• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número6"

Copied!
8
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Toxicity

and

antitumor

efficacy

of

Croton

polyandrus

oil

against

Ehrlich

ascites

carcinoma

cells

Déborah

R.P.

Meireles

a

,

Heloísa

M.B.

Fernandes

a

,

Thaísa

L.

Rolim

a

,

Tatianne

M.

Batista

a

,

Vivianne

M.

Mangueira

a

,

Tatyanna

K.G.

de

Sousa

a

,

João

C.L.R.

Pita

a

,

Aline

L.

Xavier

a

,

Daiene

M.

Beltrão

a

,

Josean

F.

Tavares

a,b

,

Marcelo

S.

Silva

a,b

,

Karina

K.P.

Medeiros

c

,

Marianna

V.

Sobral

a,b,∗

aProgramadePós-graduac¸ãoemProdutosNaturaiseSintéticosBioativos,CentrodeCiênciasdaSaúde,UniversidadeFederaldaParaíba,JoãoPessoa,PB,Brazil

bDepartamentodeCiênciasFarmacêuticas,UniversidadeFederaldaParaíba,JoãoPessoa,PB,Brazil

cDepartamentodeMorfologia,UniversidadeFederaldoRioGrandedoNorte,Natal,RN,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22March2016 Accepted30May2016 Availableonline1July2016

Keywords:

Antitumoractivity

Crotonpolyandrous

Ehrlichascitescarcinoma Essentialoil

Genotoxicity Toxicity

a

b

s

t

r

a

c

t

TheessentialoilfromCrotonpolyandrusSpreng.,Euphorbiaceae,leaveswastestedforthetoxicityand antitumoractivity.Theconcentrationproducing50%hemolysiswas141␮g/mlonmiceerythrocytes. Intheacutetoxicologicalstudy,theestimatedLD50was447.18mg/kg.Theessentialoildidnotinduce increaseinnumberofmicronucleatederythrocytes,suggestinglowgenotoxicity.Essentialoil(100or 150mg/kg)showedsignificantantitumor activityinEhrlichascitic carcinomamodel. Weobserved thatessentialoilinducescell-cyclearrestattheG0/G1phase,andincreasesthesub-G1peak,which representsamarkerofcelldeathbyapoptosis.Survivalalsoincreasedforthetreatedanimals.The toxi-cologicalanalysesrevealedreductioninbodyweight,increasedaspartateaminotransferaseandalanine aminotransferaseactivity,hematologicalchanges,andathymusindexreduction.Thesedatasuggest gas-trointestinalandlivertoxicity,anemia,leukopenia/lymphocytopenia,andimmunosuppressiveeffects. Histopathologicalanalysisrevealedtheweakhepatotoxicityofessentialoil.Insummary,essentialoilof C.polyandrusdisplaysinvivoantitumoractivityandmoderatetoxicity.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Canceristheoneoftheleadingcausesofdeathintheworld,and itaffectsmillionsofpeopleannually(Jainetal.,2011;Hanahan, 2014).Inthiscontext,thehigherplantsrepresentarichsourceof newsubstanceswhichmaybeusefulagainsttumors(Craggand

Newman,2013).

Manystudieshavebeenpublishedreportingthediverse thera-peuticpotentialofessentialoils,includingcancerpreventionand treatment.Themechanismsinvolvedincludeantioxidant, antimu-tagenic and antiproliferative effects, or by enhancing immune functionandsurveillance,inducingenzymesandenhancing detox-ification,andmodulatingmultidrugresistance(Bhallaetal.,2013). ManyEuphorbiaceaespeciesarerecognizedinvariouspartsof theworldasbeingbothtoxicandmedicinal.Crotonisalargegenus ofEuphorbiaceae,itcomprisesaround1300speciesoftrees,shrubs,

∗ Correspondingauthor.

E-mail:mariannavbs@ltf.ufpb.br(M.V.Sobral).

andherbsdistributedintropicalandsubtropicalregionsinboth hemispheres(Pereiraetal.,2002).Severalspeciesofthegenusare aromatic,indicatingthepresenceofvolatileconstituents(Oliveira

etal.,2001;Lopesetal.,2003).

EssentialoilsfromCrotonregelianus,andC.flavensleaves,aswell as isolated constituents␣-cadinol, ␤-elemene and ␣-humulene

(Sylvestreetal.,2006;Bezerraetal.,2009)showedinvitro

anti-tumoractivity.Invivostudiesdescribeisoguanosineisolatedfrom C.tiglium,andascaridoleisolatedfromC.regelianuswhichhave shownantitumoractivityonsarcoma180murinemodel(Kinetal.,

1994;Bezerraetal.,2009).

CrotonpolyandrusSpreng.isfoundinBrazil,andistypicalofthe semi-aridregion,althoughitalsooccursintheAtlanticforestarea oftheBrazilianstatesAlagoas,Bahia,Ceará,Paraíba,Pernambuco, Piauí,RioGrandedoNorteandSergipe.Recentstudiesshowedthat extractsandessentialoilfromC.polyandrousleaveshavesignificant antifungalactivity,aswellasaweakcytotoxicityagainsttumorcell lines(Fernandesetal.,2012;2013).Someanticancerdrugswidely usedinclinicalpractice,suchascyclophosphamide,havepotent effectsinvivo,althoughtheyareineffectiveinvitro.Ingeneral,these

http://dx.doi.org/10.1016/j.bjp.2016.05.014

(2)

substancesarepro-drugsthatmustundergometabolicactivation toproducetheireffects(Shrivastavetal.,1980;Sunetal.,2006).

Then,theaimofthisstudywastoevaluatetheinvivoantitumor activityandtoxicityoftheessentialoilfromC.polyandrousleaves (EOC).

Materialsandmethods

Drugsandreagents

5-Fluorouracil(5-FU),TritonX-100,Tween80,and cyclophos-phamide were purchased from Sigma–Aldrich (St. Louis, MO, USA).Dimethylsulfoxide(DMSO)waspurchasedfrom Mallinck-rodt Chemicals® (Phillipsburg, NJ, USA). Sodium thiopental

(Thiopentax®)waspurchasedfrom Cristália(Itapira,SP, Brazil),

andheparin(Parinex®)fromHipolabor(Sabará,MG,Brazil).Kits

forbiochemicalandhematologicalanalysiswerepurchasedfrom LABTEST®(LagoaSanta,MG,Brazil).

Plantprocessing

CrotonpolyandrusSpreng.,Euphorbiaceae,leaveswerecollected inFebruary2011inSantaRita,ParaíbaState,Brazil.Voucher speci-mensnumberAgra&Gois1446wasdepositedatHerbariumLauro PiresXavieroftheFederalUniversityofParaíba,Brazil.

Extractionandanalysisofessentialoil

The fresh leaves of C. polyandrus (500g) were subjected to hydrodistillation for 4h using a Clevenger-type apparatus. The essentialoilobtainedwasdriedandanalyzedinGCanalysiswas performedonaShimadzuGC17-Agaschromatographusingfused silica capillary column DB-5 (30m×0.25mm id, 0.25␮M film thickness).Heliumwasusedascarriergasataflowrateof1ml/min. Splitratio1:100.Theoventemperaturewasprogrammedfrom60 to240◦to3C/min.Theinjectoranddetectortemperatureswere

220and230◦C,respectively(Fernandesetal.,2012).

Tumorcellline

TheinvivoantitumoractivityofEOC wastestedagainstthe Ehrlichcarcinomacell line, which wasgenerously provided by PharmacologyandToxicologyDivision,CPQBA,UNICAMP(Paulínia, SP,Brazil).Thecellsweremaintainedintheperitonealcavitiesof SwissmiceintheDr.ThomasGeorgeBioterium(ResearchInstitute inDrugsandMedicines/FederalUniversityofParaíba,Brazil).

Animals

MaleandfemaleSwiss albinomice(Musmusculus)obtained fromtheDr.ThomasGeorgeBioterium(ResearchInsituteinDrugs andMedicines/FederalUniversityofParaíba,Brazil)wereused.The animalsweighed28–32g,andwererandomlyhousedin polyethe-lene cages in a controlled environment (12h light/dark cycle, 24±1◦C,55%relativehumidity).Theywerefedonratchowpellets

andreceivedwateradlibitum.Animalswereusedingroupsofsix. Actionsonreducingpain,stressandanysufferingweretakenin accordancewithethicalguidelinesforanimalusage.Experimental protocolsandprocedureswereapprovedbythelocalanimalethics committee(CEUA-UFPB,no.0403/12)whichfollowsthe interna-tionalprinciplesinethicsforanimalexperimentation.

Pharmacologicalassays

Hemolysisassay

HemolyticEOCactivitywasevaluatedusingmiceerythrocytes (Kangetal.,2009).Briefly,freshbloodsampleswerecollected,and re-suspendedinPBStomakea0.5%(v/v)solution.Various concen-trationsofEOC(0–1000␮g/ml)dissolvedinDMSO(5%v/vinPBS), wereaddedtothesuspensionofredbloodcells.Theplateswiththe EOC-erythrocytemixtureswereincubatedonamixerfor60min andthencentrifuged.Thesupernatantwascarefullyremoved.After removal,200␮lofasolutionofTritonX-100(0.1%)wasaddedto eachwellcontainingtheEOC-erythrocytemixturesandthoroughly stirred.Thehemolysiscausedwasdeterminedby spectrophoto-metryat415nm.Theconcentrationthatproduces50%hemolysis (HC50)wasthen determined.Positive control(100%hemolysis), andnegativecontrol(0%hemolysis)incubatederythrocyteswith 0.1%TritonX-100inPBS,and5%DMSOinPBS,respectively,were used.

Acutepreclinicaltoxicitystudy

Theevaluationof acutepreclinicaltoxicityfor EOCwas per-formedbasedonthe“Guidefordrivingofnoclinicalstudiesof toxicologyandpharmacologicalsafetyrequiredtodevelopmentof drugs/Anvisa”,withsomemodifications(Anvisa,2013).Mice(six malesandsixfemales/group)weresubjectedtosingledosesof250, 375,or500mg/kgofEOC(intraperitoneally–i.p.)andthecontrol groupwasadministeredvehiclealone(5%(v/v)Tween80insaline). Thedoseslevelswerechosenbasedonpreviousscreening.For tox-icitydetection,signssuggestiveofcentralnervoussystem(CNS), orautonomicnervoussystem(ANS)activitywereevaluatedatthe intervals:0,15,30,and60min,after4h,anddailyfor14days.Body weightswereregisteredatthebeginningandendofthetreatment, andtheanimalswereobserveddailyforwaterandfeed consump-tion.Thenumberofdeadanimalsduringtheobservationperiod wascountedtodeterminethedoseresponsibleforthedeathof 50%oftheexperimentalanimals(LD50).

Genotoxicity

For the micronucleus assay, females mice (six/group) were treated(i.p.)with150or300mg/kgofEOC.Apositivecontrolgroup (cyclophosphamideat50mg/kgi.p.),andanegativecontrolgroup (Tween80 at5% in saline), were included.After48h, the ani-malswereanesthetizedwithsodiumthiopental(40mg/kg),and peripheralbloodsampleswerecollectedfromtheorbitalplexusfor makingslides.Foreachanimal,threebloodsmearswereprepared, andaminimumof2000erythrocyteswerecountedtodetermine thefrequencyofmicronucleatederythrocytes(OECD,1997).

Invivoantitumoractivity

Seven-day-old Ehrlich carcinoma cells, 0.5ml (2.0×106cells/ml) were implanted in the peritoneal cavity of thefemalemice(twelvefemalesmice/group)(ChenandWatkins,

1970;Dolaietal.,2012).Onedayafterinoculation,EOC(100or

(3)

cavity.Thevolumewasmeasuredinagraduatedcentrifugetube andexpressedinmilliliter.Analiquotwasremovedforviablecell countingbytestingwiththetrypanblueassay(Kiangetal.,2009;

Dolaietal.,2012).

Theremaininganimals(n=6/group)werekeptalivewithfood andwateradlibitumtocalculatetheanimal’ssurvivalrates.

Cellcycleanalyses

Forthecellcycleanalysis,mice(n=6)inoculatedwithEhrlich ascitescarcinomacellsweretreatedwithEOC(100or150mg/kg) fornine days,asdescribed above.Onedayaftertheendofthe treatment,ascitic fluidwascollectedfromtheperitonealcavity andonemillioncellswerecentrifugedat230×gfor7min.The supernatantwasremoved,thepelletwasresuspendedin0.3ml ofhypotonicpropidiumiodide(PI)solution(50␮g/ml),andthen incubatedfor4hat4◦Cinthedark.Theanalysiswasperformedby

cytometricflow(BDFACSCalibur®,USA),atotalof10,000events

wereacquired,anddatawasanalyzedusingWinMDI2.9software

(Maronietal.,2012).

Toxicityintransplantedmice

Fortheevaluationofpossibletoxiceffectsproducedby treat-mentwithEOC,theanimalswereweighedatthebeginningand theendofthetreatment(afterremoving/drainingoftheresidual ascitestumorvolume),whiledailyconsumptionofwaterandfood wereevaluated.Inaddition,theanimalorgans;liver,spleen, thy-mus,andkidneyswereexcised,weighed,andtheorganindexes werethencalculated.

Biochemical analyses were performed on serum samples obtainedaftercentrifugationoftotal blood,at160×gfor6min. Standardizeddiagnostickitswereusedtodeterminethelevelsof aspartateaminotransferase(AST),alanineaminotransferase(ALT), creatinine,andurea.

Thehematologicalanalysesusedheparinizedwholeblood.The hematologicalparametersforhemoglobin(Hb)level,redbloodcell (RBC)count,hematocrit(Hct), theredblood cellindices;mean corpuscularvolume(MCV),meancorpuscularhemoglobin(MCH), meancorpuscularhemoglobinconcentration(MCHC),andthetotal anddifferentialleukocytecountweredetermined.Thetestswere performedaccordingtothemanufacturer’sinstructions.

Liversandkidneyswerefixedin10%(v/v)formaldehydeand portionsoftheseorganswerecutintosmallpieces,theninto sec-tionsof5␮m,andstainedwithhematoxylin–eosin.Fordetectionof hepaticfibrosis,theliversectionswerestainedwithspecificstain

(GordonandSweet,1936).Histologicalanalysiswasperformedby

lightmicroscopytodeterminethepresenceandextentofliveror kidneylesions.

Statisticalanalysis

Alldataarepresentedasthemean±S.E.M.Theinvitroassays were performed in quadruplicate and repeated at least twice. TheHC50valueandtheir95%confidenceintervals(CI95%)were obtainedbynonlinearregression.Thedifferencesbetween exper-imentalgroupswerecomparedbyvarianceanalysis(ANOVA),and followedbyTukey’stest(p<0.05).

Resultsanddiscussion

Thepercentageofidentificationofvolatilecomponentsofoil was86.1%,withatotalof33identifiedcomponents.Monoterpenes (72.7%)andsesquiterpenes(24.2%)werethemaingroupsof chem-icalconstituents isolated,withthemajority: p-cymene (12.4%), bornylacetate(11%)andascaridole(6.4%).Thisisinaccordance

100

75

50

25

0

0 250 500 750

[OEC] (µg/ml)

% hemolysis

1000 1250

Fig.1.PercentageofhemolysisinredbloodcellsofSwissmiceupontreatmentwith EOC(␮g/ml).Eachdotrepresentstheaverage±SEMofthreeexperimentswiththree replicates,witha95%confidenceinterval.

withwhatwaspreviouslypublishedforessentialoilfromCroton polyandrousleaves(Fernandesetal.,2012).Inaddition,the chemi-calcompositionpresentedherewasconsistentwithliteraturedata forvolatileconstituentsofotherCrotonspecies(Sylvestreetal.,

2006;Bezerraetal.,2009;Correa-Royeroetal.,2009).

ThehemolyticactivityassaywitherythrocytesofSwissmice wasperformedtoevaluatenon-tumor celltoxicity. After treat-ment with EOC, the percentage of hemolysis increased in a concentration-dependentmanner.TheHC50valueobtainedwasin therangeof141.0(140.5–141.6)␮g/ml(Fig.1).

Anemia isthe mostcommonhematological cancer manifes-tation, and its incidence increases with the administration of chemotherapy/radiotherapy.Theredbloodcellsandhemoglobin maybedecreasedthroughdestructionand/ortheinabilityofthe bonemarrowtomakethesecells(Gasparetal.,2015).

ThedatashowedthatEOChadmoderatecytotoxicityagainst miceerythrocytes,inducing100% ofhemolysisfrom250␮g/ml. Thiscorroboratesfindingsintheliteraturewhichindicatethat cer-tainessentialoilsand/orcompoundsisolatedfromplantscanaffect cellmembranestructuresandproducehemolysis(Ngetal.,1986;

Grinbergetal.,1997;Zhangetal.,1997;Wuetal.,2012;Rodrigues

etal.,2013).Nevertheless,recentdatashowedthatEOCisnot cyto-toxictonon-tumorcellsoftheCHO(ovarian),andHaCaT(human keratinocyte)lines(Fernandesetal.,2012).

TheacutetreatmentwithEOCinduceddeathinmaleandfemale miceonlyat375and500mg/kg(Table1).TheLD50valueobtained wasapproximately447.18mg/kg.Itwasobservedthatinthefirst fewmomentsfollowingadministrationofEOC(0,15,30min)the animalsshowedsevereCNSstimulanteffectssuchashyperactivity, beingmorepronouncedatthehigherdoses.At4hafter adminis-tration,wecontradictorilyobservedCNSdepressanteffectssuch asdecreasedtouchresponse,lossofcornealandsoundreflexes, andptosis.Theoccurrenceofptosisisdescribedinsomeclassesof depressantdrugssuchasneurolepticsandanalgesicscentralaction. Alreadythereductionorlossofpainreflexsuggestsan antinoci-ceptive activity. There were also observed effects on the ANS, includingforcedbreathinganddiarrhea,whichsuggest parasym-patheticstimulation(Carlini,2003;Almeidaetal.,2001).However, theseeffects disappearedafter4hof treatment.Literaturedata reportedthat,ingeneral,ifthelethaldose(LD50)ofthetest sub-stanceisthreetimesmorethantheminimumeffectivedose,the substanceisconsideredagoodcandidateforfurtherstudies(Carol,

1995;Ameloetal.,2014).

(4)

Table1

Effectofsingledoses(i.p.)ofEOCinmice(n=6).

Dose(mg/kg) Sex M/T Symptoms

– M 0/6 None

F 0/6 None

250 M 0/6 Hyperactivity

F 0/6 None

375 M 2/6 Hyperactivity,lossofsoundreflexptosis,laboredbreathing,decreasedresponsetotouch,lossofcornealreflex,

F 1/6 Hyperactivity,ptosis,laboredbreathing,decreasedresponsetotouch,lossofcornealreflex, lossofsoundreflex

500 M 5/6 Hyperactivity,ptosis,ataxia,laboredbreathing,decreasedresponsetotouch,lossofcorneal

reflex,lossofsoundreflex,abductionofthehindpaws,diarrhea

F 3/6 Hyperactivity,ptosis,ataxia,laboredbreathing,decreasedresponsetotouch,lossofcorneal reflex,lossofsoundreflex,abductionofthehindpaws,diarrhea

M/T,numberofdeadmice/numberoftreatedmice.

Table2

Feedandwaterconsumptionandweightofanimals(n=6)subjectedtoacutetreatmentwithEOC(250or375mg/kg).

Group Sex Dose,mg/kg Waterconsumption,ml Feedintake,g Initialweight,g Finalweight,g

Control M – 46.92±1.45 40.72±0.63 31.22±0.57 37.68±1.68

F 39.38±0.71 34.42±0.97 30.45±0.84 33.85±0.70

EOC M 250 38.85±1.01

a 35.69

±1.21a 28.45

±0.92 30.03±1.05a

F 32.08±0.89a 34.16

±1.43 27.52±1.05 32.67±0.88

EOC M 375 33.08±2.16

a 27.43

±0.93a 30.65

±0.96 29.55±2.56a

F 26.15±1.28a 25.28

±1.99a 29.02

±0.92 32.84±0.63

Datapresentedasamean±SEMofsixanimalsanalyzedbyANOVAfollowedbyTukeytest.

ap<0.05comparedtocontrol.

Table3

Numberofmicronucleatederythrocytesinperipheralbloodofmicetreatedwith singledosesofEOCandcyclophosphamide(n=6).

Groups Dose,mg/kg Numberofmicronucleatedcells

Control – 2.80±0.37

Cyclophosphamide 50 14.50±2.60a

EOC 150 2.20±0.37

EOC 300 2.40±0.25

DataarepresentedasSEMofthemeanofsixanimalsanalyzedbyANOVAfollowed byTukeytest.

ap<0.05comparedtothecontrolgroupwithANOVA,andfollowedbyTukey.

Almost all anticancer drugs cause gastrointestinal disorders

(Boussiosetal.,2012).Inthiscontext,metabolicparameters,such

asweight,andfeedintakeassessmentsmustbeevaluated dur-ingpreclinical studiesto investigategeneraltoxicity. Then, the decreaseonwaterandfeedconsumption,anddecreaseonbody weightinducedbyEOCdemonstratealltogethertoxicity.

Thepreclinical toxicologicalevaluation alloweddetermining thesafepharmacologicaldosestoproceedwithinvivo pharma-cologicalstudies.

To evaluate in vivo genotoxic effects of EOC we performed micronucleustesting(Table3).AnimalstreatmentwithEOCdidnot induceincreasesinthenumberofmicronucleatederythrocytesin peripheralbloodascomparedtothecontrolgroup.Then,theresults didnotshowgenotoxiceffectsforEOC,inthisexperimentalmodel.

Plantsproduceawidevarietyofsubstances,whichmayhave ther-apeuticimportance;however,manyofthemmayhavemutagenic effects.Inaddition,manyanticancerdrugscancausesideeffects thatincludeinductionofgenotoxicityinnon-tumorcells(Vieira

etal.,2010).

Forinvivoantitumoractivityassay,weusedEhrlichascites car-cinoma cells.This celllineis referred toasan undifferentiated carcinoma,andisoriginallyhyperdiploid,hashightransplantable capability, no-regression, rapid proliferation, shorter life span, 100%malignancyandalsodoesnothavetumorspecific transplan-tationantigen(TSTA)(Ozaslanetal.,2011).Therefore,anexcellent modelforstudyingexperimentalneoplasia(Salgadoetal.,2002;

Nascimentoetal.,2006;Verc¸osaJúnioretal.,2006;Araújoetal.,

2009).Theanalyzedparameters(tumorvolume,and cell viabil-ity)significantlydecreasedcomparedtothetumorcontrolgroup, featuringatumorgrowthinhibitoryactivityinbothdosestested ofEOC(100or150mg/kg).Therewasnosignificantdifferencein theparametersbetweenthegroupstreatedwiththeEOCand5-FU

(Table4).

Some of the constituents present in EOC are described in the literature as having significant antitumor activity, specifi-cally ascaridole (Bezerra et al., 2009), limonene (Gould, 1997),

␣-humulene(Silvaetal.,2008), terpinen-4-ol(Wuetal.,2012), caryophyllene(Zheng etal.,1992),1,8-cineole,␣-pineneand␤ -pinene(Wangetal.,2012).Nevertheless,arecent reviewofthe anticancer activityof essential oils reported that thetheory of

Table4

Effectsof5-FUandEOConcellviabilityandtumorvolumeinmice(n=6)transplantedwithEhrlichascitescarcinomacellssubjectedtodifferenttreatments(9days).

Groups Dose,mg/kg Cellviability,×106cells/ml Tumorvolume,ml

Tumorcontrol – 219.8±27.77 9.34±1.40

5-FU 25 2.99±0.96a 0.09±0.02a

EOC 100 4.85±1.28a 0.10

±0.02a

EOC 150 3.95±0.49a 0.04

±0.02a

Datapresentedasmean±SEMofsixanimalsanalyzedbyANOVAfollowedbyTukeytest.

(5)

Table5

Feedandwaterconsumptionandweightofanimals(n=6)subjectedtodifferenttreatments(9days).

Groups Dose,mg/kg Waterconsumption,ml Feedconsumption,g Initialweight,g Finalweight,g

Healthyanimals – 35.67±1.12 30.85±1.57 28.62±0.37 32.27±0.86

Tumorcontrol – 34.69±2.16 29.33±1.45 27.74±1.20 31.02±1.10

5-FU 25 33.44±1.57 32.84±1.21 27.56±0.62 25.78±0.35a,b

EOC 100 32.19±2.70 24.41±0.88a,b 27.90±1.31 26.88±0.94a,b

EOC 150 24.38±1.70a,b 15.49

±1.17a,b 29.30

±0.86 24.34±0.93a,b Datapresentedasmean±SEMofsixanimalsanalyzedbyANOVAfollowedbyTukeytest.

ap<0.05comparedtotumorcontrol. bp<0.05comparedtohealthyanimals.

Table6

Effectsof5-FUandEOConthemiceorganindices(n=6)subjectedtodifferenttreatments(9days).

Groups Dose,mg/kg Heartindex,mg/g Liverindex,mg/g Kidneysindex,mg/g Thymusindex,mg/g Spleenindex,mg/g

Healthyanimals – 4.22±0.25 50.83±2.07 10.85±0.47 3.73±0.54 5.54±0.46

Tumorcontrol – 3.86±0.12 69.42±4.04 13.17±0.59 2.61±0.15 6.19±0.28

5-FU 25 4.84±0.48 57.39±1.92 12.29±0.30 2.85±0.08 6.32±0.51

EOC 100 4.38±0.15 64.35±4.09 13.15±0.64 2.88±0.60 7.12±0.98

EOC 150 4.73±0.31 62.35±5.46 14.55±0.32 1.84±0.13a 5.49

±0.83

Datapresentedasmean±SEMofsixanimalsanalyzedbyANOVAfollowedbyTukeytest.

ap<0.05comparedtohealthyanimals.

Table7

Effectsof5-FUandEOConbiochemicalparametersofperipheralbloodofmice(n=6)subjectedtodifferenttreatments(9days).

Groups Dose,mg/kg AST,U/L ALT,U/L Urea,mg/dL Creatinine,mg/dL

Healthyanimals – 283.2±24.94 53.6±6.55 39.0±1.87 0.42±0.08

Tumorcontrol – 287.8±20.19 71.8±7.31 66.0±11.64 0.46±0.04

5-FU 25 242.0±12.17 67.8±7.11 43.0±7.14 0.32±0.02

EOC 100 348.0±32.35 54.0±8.50 52.8±16.86 0.63±0.15

EOC 150 405.2±24.43a,b 240.8±27.88a,b 30.6±4.41 0.60±0.02

Datapresentedasmean±SEMofsixanimalsanalyzedbyANOVAfollowedbyTukeytest.

ap<0.05comparedtotumorcontrol. bp<0.05comparedtohealthyanimals.

synergisticaction appears tobea significantaspect, emphasiz-ingtheimportancetostudythewholeessentialoilratherthanits componentsseparately(Bhallaetal.,2013).

Oneofthemainwaystostudythemechanismofactionof anti-cancerdrugsistoexamineifthedrugexertsitseffectsbyinducing cellcyclearrest.EOCinducedsignificantchangeinthe distribu-tionofEhrlichcarcinomacellsindifferentcellcyclephases.There wereincreasesinthepercentageofcellsinG0/G1,and simulta-neousreductionofcellsintheSphase,andintheG2/Mphase.In addition,weobservedasignificantincreaseinthecontentof sub-diploidDNA(fragmentedDNA)inthecellsofanimalstreatedwith EOC(Fig.2),whichisconsideredasamarkerofcelldeathby apo-ptosis(Darzynkiewiczetal.,1992).Inductionofapoptosisisone themostimportantmarkerofcytotoxicantitumoragents.Ithas beenshownthatsomenaturalcompoundsincludingplantsinduce apoptoticpathwaysthatareblockedincancercells (Safarzadeh

etal.,2014).

Consideringthevarioustoxicsideeffectsofanticanceragents onnormalcells,weproceededtoinvestigatepossibleEOC toxic-ity.EOCinducedadecreaseinwaterandfeedconsumptionwhen comparedtothehealthyandtumorcontrolgroups(Table5).We foundasignificantdecreaseinthefinalweightsforalloftheanimals treated,includingthosetreatedwith5-FU.Theresultscorroborate thedataobservedonacutetoxicitystudy,confirmingthepossible gastrointestinalEOCtoxicity.Similarly,5-FUalsoinduceda reduc-tioninbodyweightthatwasexpectedsincethisisaneffectwell describedintheliteratureforthischemotherapy(El-Sayyadetal.,

2009).

In regarding to the organ indexes, there was a significant decrease in the thymus index for the group treated with EOC (150mg/kg)compared tothehealthygroup(Table6).Thedata

100

75

50

% cells

25

a,b a,b

a,b

a a

a a a

a a

a

0

Sub-G1 G0/G1

Tumor control

EOC - 150 mg/kg

EOC - 100 mg/kg

5-FU - 25 mg/kg

S G2/M

Fig.2.PercentageofEhrlichascitescarcinomacellsindifferentphasesofthecell cycleaftertreatmentwith5%Tween80solution(control),EOC(100mg/kg),EOC (150mg/kg)and5-FU(25mg/kg),ap<0.05comparedtocontrolgroup,bp<0.05

comparedtogrouptreatedwith5-FUwithANOVAandthenfollowedbytheTukey test.

for the thymusindex indicatethat EOC promotedan apparent immunosuppression,whichcorroborateswiththehematological datashowingadecreaseinlymphocytesaftertreatmentwiththe highestEOCdose.Thiseffectisoneofthemostcommonsideeffects of chemotherapeutic agents currently used in clinical practice

(RasmussenandArvin,1982).

(6)

Fig.3.Histopathologyofliverofexperimentalgroups:(A)portalspacewithvasculobiliartriadandhepaticcordslobular–control;(B)parenchymalnecrosisfoci–EOC (100mg/kg);(C)Kupffercellhyperplasia–EOC(150mg/kg);(D)moderateincreasesinthenumberoflymphocytesinportalareas–5-FU(25mg/kg);(E)hepatocellular polyploidyphenomena–5-FU(25mg/kg).

grouptreatedwithEOC(150mg/kg),inrelationtothetumor con-trolandhealthygroups,wasobserved(Table7).Thedatasuggest thatEOCinducedlivertoxicity,asevidencedbyincreasedAST,but moreimportantlybytheincreaseinALT.Significantly,weobserved thatthechangeswerenotwithinnormalvariationlimitsformice enzymaticactivity(referencevalues:AST–formaleandfemale mice,70–400IU/l,ALT –formales,25–200IU/landfor females, 25–100IU/l)(Gad,2007).

Inthehematologicalevaluations,EOC (150mg/kg)induceda significantdecreaseintheredbloodcellcount,hemoglobinand hematocrit(Table8).Inaddition,significantincreasewasobserved

forMCVandMCH(Table8).Thissuggestsclinicalfeaturesof

ane-mia(Nissensonetal.,2003).Thiscomplicationiscommonformany

patientsinchemotherapy(Gasparetal.,2015)andtheseresults corroborate the data observed on hemolytic assay, confirming the toxicity of the oil to erythrocytes. Based on hematimetric indices,wesuggestthattheanemiacausedbytreatmentwithEOC (150mg/kg)fitsthemacrocytic andnormochromicanemia pro-file.

The leukopenia and lymphocytopenia observed for EOC (150mg/kg)isoneofthemajorsideeffectsofcancertreatment, drugaggressiontoward cells of theimmune system(Liu et al., 2013).Yet,itwaspossibletodemonstrateamarkedleukopenia, withincreaseoflymphocytesandreductionofneutrophilsinthe treatmentwith5-FU(Table8),knownsideeffectsofthisanticancer drug(Linsetal.,2009).

Nohistopathologicalchangeswereobservedinthekidneysof animalstreatedwithEOC(datanotshown).Inthemajorityof ani-malstreatedwithbothdosesofEOCweobservedliverchanges suchasKuppfercellhyperplasia,moderateincreasesinthe num-beroflymphocytesinportalareas,andparenchymalnecrosisfoci (randomlyseeninzonesI,IIandIII)(Fig.3BandC).Inthe ani-malsof5-FUgroup,beyondthesechanges,wefoundperi-portal inflammation,peri-septalnecrosisfeaturingdiscrete(piecemeal) areasofhepaticcytolysis,inflammationwithintheportalspaces, parenchymalactivity,withfocalhepatocytenecrosissurrounded bylymphohistiocyticaggregatesinmanyplaces,and hepatocellu-larpolyploidyphenomena(Fig.3DandE).Inthetreatmentgroup (5-FU),thehistologicalchangeswereconsistentwithmoderately activetoxichepatitis.

ThedatacorroboratethebiochemicalresultsobtainedforAST andALTforthehighestdose(150mg/kg)ofEOC.However,allof thechangescommontobothtreatedgroupsarereportedinthe literatureasevidenceofweakhepatotoxicity.Withdrawalofthe drug,oradosageadjustmentusuallyleadstoarapidimprovement andreversalofthedamage(Tortietal.,2001;Montenegroetal.,

2008).

(7)

Table8

Effectsof5-FUandEOConhematologicalparametersofperipheralbloodofmice(n=6)subjectedtodifferenttreatments(9days).

Parameters Healthyanimals Tumorcontrol 5-FU EOC

25mg/kg 100mg/kg 150mg/kg

Redbloodcells,106/mm3 9.36

±0.14 8.20±0.50 8.48±0.16 8.79±0.23 6.21±0.74a,b

Hemoglobin,g/dl 14.84±0.24 12.50±0.80 12.88±0.08 14.14±0.17 10.46±0.18b

Hematocrit,% 43.84±0.55 40.76±2.38 37.32±1.01 40.40±0.69 34.22±4.07b

MCV,fm3 46.60±0.97 49.60±0.25 43.80±0.58a,b 46.00±0.84a 54.80±0.20a,b

MCH,pg 15.84±0.47 15.26±0.19 15.22±0.23 16.14±0.26 16.88±0.24a

MCHC,g/dl 33.74±0.38 30.68±0.28 34.52±0.83 34.04±0.52 32.62±1.79

Totalleukocytes,103/mm3 8.18

±0.43 13.66±1.0 4.12±0.59a 10.86

±2.87 4.86±1.0a

Lymphocytes,% 60.60±4.24 36.20±6.53b 78.40

±2.21a 41.40

±8.48 24.23±2.88a,b

Neutrophils,% 34.60±4.21 54.20±9.22 17.40±2.5a 64.0

±6.63b 63.40

±5.5b

Monocytes,% 4.40±0.74 4.20±1.2 3.40±0.75 4.0±1.13 5.60±1.12

Eosinophils,% 0.40±0.24 0.29±0.20 0.40±0.24 0.22±0.11 0.60±0.40

Dataarepresentedasmean±SEMofsixanimalsanalyzedbyANOVAfollowedbyTukeytest.

ap<0.05comparedtotumorcontrol. bp<0.05comparedtohealthyanimals.

100

75

50

25

0

0 10 20

Tumor control

EOC - 150 mg/kg

EOC - 100 mg/kg

5-FU - 25 mg/kg

30

Time (days)

% lif

e spam

40 50 60

Fig.4.SurvivaltimesoffemalemiceinoculatedwithEhrlichcarcinomacellsand treatedwithEOCand5-FU.Datapresentedasmean±SEMofsixanimalsanalyzed byKaplan–Meiertest.

observedtoxicitytotreatmentwith100mg/kgwassignificantly lower,wehaveshowntheadvantagesofEOCatadoseof100mg/kg.

Conclusions

EOChaspotentinvivoantitumoractivity,andinducesmoderate gastrointestinal,hematologicalandlivertoxicity,underthe condi-tionsevaluated.Nevertheless,itdoesnotrepresentalimitingfactor forthecontinuityofpre-clinicalpharmacologicalstudies,whereas antineoplasticdrugstypicallyexhibithightoxicity.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thattheproceduresfollowedwereinaccordancewiththe regula-tionsoftherelevantclinicalresearchethicscommitteeandwith thoseoftheCodeofEthicsoftheWorldMedicalAssociation (Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat

nopatientdataappearinthisarticle.

Authors’contribution

DRPM,HMBF,TLR,TMB,VMM,TKGS,JCLRP,ALX,DMB,MVS par-ticipatedinstudyconceptanddesign,acquisitionofdata,analysis andinterpretationofdata,andcriticalrevisionofthemanuscriptfor importantintellectualcontent.JFTandMSScarriedoutthe extrac-tionofessentialoiland participatedindraftingthemanuscript. KKPMperformedthehistopathologicalanalysis.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

ThisworkwassupportedbytheBrazilianagenciesCAPESand CNPq. “Pontual Traduc¸ões” (Londrina/Paraná, Brazil) performed Englisheditingofthemanuscript.

References

Almeida,R.N.,Navarro,D.S.,Barbosa-Filho,J.M.,2001.Plantswithcentralanalgesic activity.Phytomedicine8,310–322.

Amelo,W.,Nagpal,P.,Makonnen,E.,2014.Antiplasmodialactivityofsolvent frac-tionsofmethanolicrootextractofDodonaeaangustifoliainPlasmodiumberghei infectedmice.BMCComplement.Altern.Med.14,462–468.

Anvisa,2013.Determinaapublicac¸ãodoGuiaparaaconduc¸ãodeestudosnão clíni-cosdetoxicologiaeseguranc¸afarmacológicanecessáriosaodesenvolvimento demedicamentos.MinistériodaSaúde.AgênciaNacionaldeVigilânciaSanitária. DiárioOficialdaUnião,PoderExecutivo,Brasília,DF,31January2013. Araújo,M.J.A.M.,Dutra,R.P.,Costa,G.C.,Reis,A.S.,Assunc¸ão,A.K.M.,Libério,S.A.,

Maciel,M.C.G.,Silva,L.A.,Guerra,R.N.M.,Ribeiro,M.N.S.,Nascimento,F.R.F., 2009.EffectofpropolisofScaptotrigonaaff.posticaonthedevelopmentofthe tumorofEhrlichinmice.Rev.Bras.Farmacogn.20,580–587.

Bezerra,D.P.,MarinhoFilho,J.D.,Alves,A.P.N.N.,Pessoa,C.,DeMoraes,M.O.,Pessoa, O.D.L.,Torres,M.C.M.,Silveira,E.R.,Viana,F.A.,Costa-Lotufo,L.V.,2009. Anti-tumoractivityoftheessentialoilfromtheleavesofCrotonregelianusandits componentascaridole.Chem.Biodivers.6,1224–1231.

Bhalla,Y.,Gupta,V.K.,Jaitak,V.,2013.Anticanceractivityofessentialoils:areview. J.Sci.FoodAgric.93,3643–3653.

Boussios, S., Pentheroudakis, G., Katsanos, K., Pavlidis, N., 2012. Systemic treatment-inducedgastrointestinaltoxicity:incidence, clinicalpresentation andmanagement.Ann.Gastroenterol.25,106–118.

Carol,A.,1995.Acute,subchronicandchronictoxicology.In:CRC(Ed.),Handbook ofToxicology.CRCPressInc.,U.S.,pp.51–104.

Carlini,E.A.,2003.Plantsandthecentralnervoussystem.Pharmacol.Biochem. Behav.75,501–512.

Chen,L.,Watkins,J.F.,1970.EvidenceagainstthepresenceofH2histocompatibility antigensinEhrlichascitestumourcells.Nature225,734–735.

Correa-Royero,J.,Tangarife,V.,Durán,C.,Stashenko,E.,Mesa-Arango,A.,2009. Invitroantifungalactivityandcytotoxiceffectofessentialoilsandextractsof medicinalandaromaticplantsagainstCandidakruseiandAspergillusfumigatus. Rev.Bras.Farmacogn.20,734–741.

(8)

Darzynkiewicz,Z.,Bruno,S.,DelBino,B.G.,Gorczyca,W.,Hotz,M.A.,Lassota,P., Traganos,F.,1992.Featuresofapoptoticcellsmeasuredbyflowcytometry. Cytometry13,795–808.

Dolai,N.,Karmakar,I.,Kumar,R.B.S.,Kar,B.,Bala,A.,Haldar,P.K.,2012.Evaluation ofantitumoractivityandinvivoantioxidantstatusofAnthocephaluscadamba onEhrlichascitescarcinomatreatedmice.J.Ethnopharmacol.142,865–870. El-Sayyad,H.I.,Ismail,M.F.,Shalaby,F.M.,Abou-El-Magd,R.F.,Rajiv,L.G.,Augusta,

F.,Madhwa,H.G.R.,Allal,O.,2009.Histopathologicaleffectsofcisplatin, doxoru-bicinand5-flurouracil(5-FU)ontheliverofmalealbinorats.Int.J.Biol.Sci.5, 466–473.

Fernandes,H.M.B.,Oliveira-Filho,A.A.,Sousa,J.P.,Oliveira,T.L.,Lima,E.O., Meire-les,D.R.,Brito,M.T.,Zelioli,I.A.M.,Queiroz,N.C.A.,Foglio,M.A.,Ruiz,A.L.T.G., Carvalho,J.E.,Silva,M.S.,Castello-Branco,M.V.S.,Tavares,J.F.,2012.Antitumor, antimicrobialeffectandchemicalcompositionoftheessentialoilofCroton polyandrusSpreng.Lat.Am.J.Pharm.31,1430–1434.

Fernandes,H.M.B.,Leão,A.D.,Oliveira-Filho,A.A.,Sousa,J.P.,Oliveira,T.L.,Lima, E.O.,Silva,M.S.,Tavares,J.F.,2013.Antimicrobialactivityandphytochemical screeningofextractsfromleavesofCrotonpolyandrusSpreng.Int.J.Pharmacogn. Phytochem.Res.5,223–226.

Gad,S.C.,2007.AnimalModelsinToxicology.Taylor&Francis,ISBN0824754077. Gaspar,B.L.,Sharma,P.,Das,R.,2015.Anemiainmalignancies:pathogeneticand

diagnosticconsiderations.Hematology1,18–25.

Gordon,H.,Sweet,H.H.,1936.Asimplemethodforthesilverimpregnationof reti-culin.Am.J.Pathol.12,545–551.

Gould,M.N.,1997.Cancerchemopreventionandtherapybymonoterpenes.Environ. HealthPerspect.105,977–979.

Grinberg,L.N.,Newmark,H.,Kitrossky,N.,Rahamim,E.,Chevion,M.,Rachmilewitz, E.A.,1997.Protectiveeffectsofteapolyphenolsagainstoxidativedamagetored bloodcells.Biochem.Pharmacol.54,973–978.

Hanahan,D.,2014.Rethinkingthewaroncancer.Lancet383,558–563.

Jain,D.,Pathak,N.,Khan,S.,Raghuram,G.V.,Bhargava,A.,Samarth,R.,Mishra,P.K., 2011.EvaluationofcytotoxicityandanticarcinogenicpotentialofMenthaleaf extracts.Intern.J.Toxicol.30,225–236.

Kang,C.,Munawir,A.,Cha,M.,2009.Cytotoxicityandhemolyticactivityof jelly-fishNemopilemanomurai(Scyphozoa:Rhizostomeae)venom.Comp.Biochem. Physiol.150,85–90.

Kiang,J.G., Smith, J.T.,Agravante, N.G.,2009. Geldanamycin analog17-DMAG inhibitsiNOSandcaspasesingamma-irradiatedhumanTcells.Radiat.Res.172, 321–330.

Kin,J.H.,Lee,S.J.,Han,Y.B.,1994.IsolationofisoguanosinefromCrotontigliumand itsantitumoractivity.Arch.Pharmacol.Res.17,115–118.

Lins,K.O.,Bezerra,D.P.,Alves,A.P.N.N.,Alencar,N.M.,Lima,M.W.,Torres,V.M.,Farias, W.R.,Pessoa,C.,deMoraes,M.O.,Costa-Lotufo,L.V.,2009.Antitumorproperties ofasulfatedpolysaccharidefromtheredseaweedChampiafeldmannii (Diaz-Pifferer).J.Appl.Toxicol.29,20–26.

Liu,W.,Zhang,C.C.,Li,K.,2013.Prognosticvalueofchemotherapy-induced leukope-niainsmall-celllungcancer.CancerBiol.Med.10,92–98.

Lopes,D.,Bizzo,H.R.,Sobrinho,A.F.S.,Pereira,M.V.G.,2003.Essentialoilfromleaves ofCrotonsacaquinhaBenth.J.Essent.OilRes.15,48–49.

Maroni,L.C.,Silveira,A.C.O.,Leite,E.A.,Melo,M.M.,Ribeiro,A.F.C.,Cassali,G.D., Souza,C.M.,Fagundes,E.M.S.,Caldas,I.R.,Araújo,M.S.S.,etal.,2012.Antitumor effectivenessandtoxicityofcisplatin-loadedlong-circulatingandpH-sensitive liposomesagainstEhrlichascitictumor.Exp.Biol.Med.237,973–984. Montenegro,R.C.,Farias,R.A.F.,Pereira,M.R.P.,Alves,A.P.N.N.,Bezerra,F.S.,Neto,

M.A.,Pessoa,C.,Moraes,M.O.,Costa-Lotufo,L.V.,2008.Antitumoractivityof pisosterolinmicebearingwithS180tumor.Biol.Pharm.Bull.31,454–457. Nascimento,F.R.F.,Cruz,G.V.B.,Pereira,P.V.S.,2006.AsciticandsolidEhrlichtumor

inhibitionbyChenopodiumambrosioidesL.treatment.LifeSci.78,2650–2653.

Ng,T.B.,Li,W.W.,Yeung,H.W.,1986.Asterylglycosidefractionwithhemolytic activityfromtubersofMomordicacochinchinensis.J.Ethnopharmacol.18,5–6. Nissenson,A.R.,Goodnough,L.T.,Dubois,R.W.,2003.Anemia.Notjustaninnocent

bystander?Arch.Intern.Med.163,1400–1404.

OECD(TheOrganisationforEconomicCo-operationandDevelopment),1997. Mam-malianErythrocyteMicronucleusTest:GuidelinesforTestingofChemicals.n◦

474.

Oliveira,A.C.,Leal-Cardoso,J.H.,Santos,C.F.,Morais,S.M.,Coelho,A.N.S.,2001. AntinociceptiveeffectsoftheessentialoilofCrotonzehntneriinmice.Braz.J. Med.Biol.Res.34,1471–1474.

Ozaslan,M.,Karagoz,I.D.,Kilic,I.H.,Guldur,M.E.,2011.Ehrlichascitescarcinoma. Afr.J.Biotechnol.10,2375–2378.

Pereira,A.S.,Carbonell,A.S.,AquinoNeto,F.R.,Amaral,A.C.F.,Barnes,R.A.,2002. High-temperaturegaschromatography–massspectrometrywithglasscapillary columnsforthescreeningofnaturalproducts.J.Chromatogr.A947,255–265. Rasmussen,L.,Arvin,A.,1982.Chemotherapy-inducedimmunosuppression.

Envi-ron.HealthPerspect.43,21–25.

Rodrigues,K.A.F.,Amorim,L.V.,Oliveira,J.M.G.,2013.EugeniaunifloraL.essential oilasapotentialanti-Leishmaniaagent:effectsonLeishmaniaamazonensis andpossiblemechanismsofaqction.Evid.BasedComplement.Altern.Med., http://dx.doi.org/10.1155/2013/279726.

Safarzadeh,E.,Shotorbani,S.S.,Baradaran,B.,2014.Herbalmedicineasinducersof apoptosisincancertreatment.Adv.Pharm.Bull.4,421–427.

SalgadoOloris,S.C.,Dagli,M.L.Z.,Guerra,J.L.,2002.Effectofh-caroteneonthe devel-opmentofthesolidEhrlichtumorinmice.LifeSci.71,717–724.

Shrivastav,S.,Stone,K.R.,Paulson,D.F.,Bonar,R.A.,1980.Activationof cyclophos-phamideforinvitrotestingofcellsensitivity.CancerRes.40,4443–4445. Silva,S.L.,Chaar,J.S.,Figueiredo,P.M.S.,Tomomasa,Y.,2008.Cytotoxicevaluationof

essentialoilfromCaseariasylvestrisSwonhumancancercellsanderythrocytes. ActaAmaz.38,107–112.

Sun,Q.,Li,R.T.,Guo,W.,2006.Novelclassofcyclophosphamideprodrug: cyclophos-phamidespiropiperaziniums(CPSP).Bioorg.Med.Chem.Lett.16,3727–3730. Sylvestre,M.,Pichette,A.,Longtin,A.,Nagau,F.,Legault,J.,2006.Essentialoilanalysis

andanticanceractivityofleafessentialoilofCrotonflavensL.fromGuadeloupe. J.Ethnopharmacol.103,99–102.

Torti,V.R.,Cobb,A.J.,Everitt,J.L.,Marshall, M.W.,Boorman, G.A.,Butterworth, B.E., 2001. Nephrotoxicity and hepatotoxicity induced by inhaled bro-modichloromethaneinwild-typeandp53-heterozygousmice.Toxicol.Sci.64, 269–280.

Verc¸osaJúnior,D.,Souza-Fagundes,E.M.,Cassali,G.D.,Ribeiro,E.L.,Zani,C.L.,Melo, M.M.,2006.EfeitodomiriadenolídeoisoladodeAlomiamyriadenia(Asteraceae) sobreotumordeErlichascíticonocamundongo.Arq.Bras.Med.Vet.Zootec.58, 788–798.

Vieira,P.,Santos,S.,Chen-Chen,L.,2010.Assessmentofmutagenicityand cytotox-icityofSolanumpaniculatumL.extractsusinginvivomicronucleustestinmice. Braz.J.Biol.70,601–606.

Wang,W.,Li,N.,Luo,M.,Yuangang,Z.,Efferth,T.,2012.Antibacterialactivityand anticanceractivityofRosmarinusofficinalisL.essentialoilcomparedtothatof itsmaincomponents.Molecules17,2704–2713.

Wu,C.S.,Chen,Y.J.,Chen,J.J.W.,Shieh,J.J.,Huang,C.H.,Lin,P.S.,Chang,G.C., Tsai-Chang,J.H.,Lin,C.C.,2012.Terpinen-4-olinducesapoptosisinhumannonsmall celllungcancerinvitroandinvivo.Evid.BasedComplement.Altern.Med., http://dx.doi.org/10.1155/2012/818261.

Zhang,A.,Zhu,Q.Y.,Luk,Y.S.,Ho,K.Y.,Fung,K.P.,Chen,Z.Y.,1997.Inhibitoryeffects ofjasminegreenteaepicatechinisomersonfreeradical-inducedlysisofred bloodcells.LifeSci.61,383–394.

Imagem

Fig. 1. Percentage of hemolysis in red blood cells of Swiss mice upon treatment with EOC (␮g/ml)
Fig. 2. Percentage of Ehrlich ascites carcinoma cells in different phases of the cell cycle after treatment with 5% Tween 80 solution (control), EOC (100 mg/kg), EOC (150 mg/kg) and 5-FU (25 mg/kg), a p &lt; 0.05 compared to control group, b p &lt; 0.05 co
Fig. 3. Histopathology of liver of experimental groups: (A) portal space with vasculobiliar triad and hepatic cords lobular – control; (B) parenchymal necrosis foci – EOC (100 mg/kg); (C) Kupffer cell hyperplasia – EOC (150 mg/kg); (D) moderate increases i
Fig. 4. Survival times of female mice inoculated with Ehrlich carcinoma cells and treated with EOC and 5-FU

Referências

Documentos relacionados

Non-hypnotic doses of the barbiturates phenobarbital (5-50 mg/kg), pentobarbital (17-33 mg/ kg), and thiopental (7.5-30 mg/kg), of the benzodiazepine midazolam (10 mg/kg) or of

Treatment 3 (T3): pregnant and lactating sows were fed diets with iron sulfate (551 mg Fe/kg and 537 mg Fe/kg of feed, respectively), plus 150 mg of chelated iron/kg of feed

O processamento dos dados, bem como as análises estatísticas foram realizadas utilizando-se o programa SPSS 10.0 for Windows (NIE et al.,1975). Para o estudo transversal, foi

present study also evaluated the leukometry, phagocytic activity, genotoxic potential and cell death induction of three different doses (5 mg/kg, 10 mg/kg and 20 mg/kg) of this

The increase in the federal funds rate is less than the difference shown in Slide 4 because of feedback effects working through the economy; a less accommodative policy rule

Não obstante a existência de delimitação física do Parque Estadual da Serra do Tabuleiro, criado na forma da lei no ano de 1975, a ocupação desordenada e degradativa

Much lower decreases were observed in the 6-OHDA groups after treatments with the doses of 100 mg/kg (45%) and 200 mg/kg (only 13%, which was not significantly different from the

Para os grupos tratados individualmente com o polissacarídeo nas doses de 25 e 50 mg/kg/dia, com o 5-FU na concentração de 10 mg/kg/dia, bem como, com a associação