofBahia,Brazil.Phcog.Mag.11,607–614.

Dauer,W.,Przedborski,S.,2003.Parkinson’sdisease:mechanismsandmodels. Neu-ron39,889–909.

Dutta,D.,Mohanakumar,K.P.,2015.TeaandParkinson’sdisease:constituentsoftea synergizewithantiparkinsoniandrugstoprovidebettertherapeuticbenefits. Neurochem.Int.89,181–190.

Fernandez,H.H.,2015.UpdateonParkinsondisease.Clev.Clin.J.Med.82,563–568. Gao,X1,Cassidy,A.,Schwarzschild,M.A.,Rimm,E.B.,Ascherio,A.,2012. Habit-ualintakeofdietaryflavonoidsandriskofParkinsondisease.Neurology78, 1138–1145.

Hidgon,J.V.,Frei,B.,2003.Teacatechinsandpolyphenols:healtheffects,metabolism andantioxidantfunctions.Crit.Rev.FoodSci.Nutr.43,89–143.

Khan,N.,Mukhtar,H.,2007.Teapolyphenolsforhealthpromotion.LifeSci.81, 519–533.

Kim,Y.J.,2007.Antimelanogenicandantioxidantpropertiesofgallicacid.Biol. Pharm.Bull.30,1052–1055.

Linard-Medeiros,C.F.B.,Sales,V.A.W.,Ramos,A.C.,Sereniki,A.,Trevisan,M.T.S., Wan-derley,A.G.,Lafayette,S.S.,2015.NeuroprotectiveeffectofextractofAnacardium occidentaleLinnonarotenonemodelofParkinson’sdisease.Int.J.Pharm.Sci. Res.6,123–129.

Mandel,S.,Amit,T.,Reznichenko,L.,Weinreb,O.,Youdim,M.B.,2006.Greentea cate-chinsasbrain-permeable,naturalironchelators-antioxidantsforthetreatment ofneurodegenerativedisorders.Mol.Nutr.FoodRes.50,229–234.

Medeiros,K.C.P.,Monteiro,J.C.,Diniz,M.F.F.M.,Medeiros,I.A.,Silva,B.A.,Piuvezam, M.R.,2007.EffectoftheactivityoftheBrazilianpolyherbalformulation: Euca-lyptusglobulusLabill,PeltodonradicansPohlandSchinusterebinthifoliusRaddiin inflammatorymodels.Rev.Bras.Farmacogn.7,23–28.

Monville,C.,Torres,E.M.,Dunnett,S.B.,2006.Comparisonofincrementaland accel-eratingprotocolsoftherotarodtestfortheassessmentofmotordeficitsinthe 6-OHDAmodel.J.Neurosci.Methods158,219–223.

Morton,J.F.,1978.Brazilianpepper:itsimpactonpeople,animalsandthe environ-ment.Econ.Bot.32,353–359.

Renaud, J., Nabavi, S.F., Daglia, M., Nabavi, S.M., Martinoli, M.G., 2015. Epigallocatechin-3-gallate,apromisingmoleculeforParkinson’sdisease? Reju-venationRes.18,257–269.

Sanders, L.H.,Greenamyre,J.T.,2013.Oxidativedamage tomacromoleculesin humanParkinsondiseaseandtherotenonemodel.FreeRadic.Biol.Med.62, 111–120.

Senthil,K.,2008.RepletionofantioxidantstatusbyEGCGandretardationof oxida-tivedamageinducedmacromolecularanomaliesinagedrats.Exp.Gerontol.43, 143–183.

Sherer,T.B.,Kim,J.H.,Betarbet,R.,Greenamyre,J.T.,2003.Subcutaneousrotenone exposure causes highly selective dopaminergic degeneration and alpha-synucleinaggregation.Exp.Neurol.179,9–16.

Singh,R.P.,Sharad,S.,Kapur,S.,2004.Freeradicalsandoxidativestressin neurode-generativediseases:relevanceofdietaryantioxidants.J.IndianAcad.Clin.Med. 5,218–225.

Solanki,I.,Parihar,P.,Mansuri,M.L.,Parihar,M.S.,2015.Flavonoid-basedtherapies intheearlymanagementofneurodegenerativediseases.Adv.Nutr.6,64–72. Srividhya,R.,Zarkovic,K.,Stroser,M.,Waeg,G.,Zarkovic,N.,Kalaiselvi,P.,2009.

Mito-chondrialalterationsinagingratbrain:effectiveroleof(−)-epigallocatechin gallate.Int.J.Dev.Neurosci.27,223–231.

Virmani, A., Pinto, L., Binienda, Z., Ali, S., 2013. Food, nutrigenomics, and neurodegeneration–neuroprotection bywhat you eat!Mol. Neurobiol. 48, 353–362.

vonWrangel,C.,Schwabe,K.,John,N.,Krauss,J.K.,Alam,M.,2015.The rotenone-inducedratmodelofParkinson’sdisease:behavioralandelectrophysiological findings.Behav.BrainRes.279,52–61.

Weinreb,O.,Mandel,S.,Amit,T.,Youdim,M.B.,2004.Neurologicalmechanismsof greenteacatechinpolyphenolsinAlzheimer’sandParkinson’sdiseases.J.Nutr. Biochem.15,506–516.

Zaitone,S.A.,Abo-Elmatty,D.M.,Shaalan,A.A.,2012.Acetyl-l-carnitineand␣-lipoic

Imagem

Fig. 1. Chromatogram of Schinus terebinthifolius stem bark detected at 278 nm.
Fig. 2. Effect of Schinus terebinthifolius (St, 150, 300 and 600 mg/kg, p.o.) on open field test in rats before rotenone (3 mg/kg, s.c.) administration
Fig. 4. Effect of Schinus terebinthifolius (St, 150, 300 and 600 mg/kg, p.o.) on lipid peroxidation levels in rats before rotenone (3 mg/kg, s.c.) administration

Referências

Documentos relacionados

Análises de variância individuais foram realizadas para cada caráter, em cada local e ano, e a análise de variância conjunta foi feita para ambientes (local e ano específicos),

Podia não ter nada para lhe dizer, mas era obrigado a fazê-lo (cap. Mas os rituais de interiorização dominavam também os tempos extra-estudo, porque não havia tempos livres.

Como a granulometria e a composição mineralógica de cada matéria- prima influencia na eficiência das cerâmicas, foi verificado as características de cada componente para

b) Organizações do setor voluntário – Aplicação de formulário com questões abertas e fechadas, conforme mostra o Apêndice A, a 28 pessoas sendo: uma

Há ainda outras demonstrações de ascese cristã por parte de Macedo, por exemplo, quando ele diz: “as nossas regalias e privilégios celestiais dependem do tipo de vida que

O emprego das técnicas de reprodução assistida TRA para a conservação de espécies silvestres permite a interação de material genético entre populações, maximizando assim seu

É nesse contexto que a atuação do Serviço Social nas equipes de apoio matricial em saúde mental encontra grandes desafios, entre eles: a desmitificação de que o

A cirurgia realizada para correção bilateral da ectopia ureteral pode levar a uma maior chance de as cadelas apresentarem incontinência urinária do que quando a correção