• Nenhum resultado encontrado

A compilation of longevity data in decapod crustaceans

N/A
N/A
Protected

Academic year: 2021

Share "A compilation of longevity data in decapod crustaceans"

Copied!
22
0
0

Texto

(1)

Nauplius

T

he

J

ournal of

T

he

B

razilian

C

rusTaCean

s

oCieTy

e-ISSN 2358-2936 www.scielo.br/nau www.crustacea.org.br

1

Diagramação e XML SciELO Publishing Schema: www.editoraletra1.com

Nauplius, 27: e2019011

All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.

orcid.org/0000-0002-5632-2477

A compilation of longevity data in decapod

crustaceans

Günter Vogt

1

1 Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120

Heidelberg, Germany

ZOOBANK:

http://zoobank.org/urn:lsid:zoobank.org:pub:2A8C90D1-DA78-46AC-8C7E-85A4172EEF75

a

BsTraCT

Longevity information was collected from 219 literature sources for 244

decapod crustaceans, representing 1.7% of species, 4.8% of genera and 30%

of families. Reliable methods of age determination (laboratory rearing,

mark-recapture method, growth models, lipofuscin method) revealed longevities

from 0.1 to 72 years, corresponding to a 700-fold difference between the

shortest and longest lived species. The mean longevity of the species included

in this article is 7.1 years (SD=10.18; CV=142.9%); 61.1% of the species live

less than 5 years, 29.5% live between 5 and 20 years, and 9.4% live longer

than 20 years. The basal Dendrobranchiata have a mean longevity of only

2.1 years whereas the Achelata have a mean longevity of 27.2 years. The

oldest decapod aged with a direct method is a hermit crab that was reared in

captivity for more than 42 years. The particularly long-lived species belong

to different families of the infraorders Achelata, Astacidea, Anomura and

Brachyura. Average longevity is highest in semiterrestrial and terrestrial

habitats (13.0 years), followed by freshwater (7.2 years) and marine and

brackish waters (6.0 years). The deep sea, polar waters, freshwater caves and

terrestrial environments apparently promote the evolution of high life spans.

K

eywords

Decapoda, life span, environment, taxonomy, evolution.

i

nTroduCTion

Ageing and longevity in the Decapoda is still a neglected field of research.

In 2012, I have published the first comprehensive review article on ageing

and longevity in this ecologically and economically important animal group

(Vogt, 2012). This paper summarized life span data, anti-ageing strategies

and age related diseases and discussed the impacts of indeterminate growth

and different environments on longevity. Since then, further review articles

and book chapters with comprehensive ageing data have been published for

freshwater decapods (Vogt, 2014), freshwater crayfish (McLay and van den

CORRESPONDING AUTHOR Günter Vogt gunter.vogt@web.de SUBMITTED 02 April 2019 ACCEPTED 06 July 2019 PUBLISHED 16 September 2019 DOI 10.1590/2358-2936e2019011

(2)

2

Diagramação e XML SciELO Publishing Schema: www.editoraletra1.com

Nauplius, 27: e2019011

cave dwelling decapods (Venarsky

et al., 2012), and

crustaceans (Vogt, 2018). In the present article I have

compiled and updated all reliable longevity data of

decapods that I could find in original studies, review

papers and species profiles provided by experienced

carcinologists. In addition, I have compared longevities

between the higher taxa of the Decapoda and between

marine, freshwater and terrestrial environments.

Ageing techniques and their advantages and disadvantages

The longevity data compiled in this paper were

obtained with different ageing techniques like growth

models, the lipofuscin method, the mark and recapture

method, and rearing in captivity. Growth models

based on size-frequency and life history data were

predominant. Sometimes, life spans were directly

estimated from size-frequency and life history data

without applying growth models. An alternative

indirect ageing method was quantification of the age

pigment lipofuscin. The direct methods applied were

the mark-recapture method and rearing in captivity.

Rearing in captivity from hatching to death is the

most exact ageing technique. However, life span data

obtained with this approach are mainly available for

relatively short-lived aquaculture, laboratory and

pet species. This method underestimates longevity

in the wild if the culture conditions are inadequate.

On the other hand, it can considerably overestimate

natural longevity because protection from adverse

environmental conditions, predators and diseases can

greatly expand life span. Thus, rearing under optimal

conditions reflects the upper possible age limits of

the species.

The mark and recapture method is presently the

only direct ageing technique applied in the wild. In

order to ensure life-long retention of the mark, the tags

have to be placed underneath the cuticle. Otherwise,

they are lost during moulting. There are several

internal markers available for decapods, among them

passive integrated transponders (microchips), coded

microwire tags, visible implant alphanumeric tags and

visible implant elastomeres (Hartnoll, 2001; Davis

et

al., 2004; Buřič et al., 2008). Further details on

mark-recapture methods are found in Hartnoll (2001), Vogt

(2012) and Kilada and Driscoll (2017). In practice, the

mark-recapture method was mostly used to estimate

growth models. There are only few cases where marked

specimens were recaptured after more than a decade.

For example, a

Procambarus erythrops crayfish was

recaptured in Sim’s Sink cave, Florida, 16 years after

marking (Streever, 1996).

The most widespread ageing method used in

wild populations is the analysis of length-frequency

distributions and reproduction parameters, often

combined with growth models. Size frequency

analysis depends on the identification of modes in the

distribution, which can be equated with recruitment

cohorts or year classes. The raw data are first grouped

into length groups and then converted to age groups.

Growth models such as the von Bertalanffy equation

help to estimate longevity from length frequency and

life history data. Further details are found in Hartnoll

(2001) and Jennings

et al. (2001). Size frequency

analysis gives reliable information for short-lived species

with well-defined annual reproduction periods. The

approach becomes increasingly unreliable the longer a

species lives because slowly growing specimens of older

age may group together with fast growing specimens

of younger age. Since these effects increase with age,

size-frequency based growth models are imprecise

in long-lived species (Sheehy

et al., 1999; Hartnoll,

2001). Moreover, the von Bertalanffy growth model

assumes that an organism reaches a maximum size and

approaches this size asymptotically. This assumption

holds for the determinately growing decapods like the

snow crab

Chionoecetes opilio, which stops growing

after a terminal moult but continues to live for several

years (Ernst

et al., 2005). However, most decapods are

indeterminate growers and have no fixed growth limit.

The lipofuscin method is based on the continuous,

life-long deposition of lipofuscin in persistent cell types.

Lipofuscin is a fluorescent, yellow-brown aggregate

consisting of oxidized protein and lipid clusters (Jung

et

al., 2007). It originates from lysosomal degradation of

cytosolic proteasome-protein complexes and damaged

cell organelles. Lipofuscin is insoluble, resists enzymatic

degradation and is deposited in residual bodies within

the cells. The neurons and neuroglia of some brain

areas of decapods obviously persist throughout life

and accumulate lipofuscin with age, providing ideal

targets for lipofuscin-based age determination (Sheehy,

1992). The lipofuscin content is usually quantified

(3)

3

Diagramação e XML SciELO Publishing Schema: www.editoraletra1.com

Nauplius, 27: e2019011

by measurement of the lipofuscin area in histological

sections and, less reliably, by spectrofluorometric

analysis. The lipofuscin content is a marker of the

physiological age rather than the chronological age,

and therefore, calibration is required with specimens

of known age and for each environment (Sheehy

et

al., 1995b; Maxwell et al., 2007). In long-lived species,

the lipofuscin method is apparently superior to size or

weight based ageing techniques (Belchier

et al., 1998).

Leland

et al. (2011) and Kilada et al. (2012)

suggested using cuticular growth bands of stomach

ossicles and the growing edge of the eyestalks for age

determination. The interpretation of cuticle bands in

the ossicles as annual age marker is based on the idea

that parts of the gastric mill are retained through the

moult and accumulate a continuous record of age.

Analyses in several species seemed to support this

idea (Kilada and Driscoll, 2017; Gnanalingam

et al.,

2019). However, Sheridan and O’Connor (2018) and

Becker

et al. (2018) revealed in several species that

the zygocardiac ossicles in question are shed during

moulting and wondered how the age information

could be transferred to the new cuticle. Because of

this unsettled controvery, I have not included growth

band data in this paper.

r

esulTs

Table 1 includes 282 longevity data for 244 species.

These data are heterogeneous because they were

obtained with different ageing methods: 108 data

come from growth models (mainly von Bertalanffy

equations), 61 from the analysis of size-frequency

and life history data, 19 from the mark and recapture

method, 20 from rearing in captivity, 9 from the

lipofuscin method, 2 from shell radiometry, 62 from

review articles, book chapters and the discussion

sections of papers, and 33 from species profiles

compiled by experienced carcinologists (some papers

have used more than one ageing approach).

Table 1

lists the highest longevities given by the authors. These

are either minimum expected life spans, maximum life

spans estimated by growth models, or recorded ages of

the oldest individuals. The list represents 1.7% of the

14,335 decapod species, 4.8% of the genera, 30% of

the families and 63.6% of the sub-/infraorders.

Mean longevity of the 244 decapod species is 7.12

years with 4.1% of the species living less than 1 year,

57.0% living from 1–4.9 years, 18.4% from 5–9.9 years,

11.1% from 10–19.9 years and 9.4% living beyond

20 years (

Fig. 1

). The oldest decapod in captivity

is a 42-year old hermit crab (

Coenobita clypeatus).

This specimen was purchased by Carol Ann Ormes

in summer 1976 and kept since then as a pet (Atlas

Obscura, 2019). It was still alive in December 2018

(NBC2 News, 2018). The oldest marked decapod ever

recaptured is a caridean freshwater shrimp (

Xiphocaris

elongata) from a headwater stream in Puerto Rico.

It was recaptured after 18 years (Cross

et al., 2008).

The highest age determined by the lipofuscin method

was 72±9 years for a female of the European lobster,

Hommarus gammarus, from the Yorkshire fishery

in U.K. (Sheehy

et al., 1999). The maximum age

estimated by growth models was 70–100 years for

females and males of coconut crab,

Birgus latro, on

Christmas island (Drew

et al., 2013). The highest age

ever estimated by growth models was 176 years in the

cave-dwelling crayfish

Orconectes australis (cf. Cooper,

1975). However, reinvestigation of new populations

and Cooper’s data with refined growth models revealed

a longevity of 22 years for this species, with only a

small proportion of individuals exceeding this age

(Venarsky

et al., 2012).

Longevity differences between and within higher taxa

Longevity varies markedly between sub-/infraorders

(

Table 2

). The plesiomorphic Dendrobrachiata have

average longevities of 2.1 years. The average lifespan

of the derived Pleocyemata, which include all other

infraorders, is 7.8 years. Caridea live on average for

4.2 years, Brachyura for 5.6 years, Astacidea for 11.0

years, Anomura for 11.4 years and Achelata for 27.2

years (

Table 2

). For the Gebiidea I have found only one

reliable value of 4 years, and for the Axiidea, Polychelida

and Glypheidea data are apparently lacking. Kornienko

(2013) estimated the longevity of the Gebiidea and

Axiidea to 2–5 years but mentioned that some workers

have estimated their maximum life span to 10 years

and more.

Longevity can markedly differ among members

of the same higher taxon. Longevity varies from

0.1–9 years (CV=75.6%) in the Dendrobranchiata,

0.5–18 years (CV=96.7%) in the Caridea, 0.7–30

years (CV=102.9%) in the Brachyura, 0.7–70

years (CV=161.2%) in the Anomura, 1.5–72 years

(4)

Vo gt Vog t: A c ompil atio n of lo ng ev ity d at a in de Nauplius, 27: 2019011 Table 1. Li fe sp an s of de ca pod cr us ta ce an s. Sub -/I nf ra or de r Fa mi ly Spe cie s En vir onme nt Li fe sp an (y r) A gein g me thod R efe re nc e D endr obr anchi at a Ar ist eid ae Ar ist eus a nt en na tus (R iss o, 1816)  M 3 SF Sa rd a a nd D eme str e, 1987 9 GM Or si R el ini a nd R el ini , 1998 Ar ist aeom or ph a f ol ia ce a (R iss o, 1827)  M 4–5 1 GM R ag one se et a l., 2012 Luc ife rid ae Be lze bu b f axo ni (Bor ra dai le , 1915) M 0.1 RC Lee et a l., 1992 Pe nae id ae At yp op en aeus s ten od ac ty lus (S timps on, 1860)  M 1 SP K un ju , 1969 M eta pen aeus en sis (D e H aa n, 1844) M 1.3 SF Le un g, 1997 M eta pen ae op sis d alei (R athbun, 1902) M 1.5–1.6 1 GM C ho i et a l., 2005 M eta pen ae op sis si bo ga e ( de M an, 1907)  M 2.3 GM R ahm an a nd Oh tomi , 2018 Pa ra pen ae op sis s ty lif er a (H. M ilne E dw ar ds, 1837) M 2 SF Ana nt ha et a l., 1997 Pa ra pen aeus fiss ur oi de s C ros nie r, 1986   M 2–2.5 1 GM Fa rh an a a nd Oh tomi , 2017 Pen aeus az tec us Iv es, 1891 M 1.1–1.3 1 GM C há vez , 1973 Pen aeus br asi lien sis La trei lle , 1817 M 2 GM Leit e a nd P re te re , 2006 Pen aeus k er at hu rus (F or sk ål , 1775) M 3 GM Vit ale et a l., 2010 Pen aeus m on odo F abr ic ius, 1798 M 1.5–2 1 SF, R C M ot oh, 1981 2 LM She eh y et a l., 1995a Pen aeus p au len sis (P ér ez F ar fa nt e, 1967) M 2 GM Leit e a nd P etr er e, 2006 Pen aeus sem isu lca tus D e H aa n, 1844 M 1.3–1.7 1 GM N ia m aim and i et a l., 2007 Pen aeus set ifer us (L inn ae us, 1767) M , B 2 SF Lindne r a nd C oo k, 1970 Pen aeus s ty lir os tris S timps on, 1871 M , B 1.7 GM López -M ar tinez et a l., 2005 1.7–1.9 1 GM Pal ac ios et a l.,1993 Pen aeus s ub til is (P ér ez F ar fa nt e, 1967) M 2.1–2.2 1 GM Si lv a et a l., 2015 Ri m ap en aeus co ns tric tus (S timps on, 1871) M 0.7–1.1 1 GM G arc ia et a l., 2016 1.2–1.6 1 GM Lope s et a l., 2017 Tr ac hy sa la m br ia c ur vi ro str is (S timps on, 1860) M 1.2–1.3 1 GM Ch a et a l., 2004 1.5 GM H os sain a nd Oh tomi , 2010 Xip ho pen aeus kr oy er i ( H el le r, 1862)  M , B 1.5–2 1 GM Lope s et a l., 2014 1.4–2.1 1 GM C as til ho et a l., 2015 Se rg es tid ae Acet es c hi nen sis H an se n, 1919 M 0.8–1 2 GM Oh a nd J eon g, 2003 Acet es i nd icus H. M ilne E dw ar ds, 1830 M , B 1.9–2.5 1 GM Amin et a l., 2012 Acet es j ap on icus Ki shinou ye , 1905 M 0.2 R Lee et a l., 1992 Lu cen so ser gia l ucen s ( H an se n, 1922) M 1.2 R Lee et a l., 1992 So le noc er id ae So len ocer a a cu m in at a Pé rez F ar fa nt e & B ul lis, 1973 M 2 GM G ué gue n, 1998 So len ocer a c ho pr ai  N at ar aj , 1945   M 2.5 SF Dine shb abu a nd M ani ss er y, 2007

(5)

Vo gt Vog t: A c ompil atio n of lo ng ev ity d at a in de ca pod Nauplius, 27: 2019011 Sub -/I nf ra or de r Fa mi ly Spe cie s En vir onme nt Li fe sp an (y r) A gein g me thod R efe re nc e So len ocer a cr assico rn is (H. M ilne E dw ar ds, 1837) M 0.8–1.3 1 R K un ju , 1969 So len ocer a m ela nt ho  de M an, 1907 M 3.1 GM Oh tomi a nd I rie da , 1997 C ar ide a Alp heid ae Al ph eus a rm ill at us H. M ilne E dw ar ds, 1837 M 1.2–1.3 1 GM M ossol in et a l., 2006 At yi da e At ya lani pe s H olth ui s, 1963 F 8 GM C ros s et a l., 2008 At ya ep hy ra de sm ar es tii (M ille t, 1831)   F, B 1 SF Fid al go et a l., 2015 1.1–1.3 1 SF Dh aoua di -H as se n a nd Boum ai za , 2009 2 LH Vor stm an, 1955 Ca rid in a c an to nen sis  Yü , 1938   F 1.8 SF Ya m a nd Dud ge on, 2005 Car idi na fe rn an do i A rudpr ag as am & C os ta , 1962  F 1 GM D e S ilv a, 1988a Ca rid ina m ul tid en ta ta S timps on, 1860   F 6 SP W irbe llos en D at enb ank , 2019a Ca rid in a ser ra ta  St imps on, 1860   F 1.4 SF Ya m a nd Dud ge on, 2005 Car idi na si m oni  Bouv ie r, 1904   F 1–1.5 GM , R C D e S ilv a, 1988b Pa la em on ias g an ter i H ay , 1902  FC 15 RC U .S . F ish a nd W ild life S er vic e, 2010 C ra ng onid ae Cr an go n cr an go (L inn ae us, 1758)   M 3.3 GM Oh et a l., 1999 Cr an go n fr an cisco ru m St imps on, 1856   M 1–1.5 1 GM G av io et a l., 2006 N ot ocr an go n a nt ar ctic us (P feffe r, 1887)   M 6–10 1 GM , L M Bluhm a nd B rey , 2001 Sa bi ne a sep tem ca rin at a (S ab ine , 1824) M 4 SF W eşł aw sk i, 1987 Sc ler ocr an go n b or eas (P hipps, 1774) M 9 GM Sain te-M ar ie et a l., 2006 Sc ler ocr an go n f er ox (S ar s G .O ., 1877)   M 4 SF W eşł aw sk i, 1987 H ippo ly tid ae Ch or ism us a nt ar ctic us (P feffe r, 1887) M 7 GM Gor ny et a l., 1993 La treu tes f uco ru m (F abr ic ius, 1798) M 0.5 R Ba ue r, 2004 La treu tes p ar vu lus (S timps on, 1871) M 0.5 R Ba ue r, 2004 Lys m at id ae Ly sm at a w ur de m an ni (G ib be s, 1850) M 1.6 SF Baldw in a nd B aue r, 2003 N em at oca rc inid ae N em at oc ar cin us l an ce op es Spe nc e B at e, 1888  M 6 R Ba ue r, 2004 Pal ae monid ae Mac ro br ac hiu m ac an th ur us (W ie gm ann, 1836)   F, B 2 R Bro w n et a l., 2010 M acr obr ac hi um b or ell ii (N ob ili , 1896)  F 2 R Bro w n et a l., 2010 M acr obr ac hi um c ar cin us (L inn ae us, 1758) F, B 8 GM Vale nt i et a l., 1994 M acr obr ac hi um h ai na nen se (P ar isi , 1919)  F 2.4–4 1 GM M an te l a nd Dud ge on, 2005 M acr obr ac hi um r osen ber gii (de M an, 1879)  F 3 R Bro w n et a l., 2010 Pa la em on a nt en na rius H. M ilne E dw ar ds, 1837 F 2 R W irbe llos en D at enb ank , 2019b Pa la em on m acr od ac ty lus R athbun, 1902 M , B 1 GM Vá zquez et a l., 2012 2 R Ba ue r, 2004 Pa la em on m ode stus (H el le r, 1862) F 1.1–1.3 1 GM Oh et a l., 2002 Table 1. C on t.

(6)

Vo gt Vog t: A c ompil atio n of lo ng ev ity d at a in de Nauplius, 27: 2019011 Sub -/I nf ra or de r Fa mi ly Spe cie s En vir onme nt Li fe sp an (y r) A gein g me thod R efe re nc e Pa la em on p al udo sus (G ib be s, 1850) F 1 GM Be ck a nd C ow el l, 1976 Pa la em on p au ciden s D e H aa n, 1844 M 1.1 GM Kim et a l., 2008 Pa la em on pu gio H olth ui s, 1949 F, B 0.5–1.1 3 GM Alon a nd S ta nc yk , 1982 Pa la em on x ip hi as  R iss o, 1816   M 1.4 GM G ue ra o et a l., 1994 Pa nd al id ae H eter oc ar pus r ee di Bah amonde , 1955 M 6 GM R oa a nd E rn st , 1996 H eter oc ar pus w oo dm aso ni Alc ock , 1901 M 3.7–5 1 GM R aj as ree et a l., 2011 Pa nd al us b or ea lis  Kr øy er , 1838   M 4–8 3 R Koe lle r, 2006 5–7 1 GM So kho lo v, 2002 11 GM N ils se n a nd A sch an, 2009 Pa nd al us e ous  M ak ar ov , 1935   M 11 GM Sa dak at a, 1999 Ple sio ni ka e dw ar dsii (B ra ndt , 1851)   M 3.5 GM C ol loca , 2002 Ple sio ni ka i zu m ia e Omor i, 1971  M 1.5 GM Ah ame d a nd Oh tomi , 2012 Ple sio ni ka sem ila ev is Spe nc e B at e, 1888   M 3 GM Oh tomi , 1997 Thor id ae H ep ta ca rpus sit ch en sis (B ra ndt , 1851) M 1.5 R Ba ue r, 2004 Spi ro nt oc ar is p hipp sii (Kr øy er , 1841)   M 5 SF W eşł aw sk i, 1987 Th or m an ni ng i C ha ce , 1972 M 0.5 R Ba ue r, 2004 Xip hoca rid id ae Xip ho ca ris e lo ng at a (G ué rin-M éne vi lle , 1855) F 5–11 3 GM C ros s et a l., 2008 18 MR C ros s et a l., 2008 A st ac ide a A st ac id ae As ta cus as ta cus  (L inn ae us, 1758)   F 10 R Sk ur dal a nd T au gbø l, 2002 15 R Sad yk ov a et a l., 2011 Aus tro po ta m obi us f ulcisi an us (N inni , 1886) F 8 MR , GM Scal ic i et a l., 2008a 15–18 1 GM Ghi a et a l., 2015 Aus tro po ta m obi us p all ip es (L er eboul le t, 1858)   F 5-6 3 MR , S F N ev eu , 2000 6 SF , LH Pr att en, 1980 9–11 1 GM W end le r et a l., 2015 Aus tro po ta m obi us t or ren tiu m (v on P aul a S chr ank , 1803) F 9 GM Str ei ssl a nd H öd l, 2002 Pa cif as ta cus len iusc ul us (D an a, 1852) F 9.7 GM , L M Fon se ca a nd S he eh y, 2007 12 MR , GM Fl in t, 1975 16.7 LM Be lchie r et a l., 1998 Po nt as ta cus lep to da ct ylus  (Es ch scho ltz , 1823) F 7.4 GM D ev al et a l., 2007 C am bar id ae Ca m ba re llus p at zc ua ren sis Vi llalo bos, 1943   F 1.6 SP W irbe llos en D at enb ank , 2019c Ca m ba re llus pu er  H ob bs, 1945   F 1.2 R W al ls, 2009 Ca m ba re llus s huf eld tii (F axon, 1884)   F 1.5 R W al ls, 2009 Table 1. C on t.

(7)

Vo gt Vog t: A c ompil atio n of lo ng ev ity d at a in de ca pod Nauplius, 27: 2019011 Table 1. C on t. Sub -/I nf ra or de r Fa mi ly Spe cie s En vir onme nt Li fe sp an (y r) A gein g me thod R efe re nc e Cam bar us b ar to ni i ( Fa br ic ius, 1798)   F 13 MR , GM H ur yn a nd W al la ce , 1987 Ca m ba rus c has m od ac ty lus Ja me s, 1966   F 3 R Luk ha up a nd P ekn y, 2008 Ca m ba rus d ubi us  Fa xon, 1884 F 7 SF , LH Lou ghm an, 2010 Ca m ba rus e lk en sis Jez er in ac & S tock er , 1993 F 5.3 SF , LH Jone s a nd E ve rs ole , 2011 Ca m ba rus h all i H ob bs, 1968   F 2 R M cL ay a nd v an de n B rink , 2016 Ca m ba rus h ub bsi  C re as er , 1931 F 3 R M cL ay a nd v an de n B rink , 2016 Ca m ba rus r obus tus G ira rd , 1852 F 4 R G ui aş u a nd Dunh am, 2002 Cr easer in us f od ien s ( C ottle , 1863) F 6 LH N or rock y, 1991 Cr easer in us go rdo ni (F itz pa tr ick , 1987) F 3 LH Jo hn ston a nd F ig ie l, 1997 Faxo ne lla cr easer i W al ls, 1968 F 1.5 R W al ls, 2009 Faxo ni us eu pu nc tus (W ill ia m s, 1952) F 2.5 SP Luk ha up a nd P ekn y, 2008 Faxo ni us i m m un is (H ag en, 1870) F 3 R H old ich, 1993 Faxo ni us l im os us (R afine sque , 1817) F 4 R U . S . F ish a nd W ild life S er vic e, 2015 Faxo ni us o za rk ae  (W ill ia m s, 1952)   F 2.5 SP Luk ha up a nd P ekn y, 2008 Faxo ni us p la cid us  (H ag en, 1870)   F 3 R Ta ylor , 2003 Faxo ni us r us tic us  (G ira rd , 1852) F 3 SP Luk ha up a nd P ekn y, 2008 Faxo ni us v iri lis (H ag en, 1870) F 3 R H old ich, 1993 La cu nic am ba rus d io gen es (G ira rd , 1852) F 6 RC W al ls, 2009 La cu nic am ba rus l udo vici an us (F axon, 1884) F 3 R , RC W al ls, 2009 Or co ne cte s a us tra lis (R ho ade s, 1941) FC 22 MR , GM Ven ar sk y et a l., 2012 Or co ne cte s i ner m is  C ope , 1872  FC 10 R Ven ar sk y et a l., 2012 Pr oc am ba rus a llen i ( Fa xon, 1884) F 3 R W irbe llos en D at enb ank , 2019d Pr oc am ba rus c la rkii  (G ira rd , 1852)   F 1–4 1 R H une r, 2002 4 GM Scal ic i a nd Ghe ra rd i, 2007 6.6 GM C hucho ll, 2011 Pr oc am bar us er yt hr op s R ely ea & S utt on, 1975 FC 16 MR , S F Str ee ve r, 1996 Pr oc am ba rus h in ei (Or tm ann, 1905)   F 1.5 R W al ls, 2009 Pr oc am ba rus s utt kusi  H ob bs, 1953   F 3 LH Bak er et a l., 2008 Pr oc am bar us via ev iridi s ( Fa xon, 1914)   F 2 SP Luk ha up a nd P ekn y, 2008 Pr oc am ba rus v irg in al is Ly ko , 2017 F 4.4 RC Vo gt , 2010 C amb ar oid id ae Cam bar oid es ja po ni cu s ( D e H aa n, 1841) F 10–11 1 GM K aw ai et a l., 1997 N ep hr op id ae H om ar us a m er ica nus H. M ilne E dw ar ds, 1837 M 33 R W ol ff, 1978 H om ar us g am m ar us (L inn ae us, 1758) M 40 R W ol ff, 1978

(8)

Vo gt Vog t: A c ompil atio n of lo ng ev ity d at a in de Nauplius, 27: 2019011 Table 1. C on t. Sub -/I nf ra or de r Fa mi ly Spe cie s En vir onme nt Li fe sp an (y r) A gein g me thod R efe re nc e 42–72 1 LM She eh y et a l., 1999 N ep hr op s n or ve gic us (L inn ae us, 1758) M 12-15 1 R Be ll et a l., 2006 Pa ra st ac id ae As ta co ide s b etsi leo en sis  Pe tit , 1923 F 15 MR , GM Jone s et a l., 2007 As ta co ide s cr os nier i H ob bs, 1987 F 30 MR , GM Jone s et a l., 2007 As ta co ide s g ra nu lim an us M onod & P et it, 1929 F 25 MR , GM Jone s a nd C oul son, 2006 30 MR , GM Jone s et a l., 2007 As ta co psis go ul di C la rk , 1936 F 26 LH, MR , LR H amr , 1997 60 SP Luk ha up a nd P ekn y, 2008 Ch er ax c us pi da tus  R ie k, 1969   F 8 LM She eh y, 2002 Ch er ax de str uc to r C la rk , 1936   F 6 R Ghe ra rd i et a l., 2010 Ch er ax q ua dr ica rin at us (v on M ar te ns, 1868)  F 5 R Ghe ra rd i et a l., 2010 Eu as ta cus a rm at us (v on M ar te ns, 1866) F 20–28 3 GM G ill ig an et a l., 2007 Ge oc ha rax t as m an icus (E rich son, 1846) F 10 GM H amr a nd R ich ar ds on, 1994 Par an eph rop s pl ani fro ns W hit e, 1842   F 3–5 1 MR , GM Pa rk yn et a l., 2002 Par an eph rop s z ea lan di cu s (W hit e, 1847) F 29 MR , GM W hitmor e a nd H ur yn 1999 Pa ras ta cus br asi lien sis (v on M ar te ns, 1869)   F 6 GM Fon tur a a nd B uck up , 1989 Pa ras ta cus def oss us Fa xon, 1898 F 3.3 GM N or o a nd B uck up , 2009 Ge bi ide a U po geb iid ae U po ge bi a pusi lla  (P et agn a, 1792)  M 3 GM Ke vr ek id is et a l., 1997 4 GM C onide s et a l., 2012 Ache lat a Pal in ur id ae Jas us l al an dii (H. M ilne E dw ar ds, 1837) M 40 SP FA O , 2019 Pa nu lir us a rg us  (L atr ei lle , 1804)   M 20 LM Ma xw el l et a l., 2007 30 MR , GM Ehrh ar dt , 2008 Pa nu lir us c yg nus  Ge or ge , 1962 M 27 LM She eh y, 2002 Pa lin ur us e lep has  (F abr ic ius, 1787)   M 15 R Phi llips a nd M elv ille-Smith, 2006 Pa lin ur us g ilc hr ist i S te bb in g, 1900   M 30 R Phi llips a nd M elv ille-Smith, 2006 Pa lin ur us m au rit an icus Gr uv el , 1911   M 21 R Phi llips a nd M elv ille-Smith, 2006 Anom ur a Ae gl id ae Ae gla fr an ca  Schmitt , 1942   F 2.3 R R och a et a l., 2010 Ae gla it aco lo m ien sis Bond -B uck up & B uck up , 1994  F 2.2–2.5 1 GM Si lv a-Gonçalv es et a l., 2009 Ae gla j ar ai Bond -B uck up & B uck up , 1994 F 2 GM Boos et a l., 2006 Ae gla p au len sis  Schmitt , 1942   F 2.8–3.3 1 GM C ohe n et a l., 2011 Ae gla s tri na tii  Turk ay , 1972   F 2.8 R R och a et a l., 2010 C oe no bit id ae Bir gu s la tro  (L inn ae us, 1767) T 50 GM Fle tche r et a l., 1990 70 MR , GM Dr ew et a l., 2013

(9)

Vo gt Vog t: A c ompil atio n of lo ng ev ity d at a in de ca pod Nauplius, 27: 2019011 Table 1. C on t. Sub -/I nf ra or de r Fa mi ly Spe cie s En vir onme nt Li fe sp an (y r) A gein g me thod R efe re nc e Co en obit a c lyp ea tus (F abr ic ius, 1787) T 42 RC NB C2 N ew s, 2018; A tlas Obs cur a, 2019 Co en obit a p er la tus H. M ilne E dw ar ds, 1837 T 30 R Anim al Div er sit y W eb , 2019a Co en obit a v ar ia bi lis M cC ul loch, 1909  T 20 SP Spe cie s B ank , 2019 Dio ge nid ae Cl ib an ar ius a nt illen sis St imps on, 1859   M 4 GM Tur ra a nd L eit e, 2000 Cl ib an ar ius sc lo pet ar ius (H er bs t, 1796)   M 3.9 GM Tur ra a nd L eit e, 2000 Cl ib an ar ius v itt at us  (Bos c, 1802)   M 3.5 GM Tur ra a nd L eit e, 2000 H ipp id ae Em er ita a na lo ga (S timps on, 1857)  M 3 SF O sór io et a l., 1967 Em er ita br asi lien sis S chmitt , 1935 M 0.6–0.7 1 GM Ve los o a nd C ar dos o, 1999 Em er ita h ol th uisi Sa nk ol li, 1965  M 0.7 SF Anse ll et a l., 1972 Em er ita p or to ricen sis Schmitt , 1935 M 1.1–1.3 1 GM Sas tre , 1991 Em er ita t al po id a (S ay , 1817) M 1–1.8 1 SF Di az , 1980 Lithod id ae Pa ra lit ho de s c am tsc ha tic us (T ile sius, 1815) M 20 RC M ats uur a a nd T ak eshit a, 1990 Pa gur id ae Pa gu rus br ev id ac ty lus (S timps on, 1859)  M 1.5–2 1 GM M an te latto et a l., 2005 Bra ch yu ra Ae thr id ae H ep at us pu di bu nd us (H er bs t, 1785) M 1.9–2.4 1 GM M ia zak i et a l., 2019 C ampt andr iid ae D eir aton ot us k aor ia e M iur a, K aw ane & W ad a, 2007 M 1.5 SF , LH K aw ane et a l., 2012 C ancr id ae Ca ncer i rr or at us  Sa y, 1817   M 8 LH H ine s, 1991 Ca ncer p ag ur us  Linn ae us, 1758   M 9 LM She eh y a nd P rior , 2008 10 LH H ine s, 1991 21 SP BIO TIC , 2019 Ca ncer pr od uc tus  R and al l, 1840 M 4 LH H ine s, 1991 G leb oc ar cin us o re go nen sis  (D an a, 1852) M 5 LH H ine s, 1991 M eta ca rci nus a nt ho ny i ( R athbun, 1897) M 5 LH H ine s, 1991 M eta ca rci nus g ra cil is  (D an a, 1852) M 4 LH H ine s, 1991 M eta ca rci nus m ag ist er (D an a, 1852) M 5 LH H ine s, 1991 10 SP Pa uley et a l., 1989 Rom al eon a nte nn ar iu m (S timps on, 1856) M 7 LH H ine s, 1991 C ar cinid ae Ca rci nus a es tu ar ii N ar do , 1847 M 3 LH Fur ot a e t a l., 1999 Ca rci nus m aen as  (L inn ae us, 1758)  M 4–7 3 R K las se n a nd L ock e, 2007 D or ipp id ae M edo ripp e l an at a (L inn ae us, 1767)   M 1 GM R ossett i et a l., 2006 Ge ca rc inid ae Car di so m a ar m at um H erk lots, 1851  ST, T 12 SP R ade m ache r a nd M en ge do ht , 2011 Car di so m a g uan humi L atr ei lle , 1825 T 20 R W olc ott , 1988 Ge ca rci nus l at er al is  (G ué rin, 1832)   T 10 SP R ade m ache r a nd M en ge do ht , 2011 Ge ca rci nus q ua dr at us  Sa us sur e, 1853   T 10 SP R ade m ache r a nd M en ge do ht , 2011

(10)

Vo gt Vog t: A c ompil atio n of lo ng ev ity d at a in de Nauplius, 27: 2019011 Table 1. C on t. Sub -/I nf ra or de r Fa mi ly Spe cie s En vir onme nt Li fe sp an (y r) A gein g me thod R efe re nc e Ge ca rci nus r ur ico la (L inn ae us, 1758)   T 15 LH H ar tno ll et a l., 2006 Ge ca rco ide a n at al is (P oc ock , 1889) T 20 R Gr ee n, 2004 Ge ca rc in uc id ae Or izo th elp husa ce ylo nen sis (F er na ndo , 1960) F 4 SP R ade m ache r a nd M en ge do ht Pa ra th elp husa m ac ul at a de M an, 1879   F 5 SP R ade m ache r a nd M en ge do ht Pa ra th elp husa p an th er in a (S che nk el , 1902) F 10 SP R ade m ache r a nd M en ge do ht Ge ry onid ae Ch ace on c hi len sis C hir ino -G álv ez & M annin g, 1989 M 20 GM C an ale s a nd A ra na , 2009 Ch ace on m ar ita e ( M annin g & H olth ui s, 1981) M 25 GM , MR M elv ille-Smith, 1989 Ch ace on q ui nq ue den s ( Smith, 1879)   M 30 GM C hut e et a l., 2008 Gr apsid ae Gr ap sus a dscen sio nis (O sbe ck , 1765)   M 0.5–1 1 R H ar tno ll, 2009 Pa ch yg ra ps us cr assip es R and al l, 1840 M 2.7 SF , LH H ia tt, 1948 H yme nos om at id ae Am ar in us l aev is (T ar gioni -T oz ze tti , 1877)   F, B 1 R Lucas, 1980 Am ar in us l ac us tris  (C hi lton, 1882) F, B 2 R , RC Lucas, 1980 Am ar in us p ar al ac us tris (L ucas, 1970)   F, B 2 R , RC Lucas, 1980 El am en op sis l in ea ta A . M ilne-Edw ar ds, 1873 M 1.5 R M cL ay , 2015 H al ica rci nus co okii  Fi lho l, 1885   M 1.5 LH Va n de n B rink , 2006 H al ica rci nus p la na tus (F abr ic ius, 1775)  M 1.8 LH Vin ue sa a nd F er ra ri, 2008 3 R M cL ay , 2015 4 SF , LH Diez a nd L ov rich, 2013 H al ica rci nus q uoy i ( H. M ilne E dw ar ds, 1853) M 1.5 R M cL ay , 2015 H al ica rci nus v ar ius  (D an a, 1851)   M 1.5 R M cL ay , 2015 H ym en oso m a o rbic ul ar e D es m ar es t, 1823   M 1.5 R M cL ay , 2015 Li m no pi lo s n aiy an etr i C hua ng & N g, 1991 F 2 SP R ade m ache r a nd M en ge do ht Lu casci nus co ra lico la (R athbun, 1909) M 1 RC , LH Ga o et a l., 1994 N eo rh yn ch op lax k em pi (C hopr a & D as, 1930) M , B 0.5–0.9 2 SF , LH Al i et a l., 1995 Rh yn ch op lax m esso r S timps on, 1858  M 1 LH G ao a nd W at an abe , 1998 In achid ae In ac hus do rsett en sis (P enn an t, 1777)   M 3 RC , GM H ar tno ll a nd B rya nt , 2001 In acho id id ae Py ro ma ia tu be rc ul ata (L ock in gt on, 1877)   M 0.4–0.7 2 LH Fur ot a, 1996 M acr op hth almid ae M acr op ht ha lm us b anza i W ad a & S ak ai , 1989   M 1.6–2.5 3 SF , LH H enmi , 1993 M ajid ae M aj a sq ui na do  (H er bs t, 1788) M 7 GM Le F ol l, 1993 M ithr ac id ae M ag ui m ith rax s pi no sissi m us (L am ar ck , 1818) M 1 R M cL ay , 2015 O cy pod id ae Aus tru ca l ac tea  (D e H aa n, 1835) M , B 7 LH Ya m ag uchi , 2002 Lep tu ca c um ul an ta  (C ra ne , 1943) M , B 0.7 GM Koch et a l., 2005 M in uc a pu gn ax  (S mith, 1870)   M , B 4.5 R M cL ay , 2015

(11)

Vo gt Vog t: A c ompil atio n of lo ng ev ity d at a in de ca pod Nauplius, 27: 2019011 Table 1. C on t. Sub -/I nf ra or de r Fa mi ly Spe cie s En vir onme nt Li fe sp an (y r) A gein g me thod R efe re nc e M in uc a r ap ax  (S mith, 1870) M . B 1.4 GM Koch et a l., 2005 2.5 R Ta ddei et a l., 2010 M in uca vo cator  (H er bs t, 1804)   M , B 1.1 GM Koch et a l., 2005 Oc yp od e quadr at a (F abr ic ius, 1787)   M , B 3 SP Anim al Div er sit y W eb , 2019b U ca m ar ac oani  (L atr ei lle , 1802)  M , B 1.2–1.5 1 GM Koch et a l., 2005 U cide s co rd at us  (L inn ae us, 1763) M , B 8.3–9.2 1 GM Pinheir o a nd T addei , 2005 15.7–17.6 1 GM C os ta et a l., 2014 Or eg oni id ae Ch io no ecet es b ai rd i R athbun, 1924  M 4.2 RS Er ns t et a l., 2005 12 GM D on ald son et a l., 1981 Ch io no ecet es o pi lio (O . F abr ic ius, 1788)  M 6.9 RS Er ns t et a l., 2005 7.7 MR Fo nse ca et a l., 2008 H yas co ar cta tus  Le ach, 1815   M 1.5–2 1 RC , LH H ar tno ll a nd B rya nt , 2001 Pinnothe rid ae Disso da ct ylus m ell ita e ( R athbun, 1900)   M 1.2 SF , LH Be ll a nd S ta nc yk , 1983 Pi nn ot her es pis um (L inn ae us, 1767)  M 3 RC Be rne r, 1952 Pi nn ot her es tsi ng ta oen sis S he n, 1932  M 2 SF , LH Soon g, 1997 Za op s o str eus  (S ay , 1817) M 1–3 1 RC , LH C hr ist en se n a nd M cD er mott , 1958 Por tunid ae Ca lli ne cte s d an ae  Smith, 1869   M 2.4–3.3 1 GM Shino zak i-M ende s et a l., 2012 Ca lli ne cte s sa pi dus  R athbun, 1896   M 8 GM , MR R ug olo et a l., 1998 Cha ry bd is b ima cul ata (M ie rs, 1886) M 1.5 GM Do i et a l., 2008 Ch ar yb di s j apo ni ca (A . M ilne-Edw ar ds, 1861)   M 4 R Do i et a l., 2008 Ch ar yb di s smi thi i M acL ea y, 1838   M 1 R Do i et a l., 2008 Po rt un us p ela gic us (L inn ae us, 1758) M 2 LH D e L est an g et a l., 2003 Po rt un us tr itu ber cu la tus (M ie rs, 1876)   M 2 LH, R C Ar iya m a, 1992 Sc yll a o liv ace (H er bs t, 1796) M , B 3.5–3.9 1 GM Vi sw ana tha n et a l., 2016 Pot amid ae Po ta m on fl uv iati le  (H er bs t, 1785) F 8.6–14.3 3 GM Scal ic i et a l., 2008b Pot amon aut id ae Li be ron aute s l ati da ct ylu s ( de M an, 1903) F 6 R C umbe rlid ge , 1999 Po ta m on au tes l irr an gen sis (R athbun, 1904) F 10 SP R ade m ache r a nd M en ge do ht , 2011 Ps eudothe lp husid ae Ro dr igu ez us gar m ani (R athbun, 1898) F 3 RC , LH R ost ant et a l., 2008 Se sa rm ida e Ar at us piso nii (H. M ilne E dw ar ds, 1837) ST 2 SF , LH Le me (2002) 4.5–6 3 LH C onde et a l., 2000 Ge ose sa rm a bico lo r N g & D av ie , 1995   ST 2 SP R ade m ache r a nd M en ge do ht , 2011 Ge ose sa rm a kr at hi ng N g & N aiya ne tr, 1992 T 2 SP R ade m ache r a nd M en ge do ht , 2011 G eo se sar m a n ot oph or um N g & T an, 1995  T 2 SP R ade m ache r a nd M en ge do ht , 2011

(12)

Vo gt Vog t: A c ompil atio n of lo ng ev ity d at a in de Nauplius, 27: 2019011 Table 1. C on t. Sub -/I nf ra or de r Fa mi ly Spe cie s En vir onme nt Li fe sp an (y r) A gein g me thod R efe re nc e Gu in ea rm a h uza rd i ( D es m ar es t, 1825) T 8 SP R ade m ache r a nd M en ge do ht M etase sa rm a a ubr yi (A . M ilne-Edw ar ds, 1869)  T 4 SP R ade m ache r a nd M en ge do ht M etase sa rm a o be su (D an a, 1851)   T 3 SP R ade m ache r a nd M en ge do ht N eo sa rm at iu m m ein er ti (de M an, 1887)   ST 7 SP R ade m ache r a nd M en ge do ht Pa rase sa rm a eu m ol pe (D e M an, 1895) ST 3 SP R ade m ache r a nd M en ge do ht Pseu do se sa rm a b oco ur ti (A . M ilne-Edw ar ds, 1869)   ST 5 SP R ade m ache r a nd M en ge do ht Pseu do se sa rm a cr assi m an um (D e M an, 1888)   ST 5 SP R ade m ache r a nd M en ge do ht Pseu do se sa rm a m oe sch ii (D e M an, 1892)  ST 5 SP R ade m ache r a nd M en ge do ht Se sa rm op s i nt er m ed ius (D e H aa n, 1835)   ST 5 SP R ade m ache r a nd M en ge do ht Se sa rm a j ar visi  R athbun, 1914  T 5 LH Die se l a nd H or st 1995 Tr ichod act yl id ae Di lo ca rci nus p agei  St imps on, 1861 F 2.4–2.7 1 GM Pinheir o et a l., 2005 4–4.5 1 GM Ta ddei a nd H er re ra , 2010 Va runid ae Er io ch eir j ap on ica (D e H aa n, 1835)   F, B 4.4 RC Ko ba yashi , 2012 Er io ch eir si nen sis H. M ilne E dw ar ds, 1853 F, B 1 LH Jin et a l., 2002 5 R H er bor g et a l., 2003 H em igr ap sus cr en ul at us (H. M ilne E dw ar ds, 1837) M 5 LH C la rk , 1987 N eo he lice g ra nu la ta  (D an a, 1851) M , B 2 GM Ba rc elos et a l., 2007 4 .1 GM Lu pp i et a l., 2004 X an thid ae Xa nt ho p or essa  (Ol iv i, 1792)   M 1–2 1 SF , LH Sp iv ak et a l., 2010 Lon ge vit y fi gur es a re m ax im um v alue s g iv en in c ite d r efe re nc es . R an ge s in lon ge vit y c olumn a re d iffe re nc es be tw ee n s exe s 1, s umme r a nd w in te r g ene ra tion s 2, a nd h ab ita ts 3. S pe and h ab ita ts a re a cc or din g t o the W orld R eg ist er of M ar ine S pe cie s. S ome spe cie s, e.g ., f rom the O cy pod id ae ( C ra ne , 1975; Th ur m an et a l., 2013), H yme nos om at id ae a nd V ar in a br oa d r an ge of s al init ie s, w hich i s c on side re d in c olumn 4 b y usin g the a bbr ev ia tion s M , B a nd F , B . A bbr ev ia tion s: B , br ack ish w at er ; F , f re sh w at er ; F C , f re sh w at er ca ve; GM mode l b as ed on si ze-fre que nc y d istr ibut ion a nd r epr oduct iv e p ar ame te rs; LH, l ife hi stor y a nalysi s; L M , l ipof us cin me thod ; M , m ar ine; MR , m ark -re ca ptur e me thod ; R , r ev ie RC , r ea rin g in ca pt iv ity; R S, r ad iome tr y of she ll; S F, si ze-fre que nc y d istr ibut ion a nalysi s; S P, d at a f rom spe cie s pr ofi le; S T, s emit er re str ial ; T , t er re str ial .

(13)

13

Diagramação e XML SciELO Publishing Schema: www.editoraletra1.com

Nauplius, 27: e2019011

Table 2. Comparison of longevities between higher taxa.

No. of species with longevity data Longevity range(yr)* Mean (yr) ± SDand CV (%)

Dendrobranchiata 29 of 540 0.1-9 2.13±1.61; 75.6 Caridea 43 of 3,268 0.5-18 4.19±4.05; 96.7 Astacidea 54 of 653 1.5-72 11.00±13.80; 125.5 Gebiidea 1 of 192 4-4 4.00±0.00; 0.0 Achelata 6 of 140 15-40 27.17±8.56; 31.5 Anomura 19 of 2,451 0.7-70 11.34±18.28; 161.2 Brachyura 92 of 6,559 0.7-30 5.59±5.75; 102.9 Decapoda 244 of 14,335 0.1-72 7.12±10.18; 142.9

* Based on reported maximum values of species. CV=coefficient of variation. No reliable data were found for the 69 Stenopodidea,

2 Glypheidea, 423 Axiidea and 38 Polychelida. Species numbers of decapod groups are from De Grave et al., 2009

(CV=125.5%) in the Astacidea, and 15–40 years

(CV=31.5%) in the Achelata (

Table 2

). There are

also marked differences within the same family or

genus. Examples are the Cambaridae with life spans of

1.2–22 years and the genus

Procambarus with life spans

of 1.5–16 years (

Table 1

). These differences may be

the result of the evolution of different life histories and

life styles and spreading into different environments.

Longevity differences between marine, freshwater and

terrestrial environments

Longevity is on average lowest in the sea and brackish

water (6.0 years, n=132), intermediate in fresh water (7.2

years, n=88) and highest in semiterrestrial and terrestrial

environments (13.0 years, n=24) (

Fig. 2

). The difference

between marine and freshwater environments is partly

due to the fact that the shorter-lived Dendrobranchiata

have not invaded freshwater habitats. Longevity

promoting environments are obviously the deep

sea, polar waters, freshwater caves and the land. For

example, the deep sea shrimps

Aristeus antennatus and

Aristaeomorpha foliacea have the highest life spans of all

investigated Dendrobranchiata and the polar caridean

shrimps

Notocrangon antarcticus and Sclerocrangon boreas

live much longer than crangonids from warmer waters

(

Table 1

). The cave-dwelling shrimp

Palaemonias ganteri

and crayfish

Orconectes australis live much longer than

their epigean relatives, and the terrestrial anomurans

have considerably higher life spans than their marine

and freshwater relatives (

Table 1

).

Particularly long-lived species

Species that live for several decades are found in

distantly related families like the achelatan Palinuridae

(spiny lobsters), astacidean Nephropidae (clawed

lobsters) and Parastacidae (southern hemisphere

crayfish), anomuran Coenobitidae (hermit and coconut

crabs), and brachyuran Menippidae and Inachidae.

Examples of the first four families are found in Table 1.

Examples of the latter two families are the Tasmanian

giant crab

Pseudocarcinus gigas (Lamarck, 1818) and

the giant Japanese spider crab

Macrocheira kaempferi

(Temminck, 1836). The ability of these species to

live for many decades and even more than 100 years

was deduced from their exceptionally large size (

e.g.,

Homarus americanus and Macrocheira kaempferi), slow

Figure 1. Longevity spectrum of the Decapoda. More than half

of the 244 investigated species have life spans below 5 years. Approximately 20% of species live longer than 10 years and less than 10% reach ages above 20 years.

(14)

14

Diagramação e XML SciELO Publishing Schema: www.editoraletra1.com

Nauplius, 27: e2019011

gigas and Astacopsis gouldi), and phases of zero and

negative growth at high age (

e.g., Birgus latro) (Wolf,

1978; Hamr, 1997; Gardner

et al., 2002; Drew et al.,

2013)

. For example, the intermoult duration in adult

Pseudocarcinus gigas is about 9 years (Gardner et al., 2002)

and the average age at maturity in the giant Tasmanian

freshwater crayfish

Astacopsis gouldi is approximately 9

years in males and 14 years in females (Hamr, 1997).

d

isCussion

The present list of life spans in decapod crustaceans

was compiled to provide a first data base for interested

carcinologists. Since longevity is an important parameter

in ecology, fisheries and conservation (Hartnoll, 2001;

Cailliet and Andrews, 2008) it may help researchers in

these fields with information and literature. I am aware

that the compiled data are quite heterogeneous since

they were obtained with different ageing methods but

having data of diverse quality is better than having

no data. The list includes only data obtained with

established methods of age determination such as

rearing in captivity, mark-recapture method, growth

models and the lipofuscin method (Hartnoll, 2001;

Vogt, 2012). Data obtained by growth band counts

of hard structures that are thought to perist during

moulting were not considered because this issue is

still controversially discussed (Kilada and Driscoll,

2017; Becker

et al., 2018). Future research must show,

whether this approach will be a breakthrough in ageing

of decapods or a wrong path.

The Decapoda include almost 15,000 species that

differ greatly in body size, life history and ecology (De

Grave

et al., 2009). Almost 80% live in the sea or brackish

water, about 20% in freshwater and less than 1% on land.

The highest percentage of longevity data is available for

the terrestrial species followed by freshwater species.

Analysis of the longevity data of 244 species revealed an

exceptionally broad range of life spans in the Decapoda

when compared to other animal groups and differences

between higher taxa and environments.

Longevity in the Decapoda ranges from 0.1 to about

70 years, corresponding to a 700 fold difference. The

shortest-lived decapods are planktonic shrimps and the

longest-lived decapods are clawed lobsters. In insects,

the closest relatives of crustaceans, life span varies from

termites (Thorne

et al., 2002). In bivalves, the longevity

range is 1–374 years (Abele

et al., 2009), in fishes 1–152

years, in amphibians 1.8–55 years, in reptiles 1–153

years, in birds 1.5–73 years, and in mammals 1–122

years (Carey and Judge, 2000).

Longevity in decapods apparently depends

on taxonomic affiliation. The plesiomorphic

Dendrobranchiata have the smallest average live span.

They usually live less than 2 years with the exception

of some deep-sea representatives. The infraorder with

the highest percentage of long-lived species is probably

the Achelata, which include slipper lobsters and rock

lobsters. However, the coefficient of variation for life

spans is high in all infraorders, mostly exceeding 100%.

This data indicates that longevity was subject to intense

evolution in all infraorders of the Decapoda.

The present compilation of data also shows that

longevity is dependent on the environment. Terrestrial

species live on average longer than freshwater species,

and freshwater species live longer than marine species.

In an earlier paper, I have presented examples on

the positive correlation of life span and latitude and

examples on longevity differences between diverse

habitats of the same geographical region (Vogt, 2012).

The deep sea, cold polar waters and nutrient-poor cave

environments seem to prolong life spans.

It was not my aim to correlate longevity with body

size but there is a general tendency that bigger species

have long life spans. For example, freshwater crayfish,

lobsters, slipper lobsters and some large brachyuran

crabs have life spans of decades, whereas small species

from these groups life only for 1–2 years. However,

there are also some contradictory examples like the

shrimps of the genus

Penaeus that reach sizes of more

than 30 cm but live only for about 2 years.

The present database gives no information about

which method of age determination is the most

appropriate one, because studies that have analysed

the same population with more than one ageing

technique are scarce. For example, in the shrimp

Xiphocaris elongata from a Puerto Rican headwater

stream longevity was estimated to 11 years by a growth

model but recapture of an earlier marked specimen

revealed an age of 18 years (Cross

et al., 2008).

There is a certain probability that, due to indeterminate

growth, some exceptionally large specimens of the

long-lived species may become centenarians. However,

(15)

15

Diagramação e XML SciELO Publishing Schema: www.editoraletra1.com

Nauplius, 27: e2019011

Figure 2. Comparison of longevities between marine, freshwater and terrestrial environments. The percentage of life spans ≥5 years

increases markedly from marine to freshwater to terrestrial species. Brackish water species are included in the marine group.

validation would require long-term rearing in captivity

over several generations of researchers or recapture of

marked specimens in the distant future. Both approaches

are principally possible but I doubt if there are scientists

who engage in such long-term tasks.

r

eferenCes

Abele, D.; Brey, T. and Philipp, E. 2009. Bivalve models of aging

and the determination of molluscan lifespans. Experimental

Gerontology, 44: 307–315.

Ahamed, F. and Ohtomi, J. 2012. Growth patterns and longevity of

the pandalid shrimp Plesionika izumiae (Decapoda: Caridea).

Journal of Crustacean Biology, 32: 733–740.

Ali, M.H.; Salman, S.D. and Al-Adhub, A.J. 1995. Population

dynamics of the hymenosomatid crab Elamenopsis kempi in

a brackish subtidal region of Basrah, Iraq. Scientia Marina,

59: 1–13.

Alon, N.C. and Stancyk, S.E. 1982. Variation in life-history patterns

of the grass shrimp Palaemonetes pugio in two South Carolina

estuarine systems. Marine Biology, 68: 265–276.

Amin, S.M.N.; Arshad, A.; Siraj, S.S.; Sidik, B.J. and Rahman, M.A. 2012. Population biology and stock status of planktonic

shrimp Acetes indicus (Decapoda: Sergestidae) in the coastal

waters of Malacca, Peninsular, Malaysia. Aquatic Ecosystem

Health & Management, 15: 294–302.

Anantha, C.S.; Bhaskar, N.; Shanbhogue, S.L.; Raghunath, B.S. and Raju, C.V. 1997. Age and growth of the shrimp Parapenaeopsis stylifera (Decapoda/Crustacea) from Mangalore, west coast

of India. Indian Journal of Marine Sciences, 26: 221–223.

Animal Diversity Web. 2019a. Coenobita perlatus. Available at https://animaldiversity.org/accounts/Coenobita_perlatus/. Accessed on 5 March 2019.

Animal Diversity Web. 2019b. Ocypode quadrata: Atlantic ghost

crab. Available at https://animaldiversity.org/accounts/ Ocypode_quadrata/. Accessed on 23 March 2019.

Ansell, A.D.; Sivadas, P.; Narayanan, B. and Trevallion, A. 1972. The ecology of two sandy beaches in south west India. II.

Notes on Emerita holthuisi. Marine Biology, 17: 311–317.

Ariyama, H. 1992. Molting and growth of the swimming crab

Portunus (Portunus) trituberculatus reared in the laboratory. Nippon Suisan Gakkaishi, 58: 1799–1805.

Atlas Obscura. 2019. The 40-year-old hermit crab. Available at https://www.atlasobscura.com/articles/the-40yearold-hermit-crab. Accessed on 5 March 2019.

Baker, A.M.; Stewart, P.M. and Simon, T.P. 2008. Life history study of Procambarus suttkusi in Southeastern Alabama. Journal of Crustacean Biology, 28: 451–460.

Baldwin, A.P. and Bauer, R.T. 2003. Growth, survivorship,

life-span, and sex change in the hermaphroditic shrimp Lysmata

wurdemanni (Decapoda: Caridea: Hippolytidae). Marine Biology, 143: 157–166.

Barcelos, D.F.; Castiglioni, D.S.; Barutot, R.A. and Santos, S.

2007. Crescimento de Chasmagnathus granulatus (Crustacea,

Decapoda, Varunidae) na Lagoa do Peixe, Rio Grande do Sul,

Brasil. Inheringia, Serie Zoologia, 97: 263–267.

Bauer, R.T. 2004. Remarkable shrimps: adaptations and natural history of the carideans. Norman, University of Oklahoma Press, 316p.

Beck, J.T. and Cowell, B.C. 1976. Life history and ecology of the

freshwater caridean shrimp, Palaemonetes paludosus (Gibbes).

Referências

Documentos relacionados

For data obtained from nearly all types of genetic analysis, large arrays of statistical methods are available for determining population-level genetic variation,

Data from 1976 to 2010 were used for the analysis of the landed broadband anchovy production, while monthly production and abundance index analysis were obtained from 1998- 2010

We have gathered data from three different sources: 1) the majority of the new data were obtained from studies on Chironomidae in the State of São Paulo, within the project

Based on this background, this study aimed to compare hydrographically conditioned digital elevation models generated from sensor data VNIR (Visible and Near Infrared) of

Abstract An innovative methodological approach based on XRF measurements using a polychromatic X-ray beam combined with simulation tests based on an ultra-fast custom-made Monte

In this study we performed a retrospective analysis of all patients with age ≤18 years presenting with chronic recurrent or non-recurrent sacrococcygeal pilonidal sinus

Based on oxygen and carbon isotope ratio data from the early Oligocene to late Miocene of drill-hole PEL-2A, it was possible to recognize paleotemperature trends and variations