• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número5"

Copied!
8
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Yeast

extract

elicitation

increases

vinblastine

and

vincristine

yield

in

protoplast

derived

tissues

and

plantlets

in

Catharanthus

roseus

Mehpara

Maqsood,

Mujib

Abdul

JamiaHamdard,HamdardNagar,NewDelhi,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17January2017 Accepted23May2017 Availableonline29July2017

Keywords: Embryogeniccallus Elicitor

Protoplastisolation Vinblastine Vincristine Yeastextract

a

b

s

t

r

a

c

t

Catharanthusroseus(L.)G.Don,Apocynaceae,isanimmenselyimportantmedicinalplant,producesa varietyofanticancerouscompounds.Theyieldoftwomostinvestigatedalkaloidsvinblastineand vin-cristineisunfortunatelyverylow.Avastarrayoftechnologiesincludingelicitationhaverecentlybeen usedtoenrichCatharanthusalkaloidinculture.Yeastextractisabioticelicitor,thepolysaccharideand thepeptidemoietyhavebeenrecognizedasasignallingelementinenrichingsecondarymetabolites.In thisstudy,theyeastextractelicitationonvinblastineandvincristinewasstudiedinvariousprotoplast derivedtissuesandplantlets.Fourdifferentyeastextracttreatments(T1=0.5g/l,T2=1.0g/l,T3=1.5g/l andT4=2.0g/l)werepreparedandused.Thealkaloidwasquantifiedandacomparativeaccountofyield werepresentedbytheuseofHighperformancethinlayerchromatography.Theyeastextractamendment inmediumimprovedvinblastineandvincristineyieldincultivatingtissues,maximumbeingin germinat-ingembryosandininvitroraisedleaf.ThehighestyieldwasinT3(1.5mg/l)inwhich22.74%vinblastine and48.49%vincristineenrichmentwasnotedingerminatingembryos;theenhancementwashowever, treatment-specific.Antioxidantenzymessuchassuperoxidedismutase,catalase,ascorbateperoxidase andglutathionereductaseactivitieswereinvestigatedasadditionofyeastextractcausedcellularstress andhadenrichedlevelofalkaloids.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Catharanthusroseus(L.)G.Don(Madagascarperiwinkle)belongs tothefamilyApocynaceae.Itisanimportantmedicinalplantand it contains a wide variety of anti-cancerousalkaloids (Van Der Heijdenetal.,2004;Mujibetal.,2012).Amongthose,vinblastine (VB)andvincristine(VC)arethemostimportantdrugs(Moreno, 1995)andthesetwoalkaloidsareusedasatherapeuticagentto treatagainstanumberofcancers(Mukherjeeetal.,2001).Thelow yieldofalkaloidsinplanthasencouragedresearcherstoexplore otheralternativeproduction methods byusinginvitro cultures (Verpoorteetal.,2002;Nazetal.,2015),metabolicengineering (DeLucaandStPierre,2000),semi-synthesis(Kutneyetal.,1991) or even total chemical synthesis (Kuboyama et al.,2004).In C. roseus,varioussemi-syntheticproceduresweredevelopedbyusing chemicalsandenzymaticcouplingofcommerciallyavailable catha-ranthineandvindoline(Goodbodyetal.,1988;Morenoetal.,1995). In recent years, various culturalpractices such asoptimization ofculturemedia,selection ofhighalkaloid producingcelllines,

Correspondingauthor.

E-mail:amujib@jamiahamdard.ac.in(M.Abdul).

precursor feeding,bioconversionand metabolicengineeringare successfullyutilizedforenrichingalkaloidsincultivatedcells(Van DerHeijdenetal.,2004;ZarateandVerpoorte,2007;Mujibetal., 2012;TeixeiradaSilvaandDobranszki,2016).Ithasearlierbeen notedthatanexogenousamendmentofspecificgroupsof com-pounds tomedium drasticallyincreasedthe yieldof secondary metabolites(Ibrahimetal.,2009;Murthyetal.,2014).These exter-naltriggersarebioticandabioticinnature;inthebiotictypesthe microbial extractssuchas Pythium,Botrytis, Phytophthora, Pseu-domonas and Aspergillus are observed to be very effective in a varietyofcellculturesincludingC.roseus(Valluri,2009;Mustafa etal.,2009;Diptietal.,2016).

Yeastextract(YE)isanimportantelicitorandisfoundtoberich invitaminB-complex.Italsocontainsessentialcomponentslike chitin, N-acetyl-glucosamineoligomers, ␤-glucan, glycopeptides andergosterol(Boller,1995);thesecompoundselicitplantdefense responsesbytriggeringmetabolitesynthesis(Putalunetal.,2007; Caietal.,2012).Inotherculturalexperiments,complexbiological preparationshave alsobeenusedaselicitorswhere the molec-ularstructure of active compound isnot fully known(Radman etal.,2003;Zubeketal.,2012).TheadditionofYEhassuccessfully beenusedincultureandoverproductionofimportant phytocom-poundwasobservedinseveralstudiedplantgenera(Prakashand

http://dx.doi.org/10.1016/j.bjp.2017.05.008

(2)

Srivastava, 2008;Zhao et al., 2010;Cai et al.,2012).The addi-tionof external compounds causesstress in cultivating tissues andimprovesalkaloidbiosynthesis(Elmaghrabietal.,2013;Samar etal.,2015;Diptietal.,2016).Inducedstresshasbeenmeasured bystudyingantioxidantenzymesactivityandotherstressmarkers inculturedtissuesthatoverproduceimportantphyto-compounds (Feher,2015).InthispresentarticleofC.roseus,wetherefore exam-inedtheroleofYEonVBandVCyieldoncultivatedtissues/plants developedfromprotoplast.

Materialandmethods

Plantmaterial

Catharanthusroseus(L.)G.Don,Apocynaceae,seedswere col-lectedfromherbalgarden,HamdardUniversity,NewDelhi, and wasidentifiedby taxonomist(Dr.M.P. Sharma),Department of Botany;thespecimenwasdepositedinDepartmentalarchivefor futurereference.Theseedsweresurface-sterilizedwith0.1%(w/v) HgCl2for2min,rinsedfour-timeswithsterilizeddouble-distilled waterandwereplacedinaconicalflaskcontaining50mlofMS medium(MurashigeandSkoog,1962)withoutorganiccompounds andplant growthregulators(PGR).The seedsweregerminated andtheseedlingsweregrownfor3weeks.Variousexplants(e.g., hypocotyls,leavesandnodalsegments)wereexcisedandcultured onsameMS,amendedwithvariousPGRforcallus/embryogenic induction.Thedetailedprocedurewasdescribedpreviously(Junaid etal.,2006)and wasfollowed.ThemediumpHwaskeptat5.7 beforesterilizationat121◦Ctemperature.Thecultureswerekept inanincubationroomwith25±2◦Cand16-hphotoperiodregime providedbycoolwhitefluorescenttubes(100␮molm−2s−1).

Protoplastisolationandculture

Protoplastswereisolatedfrom4-day-oldembryogenic suspen-sion.Suspended cells (0.5gfresh weight) were incubatedwith 10mlof enzymesolutioncontaining2% cellulase,1% pectinase, 0.02%(w/v)macerozyme(SigmaAldrich)and0.5%(w/v)driselase (SigmaAldrich)alongwithCaCl2·2H2Oandsorbitol.Themixture waslaterincubated onarotary shaker(50rpm)for 12hunder constantlightconditions at25◦C forliberating protoplasts. Iso-latedprotoplastswereculturedinliquidmediumatadensityof 5×105protoplasts/ml.Protoplastswerepouredintoaconicalflask

containing25ml MS liquidmedium amended withPGR, which

facilitatedprotoplastdivision.

Micro-colony,callus,embryoformationfromprotoplasts

Suspended protoplasts were cultured on medium

supple-mented with appropriate PGR concentrations, i.e. 0.25mg/l l-naphthaleneacetic acid (NAA), 0.50mg/l NAA, 0.25mg/l

2,4-dichlorophenoxyaceticacid(2,4-D),0.50mg/l2,4-D,and combina-tionof0.25mg/lNAA+0.25mg/l2,4-D,0.50mg/lNAA+0.50mg/l 2,4-Dfordevelopingmicrocolonies.Theinducedcolonies trans-formedintocallus,whichlaterconvertedintoembryogeniccallus. The embryogenic calli were placed on MS, added with 1mg/l NAA+1.5mg/l 6-benzylaminopurine (BA) for differentiation of embryos. Later, protoplasts-derived embryos were cultured in optimizedgibberellicacid(GA3)amendedmedium(1.5mg/l)for embryomaturationandsubsequentgermination/plantrecovery. Theculturedtissuesweresubculturedregularlyatanintervalof4 weeks,unlessmentionedotherwise.

Elicitortreatment

VariousinvitrogrowntissuesweresubjecttoYEtreatments. Four different concentrations of YE (Merck, India) were pre-pared and were designated as: T1=0.5g/l, T2=1g/l, T3=1.5g/l andT4=2g/l.The abovedesignateddoses ofYEwereamended toMSfollowing Darshanieetal.method(1991).AfterYE addi-tion,thepHwasmaintainedat5.7andthemediumwassterilized at15lb(121◦C).Theyieldofalkaloidwasmeasuredatdifferent tissues/embryos,andplantletsoriginatedfromprotoplasts.

QuantificationofVBandVCusinghighperformancethinlayer chromatography

Extraction

TheVBandVCcontentsweremeasuredindifferenttissuesusing standardVBandVC,procuredfromSigma-Aldrich(St.Louis,MO, USA).Select tissues(25 weeksold)were culturedin optimized mediaand wereharvested whenthetissues wereattheirbest growth.Tissuesample(onegram[g],dryweight)wasrefluxedin 30mlofmethanolforabout5–6handtherecoveredsupernatant washeatedat60◦Cuntilthevolumereducedto1–2ml.

Preparationofstocksolutionandcalibrationcurve

OnemgofVBandVCwasdissolvedin1mlofmethanoltomake astocksolutionofconcentration1mgml−1.Fromstocksolution, differentdilutionsweremade(minimumfive)toobtain200,400, 600,800and1000␮gperbandofstandardandanalyzed indepen-dentlybyHPTLC.Standardcurvewasplottedbetweenpeakarea (y-axis)andconcentration(x-axis).

HPTLCandquantificationindifferentsamples

Pre-coatedThinLayerChromatography(TLC)Aluminiumsheets (20×10cm)withSilicagel(60F254,Merck)wereusedas station-aryphase.Themobilephasewasfreshlyprepared,consistingof toluene,carbinol,acetoneandammoniaintheratioof40:20:80:2. Sampleswereappliedbythehelpof100␮lmicrosyringe(CAMAG) usingLinomat3(CAMAG)applicator.Aftertheapplicationof sam-ples,thesilicaplateswereairdriedfor10–15minandplacedina developingchamber(TwinthroughChamberCAMAG20×10cm) containingmobile phase. Solventsystemwas allowedtomove upwardsupto85mm.Theplatewasremovedfromthechamber and air dried again for 10–20min. Silica gel plates were

doc-umented by using the Reprostar (CAMAG) in the presence of

UV-light.StationaryphasealongwiththeVBandVCwasscanned byusingtheScanner3(CAMAG).VBwasscannedat280nmand theVCwasscannedat300nm.Alkaloidcontentwasmeasuredas ␮gg−1dryweightbasis.ThepeakofVBandVCwasfixedandthe detectionofthesamealkaloidsinthesampleswascomparedwith thepeaksofstandard.

Antioxidantenzymaticactivity

Freshplantmaterialwashomogenizedin2mlof0.1M com-monextractionbuffer(pH7.5,0.1MK-phosphate,0.5mMEDTA, 1.0mMascorbicacid)andcentrifugedat8608.6×gfor20minat 4◦C.Supernatant(enzymeextract)wastakenforenzymeanalysis andtheactivityofenzymeswasexpressedinEnzymeUnit(EU) mg−1proteinmin−1.

Catalase

(3)

0.1mlH2O2.Thereactionwasrunfor3min.Theenzyme activ-itywasexpressedinEUmg−1proteinmin−1.Oneunitofenzyme determinestheamountnecessarytodecompose1␮molofH2O2 permin.CATactivitywascalculatedbyusingtheco-efficientof absorbance0.036mM−1cm−1.

Superoxidedismutase

ThemethodofDhindsaetal.(1981)wasfollowedwithslight modificationtoestimatesuperoxidedismutase (SOD)activities. Embryos(0.1g) atdifferentdevelopmentalstageswere homog-enized in 2ml of extraction mixture containing 0.5M sodium phosphatebuffer(pH7.3),3mMEDTA,1.0%(w/v) polyvinylpyrolli-done(PVP),1.0%(v/v)TritonX-100,andcentrifugedat8608.6×gat 4◦C.TheSODactivityinthesupernatantwasassayedbyitsability toinhibitthephoto-chemicalreduction.Theassaymixture consist-ingof1.5mlreactionbuffer,0.2mlmethionine,0.1mlofenzyme extractwithequalvolumeof1MNaCO3and2.25mMNitroBlue Tetrazolium(NBT)solution,3mMEDTA,riboflavin,1mlof Milli-poreH2Owastakenintest tubesandincubatedunderlightfor 10min at25◦C. A 50% reduction in colour is oneunit and the enzymeactivitywasexpressedinEUmg−1proteinmin−1.

Ascorbateperoxidase

ThemethoddevelopedbyNakanoandAsada(1981)wasused todeterminetheactivityofascorbateperoxidase(APX).The reac-tionmixturecontained1mlof0.1Msodiumbuffer(pH7.2),0.1ml of EDTAand 0.1ml of tissue extract. Ascorbatewasadded and thereactionwasrunfor3minat25◦C.Ascorbateoxidationwas monitoredspectrophotometrically at 290nm by a reduction of absorbanceandusingtheabsorptioncoefficientof2.8mM−1cm−1. TheactivityofAPXwasexpressedinEUmg−1proteinmin−1.One unitof enzymeistheamountnecessarytodecompose1␮mof ascorbatepermin.

Glutathionereductase

Theglutathionereductase(GR)activitywasdeterminedbythe methodofFoyerand Halliwell(1976). Theenzymeextractwas rapidlyassayed for theGR activity bytaking 0.1ml of enzyme extractand1mlofreactionbuffer(Tris0.1M/pH7.0,to100ml ofTris0.2mMNADPHand0.5mMGSSGwasadded).Thereaction wasrunfor3minat25◦C.TheGRactivitywascalculatedbyusing theco-efficientofabsorbance6.22mM−1cm−1.TheGRactivitywas determinedthroughglutathione-dependentoxidationofNADPHat 340nm.TheactivityofGRwasexpressedinEUmg−1proteinmin−1. Oneunitofenzymedeterminestheamountnecessaryto decom-pose1␮molofNADPHpermin.

Statisticalanalysis

ThedataontheeffectsofYEonprotoplastcallus,embryogenesis, alkaloidyieldandonenzymeactivitywereanalyzedbyone-way analysisofvariance(ANOVA)followedbyleastsignificant differ-ence(LSD)test.Valuesareexpressedasmeans±standarderrors ofthreereplicatesoftwoexperiments.Thepresentedmeanvalues wereseparatedusingLSDatp≤0.05level.

Results

Protoplastisolation,callusformation,embryoformationand plantletregeneration

Thehypocotylinducedembryogeniccalluswasusedfor pro-toplast isolation study; this embryogenic callus henceforth is calledas normal embryogeniccallus(NEC). Protoplastisolation wascarriedfromNECsuspensionbyusingvariouswall degrad-ingenzymes.Significantnumbersofprotoplasts(datanotshown

here)wereobtainedontreatmentwithcellulase(2%),pectinase (1%),driselase(0.5%),macerozyme(0.02%)andsorbitol(0.6mM) (Fig.1a).Repeateddivisionsofprotoplastsformedmicro-colonies; andthemaximumnumbersofmicrocolonies/calliwereinduced

on 0.50mg/l NAA+0.50mg/l 2,4-D added medium within 12

weeks ofincubation. Protoplastoriginatedmicro-calli gradually transformedintoembryogeniccalli, calledasprotoplastderived embryogeniccalli(PDEC).The micro-callihad slowgrowth ini-tially, butwithtime thetissues showednormal fastgrowthas thosecultivatedcellsovercamestressgradually,causedbyenzyme mixturesandosmoticumtreatment.Themicro-calliofPDEC ori-ginstartedtoinducesomaticembryoswithin8weeksofculture (inductionstage).InMSembryoproliferationmedium,a hetero-geneous mixture of embryos was formed (proliferation stage). Globular andheart-stageembryosweremorein numbers com-paredtotorpedoandcotyledonaryembryos,whichdifferentiated ingoodnumberslater.Theembryomaturationwasveryhighon 1.5mg/l GA3addedmediumand withtimethematuration per-centageimproved.Theembryosstartedtoregenerateplantsinthe samematurationmedium.Theentireprocessfrom‘protoplastto plantlet’recoverywasachievedthroughsomaticembryogenesis followingembryoinduction,proliferation,maturationandembryo germinationmethods(Fig.2aandd).Thewholeprocesstookabout 40weekstoobtainaplantfromprotoplast.

VBandVCcontent(gg−1dryweight)

The yield of VB and VC was measured in different tissues. ThemobilephaseofstandardsproducedasharpandcompactVB (Rf=0.28)andVC(Rf=0.46)peak(Fig.1aandc,respectively). Scan-ningof VBand VC wasmadeat 280and 300nm,respectively. TheregressionanalysisshowedagoodlinearrelationshipwithVB r=0.999(r2=0.998)and VCr=0.994(r2=0.989)withrespectto peakareaandconcentrationrangeof200–1000␮gperspot.The regression equationofVBwasY=943.7X+180.0andof VCwas Y=813.5X+1684.

From Tables 1 and 2, it is clear that VB was maximum (9.32␮gg−1dryweight)ingerminatingembryosandtheyieldwas improved(11.44␮gg−1dryweight)withYEelicitation,especially inT3treatments.ComparedtoVB,theyieldofVCwaslowand ingerminatingembryos,theyieldwashigh.WithYEelicitation, VCyieldwasfurtherimproved,maximumbeinginT3(3.46␮gg−1 dry weight). We alsoquantified VBand VCyield in protoplast regeneratedleaves.Invitroleaftissuehadmaximumamountof VBcomparedtoothertissues/embryos.T3(1.5mg/lYE)harvested leaveshadhighestyieldofVB(15.47␮gg−1 dryweight)andVC (4.14␮gg−1dryweight),followedbyT4treatment(Fig.1bandd). TheVBandVClevelincreased22.74%and48.49%,respectively,with YEelicitationingerminatingembryosovernon-treatedcontrol tis-sue.

CAT,APX,SODandGRactivities

The addition of elicitors often cause stress in

cultivat-ing tissue we therefore analyzed and compared antioxidant

enzyme activities (CAT, APX, SOD and GR) as an indicator of stress. Protoplast derived embryogenic tissue showed higher

antioxidant enzyme activities compared to normal

embryo-genic tissue as these tissues derived from digestion with wall

degrading enzymes, which caused moderate to severe stress

to cells/tissues. With YE elicitation, the anti-oxidant enzyme activities were further up suggesting extra stress on tissues. Comparedtoembryoinductionandproliferationstages,the

alka-loid yield was high on maturing- and germinating embryos,

(4)

Track 1 , ID: ∨inblastine Track 13 , ID: ∨incristine

AU AU AU AU

400 600 500 500

450

400

350

300

250

200

150

100

50

0 450

400

350

300

250

200

150

100

50

0 500

400

300

200

100

0 350

300

1

1

1

1 250

200

150

100

0.05 0.25 0.45 0.05 0.25 0.45 0.05 0.25 0.45 0.65 0.05 0.25 0.45 50

0

a

b

c

d

Fig.1.(a)Standardpeakofvinblastine,(b)peakshowingthemaximumyieldofvinblastineinYEtreatedleavesatT3,(c)standardcurveofvincristineand(d)peakshowing themaximumyieldofvincristineinYEtreatedleavesatT3(x-axispresentspeakareaandy-axispresentsRf).

a

b

c

d

(5)

Table1

Vinblastine(VB)content(␮gg−1dryweight)inprotoplastderivedembryos/tissuesinCatharanthusroseus.TissueswereaddedwithdifferenttreatmentsofYE.

Sample Vinblastine(␮gg−1dryweight)

Induction Proliferation Maturation Germination Leaves(invitro)

C 1.82±0.015d 4.44±0.022e 7.45±0.025e 9.32±0.028e 13.10±0.007d

T1 1.93±0.018c 4.81±0.043d 7.65±0.025d 9.64±0.029d 13.25±0.031c

T2 2.04±0.022b 5.25±0.015c 7.87±0.033c 10.34±0.015c 13.24±0.094c

T3 2.13±0.019a 6.03±0.015a 8.06±0.036a 11.44±0.014a 15.47±0.018a

T4 1.94±0.023c 5.86±0.044b 7.97±0.014b 11.07±0.019b 14.21±0.007b

LSDat5% 0.048 0.426 0.071 0.051 0.108

Valuesareexpressedasmeans±standarderrorsofthreereplicatesoftwoexperiments.Dataweretakenafter6thofculture.Differentsuperscriptletters(a–f)indicate

significanceatp≤0.05levelaccordingtoLSD.T1=0.5mg/l;T2=1.0mg/l;T3=1.5mg/l;andT4=2.0mg/l.C,control,i.e.protoplastderivedembryogenictissue.

Table2

Vincristine(VC)content(␮gg−1dryweight)inprotoplastderivedembryos/tissuesinCatharanthusroseus.TissueswereaddedwithdifferenttreatmentsofYE.

Sample Vincristine(␮gg−1dryweight)

Induction Proliferation Maturation Germination Leaves(invitro)

C 0.79±0.058de 1.79±0.011d 2.21±0.047e 2.33±0.014d 3.65±0.022e

T1 0.95±0.018c 2.08±0.022c 2.54±0.018d 2.94±0.025c 3.82±0.011d

T2 1.09±0.027b 2.46±0.029b 2.99±0.018c 3.27±0.011b 3.96±0.022c

T3 1.18±0.011a 2.68±0.018a 3.35±0.016a 3.46±0.016a 4.14±0.015a

T4 0.83±0.025d 2.33±0.011b 3.13±0.015b 3.35±0.015b 4.07±0.011b

LSDat5% 0.068 0.048 0.058 0.281 0.040

Valuesareexpressedasmeans±standarderrorsofthreereplicatesoftwoexperiments.Dataweretakenafter6thofculture.Differentsuperscriptletters(a–f)indicate

significanceatp≤0.05levelaccordingtoLSD.T1=0.5mg/l;T2=1.0mg/l;T3=1.5mg/l;andT4=2.0mg/l.C,control,i.e.protoplastderivedembryogenictissue.

Table3

Enzymeactivities(EUmg−1proteinmin−1)atmaturationstagesofembryo;MSmediumwasaddedwith0.5mg/lGA

3.

Sample CAT APX SOD GR

NEC 1.02±0.025d 0.55±0.018d 2.87±0.018d 0.21±0.014d

C 1.46±0.022c 0.74±0.011c 4.27±0.033c 0.31±0.011c

T3 1.77±0.015b 1.01±0.018b 6.42±0.048b 0.67±0.011b

T4 1.85±0.018a 1.14±0.022a 7.05±0.016a 0.73±0.019a

LSDat5% 0.041 0.033 0.080 0.031

Valuesareexpressedasmeans±standarderrorsofthreereplicatesoftwoexperiments.Dataweretakenafter6thofculture.Differentsuperscriptlettersindicatesignificance

atp≤0.05levelaccordingtoLSD.T3=1.5mg/landT4=2.0mg/l.C,control,i.e.protoplastderivedembryogenictissue;NEC,normalembryogenictissue.

Table4

Enzymeactivities(EUmg−1proteinmin−1)atgerminationstagesofembryos;MSmediumwasaddedwith0.5mg/lBA+0.5mg/lNAA.

Sample CAT APX SOD GR

NEC 1.67±0.018c 0.65±0.015d 3.20±0.011d 0.29±0.018d

C 1.99±0.022a 0.86±0.021c 5.05±0.018c 0.39±0.011c

T3 1.89±0.018b 1.18±0.011b 7.24±0.029b 0.68±0.029b

T4 2.03±0.014a 1.26±0.022a 7.47±0.021a 0.85±0.014a

LSDat5% 0.052 0.045 0.057 0.035

Valuesareexpressedasmeans±standarderrorsofthreereplicatesoftwoexperiments.Dataweretakenafter6thofculture.Differentsuperscriptlettersindicatesignificance

atp≤0.05levelaccordingtoLSD.T3=1.5mg/landT4=2.0mg/l.C,control,i.e.protoplastderivedembryogenictissue;NEC,normalembryogenictissue.

Table5

Enzymeactivities(EUmg−1proteinmin−1)ofinvitroharvestedleaftissues,cultivatedonMS+0.50mg/BA+0.50mg/lNAA.

Sample CAT APX SOD GR

NEC 1.05±0.029d 1.04±0.036d 2.10±0.029d 0.19±0.014d

C 3.27±0.018c 1.57±0.018c 3.15±0.018c 0.29±0.002c

T3 6.02±0.032b 1.96±0.015b 6.06±0.022b 0.52±0.001b

T4 7.52±0.835a 2.09±0.011a 7.06±0.011a 0.62±0.002a

LSDat5% 0.063 0.057 0.039 0.039

Valuesareexpressedasmeans±standarderrorsofthreereplicatesoftwoexperiments.Dataweretakenafter6thofculture.Differentsuperscriptlettersindicatesignificance

atp≤0.05levelaccordingtoLSD.T3=1.5mg/landT4=2.0mg/l.C,control,i.e.protoplastderivedembryogenictissue;NEC,normalembryogenictissue.

in maturing- and germinating embryos, respectively, at high YE (T4) treatment (Tables 3 and 4). The APX activity was alsosimilarly morein maturating-(1.14EUmg−1proteinmin−1) andgerminatingembryos(1.26EUmg−1proteinmin−1).TheSOD

(6)

CAT,APX,SODandGRactivities,whichyieldedhighestlevelofVB andVC(Table5).

Discussion

The present study was carried out to investigate the effect ofYEonVBandVCinprotoplast derivedtissues/plantletsinC. roseus.WenotedenhancedyieldofVBandVCinresponsetoYE elicitation.ThereareseveralsimilarreportsonYE-induced syn-thesisoftriterpenoidsandothermetabolitesincultivatedplant tissuessuchasinScutellariabaicalensis(Yoonetal.,2000),Panax ginseng(Luetal.,2001),Centellaasiatica(Kimetal.,2007), Angel-icagigas(Rheeetal.,2010)andPuerariacandollei(Korsangruang etal.,2010).Itisknownthattheplants’responsetopathogenis basedonitsabilitytorecognizesignalmoleculesofforeignagent andthesemoleculesorelicitorsareprimarilyproteinsand/orcell wall-derived oligosaccharides (Neurnberger, 1999; Mahalingam andFedoroff,2003).Elicitorsarecapableofevokingavarietyof plantdefenseresponsesincludingthesynthesisofreactive oxy-genspecies (ROS),thehypersensitiveresponse,thesynthesis of phytoalexin,antimicrobialsecondarycompoundsandother man-ifestationsof defensivenature(Montesanoetal.,2003).Several valuablebioactivecompoundslikeazadirachtin,artemisininand tanshinonesaccumulationwerereportedtobestimulatedbyYE elicitor(Putalunetal.,2007;PrakashandSrivastava,2008;Zhao etal.,2010).Themechanismofelicitationwas,however,variedin differentplantgroupsandinmostcases‘elicitor-receptor’ com-plexwasformedandavastarrayofbiochemicalresponseswere manifested(Radmanetal.,2003;Caietal.,2012).

TheactivitiesofantioxidantenzymessuchasAPX,SODandCAT areoftenusedasmarkerinevaluatingphysiological,biochemical alterationsof plants inresponse tostresses (bioticand abiotic) andinstudieswithplants’systemic acquiredresistancesystem (Tanabeetal.,2008);andtheseenzymeactivityincreaseatthe onsetand increasinglevelsof stress(Renet al.,2002).Inplant systems,themajorROSscavengingmechanismsincludethe activ-ityofSOD,APXandCAT(Mittler,2002).InEuphorbiapekinensis, increasedCATactivityandsynthesisofH2O2werenotedpost elici-tortreatmentincultivatedtissues(Gaoetal.,2011).Theprotoplast derivedtissueshadhighenzymaticactivityandtheactivitywas evenmoreonYEaddedconditions;thisincreasemaybedueto overproductionofROS.InOryzasativacultivar,increased antiox-idativeenzymeactivityscavengedcellularROSsuccessfully and preventedmembraneinjurybyimprovingoxidativestress toler-ance(Hassanein,2000).FoyerandNoctor(2005)notedthatthe enzymeglutathionereductase(GR)–akeyascorbate-glutathione cycleenzyme,helpedmaintainabalanceofGSH/GSSGratioand protected cells from oxidative damage. Current proteomic and molecularanalysessuggestthatSaltOverlySensitive1(SOS1)gene, genesencodingtranscriptionfactors,stressproteins,enzymes cat-alyzingsecondarycompoundsgenesarenotedtobeupregulated bystressorstressinducers(Pazminoetal.,2012;Maetal.,2014). Protoplast derived embryogenic tissue showed an enriched level ofalkaloid, the yield ofVB and VCwaseven more in YE amended conditions. The action of YE was earlier reported to beassociatedwithactivationofterpenoidindolealkaloids(TIA) biosyntheticgenesSTRandTDC encodingstrictosidinesynthase andtryptophandecarboxylaseinbiosynthesisofalkaloids(Pauw etal.,2004).Asemi-syntheticmethodofchemicalorenzymatic couplingofmonomericindolealkaloidsvindolineand catharan-thinein formingvinblastine wassuccessfullymade inprevious studies(Goodbodyetal.,1988;Kutney,1990)inwhichperoxidase catalyzedcouplingreactionstepofsynthesis(Smithetal.,2003). Inthispresentstudy,weobservedincreasedenzymeactivityon applicationofYEthatmighttriggerenhancedlevelofVBandVC

synthesisinculture.Abrahametal.(2011)studiedYEeffectin Cur-cumamanggaandhigherantioxidantenzymeactivitywasnoted tobedue toenrichedlevel ofphenolicaccumulationintissues. Thecorrelationbetweenaccumulatedphenoliclevelswithradical scavengingwasearliernotedindifferentberryspeciesandthus, theantioxidantenzymeactivitiesandthesynthesisofsecondary metaboliteareconsideredtobeinvariablyrelated(Amakuraetal., 2000).In Catharanthus,there is enrichmentof alkaloids,sothe studyisimportantasitistheonlysourceofexpensive,important chemotherapeuticdrugs withanti-cancerousactivity,whichare presentinaverytrace(0.0005%DW)amount(SchmellerandWink, 1998).Thesynthesisofrosmaricacid(RA)andphenoliccompounds inSalviamiltiorrhizahairyrootswassimilarlystimulatedbyYEand Ag+,anabioticelicitor(Qiongetal.,2006).Thebioticandabiotic elicitorinduced(YEandMJ)RAaccumulationwasobservedinother investigatedplantssuchasOrthosiphonaristatus(Mizukametal., 1992)andColeusblumei(Szaboetal.,1999).InL.erythrorhizon,the additionofYEinsuspensionrapidlyandtransientlyenhancedRA accumulation(Ogataetal.,2004).Sanchez-Sampedroetal.(2005) reportedabout three-foldproduction of silymarin followingYE treatmentinSilybummarianum.TheamendmentofYEat0.5g/l wasfoundtobeanoptimumtreatmentforelicitationinGymnema sylvestreinwhich over5.25foldsof gymnemicacidproduction wasnotedwithin20daysofculture(Veerashreeetal.,2012).Over 113.3%increaseintotalphenoliccontentovercontrolwasreported in YE treated cells in Astragalus chrysochlorus (Ozgur and Sule, 2009).Inourstudy,enrichedVBandVCalkaloidyieldwasnoticed onYEtreatmentsand1.5g/lwasobservedtobetheoptimumdose. YEcontainsseveralcomponentslikechitin,N-acetylglucosamine oligomers,␤-glucan,glycopeptidesandergosterol(Boller,1995) butthespecificfractiontriggersthesynthesisofalkaloidsisstill notelucidatedclearly. Thepeptideandpolysaccharidemoieties presentinYEhavebeensuggestedtobethemoleculesof stimulat-ingnature(Menkeetal.,1999;Zhaoetal.,2011).Theprotoplasts and theprotoplast derived tissues showedstress as this tissue underwentadversecellularconditions,causedbywalldegrading enzymes,PGRsandinflux/effluxofrequiredions.Theadditionof YEinmediummayraisestresslevelfurther(aswasevidencedfrom increasinglevelsofstressmarkerenzymes)thatmayhelpin syn-thesizingenhancedlevelofVBandVCinculturedtissues.Thisis thefirsteverstudyofsystematicmonitoringofVBandVCin proto-plastregeneratedtissuesinCatharanthusunderYEinfluence.This studymaycomplementtoothereffortsaimingtoenrichVBandVC yieldinculture.

Conclusion

ThisisthefirstreportontheeffectofYEonVBandVCyieldin protoplastregeneratedplantsinC.roseus.Theobservationsuggests that YE efficiently enhanced alkaloid yield however, the accu-mulationwastreatment-specific.Theidentificationofsignalling componentofYEinbiosynthesiscouldbeaveryeffectiveapproach forlargescale augmentationofalkaloidyieldofpharmaceutical importance.

Authorship

Thefirstauthorconceivedtheideaandperformedmostofthe experimentsandthesecondauthoreditedthemanuscript.

Conflictsofinterest

(7)

Acknowledgements

We are grateful to University Grant Commission, India, for receivingfinancialassistance.WearealsothankfultoDepartment ofBotany,Central InstrumentationFacility,HamdardUniversity (JamiaHamdard)forprovidingotherfacilities.

References

Abraham,F.,Bhatt,A.,Keng,C.L.,Indrayanto,G.,Sulaiman,S.F.,2011.Effectofyeast extractandchitosanonshootproliferation,morphologyandantioxidantactivity ofCurcumamanggainvitroplantlets.Afr.J.Biotechnol.10,7787–7795. Aebi,H.,1984.Catalaseinvitro.MethodsEnzymol.105,121–126.

Amakura,Y.,Umino,Y.,Tsuji,S.,Tongai,Y.,2000.Influenceofjamprocessingonthe radicalscavengingactivityandphenoliccontentinberries.J.Agric.FoodChem. 48,6292–6297.

Boller,T.,1995.Chemoperceptionofmicrobialsignalsinplantcells.Annu.Rev.Plant Physiol.PlantMol.Biol.46,189–214.

Cai,Z.,Kastell,A.,Mewis,I.,Knorr,D.,Smetanska,I.,2012.Polysaccharide elici-torsenhanceanthocyaninandphenolicacidaccumulationincellsuspension culturesofVitisvinifera.PlantCellTissueOrg.Cult.108,401–409.

Darshanie,P.,Rajapakse,Mendis,M.H.,Jayawardene,S.D.G.,1991.Establishmentof calluscultureinBg-94-1:acommerciallycultivatedriceinSriLanka.J.Nat.Sci. Coun.SriLanka19,163–170.

DeLuca,V.,StPierre,B.,2000.Thecellanddevelopmentalbiologyofalkaloid biosyn-thesis.TrendsPlantSci.5,168–173.

Dhindsa,R.H.,Plumb-Dhindsa,P.,Thorpe,T.A.,1981.Leafsenescencecorrelatedwith increasedlevelofmembranepermeability,lipidperoxidationanddecreased levelofSODandCAT.J.Exp.Bot.32,93–101.

Dipti,T.,Mujib,A.,Maqsood,M.,Ali,M.,Zafar,N.,2016.Aspergillusflavusfungus elic-itationimprovesvincristineandvinblastineyieldbyaugmentingcallusbiomass growthinCatharanthusroseus.PlantCellTissueOrg.Cult.126,291–303. Elmaghrabi,A.M.,Ochatt,S.,Rogers,H.J.,Francis,D.,2013.Enhancedtoleranceto

salinityfollowingcellularacclimationtoincreasingNaCllevelsinMedicago truncatula.PlantCellTissueOrg.Cult.114,61–70.

Feher,A.,2015.Somaticembryogenesis–stress-inducedremodelingofplantcell fate.Biochim.Biophys.Acta1849,385–402.

Foyer,C.,Noctor,G.,2005.Oxidant andantioxidantsignaling inplants:a re-evaluationoftheconceptofoxidativestressinaphysiologicalcontext.Plant CellEnviron.28,1056–1071.

Foyer,C.H.,Halliwell,B.,1976.Thepresenceofglutathioneandglutathione reduc-taseinchloroplasts:aproposedroleinascorbicacidmetabolism.Planta133, 21–25.

Gao,F.,Ying-hui,Y.,Chuan-chao,D.,2011.Effectsofendophyticfungalelicitor ontwokindsofterpenoidsproductionandphysiologicalindexesinEuphorbia pekinensissuspensioncells.J.Med.PlantsRes.5,4418–4425.

Goodbody, A.E., Endo, T., Vukovic, J., Kutney, J.P., Choi, L.S.L., Misawa, M., 1988. Enzymic coupling of catharanthine and vindoline to form 3␣,4␣-anhydrovinblastinebyhorseradishperoxidase.PlantaMed.54,136–140. Hassanein,A.A.,2000.Physiologicalresponsesinducedbyshockandgradual

salin-izationinrice(OryzasativaL.)seedlingsandthepossiblerolesplayedby glutathionetreatment.Acta.Bot.Hung.42,139–159.

Ibrahim,I.A.,AbdElKawi,M.,Nower,A.,AbdelMotaal,A.,AbdElAal,A.,2009. AlkaloidproductionandorganogenesisfromcallusofHyoscyamusmuticusL.in vitro.J.App.Sci.Res.5,82–92.

Junaid,A.,Bhat,M.A.,Mujib,A.,Sharma,M.P.,2006.Somaticembryoproliferation, maturationandgerminationinCatharanthusroseus.PlantCellTissueOrg.Cult. 84,325–332.

Kim,O.T.,Bang,K.H.,Shin,Y.S.,Lee,M.J.,Jung,S.J.,Hyun,D.Y.,Kim,Y.C.,Seong,N.S., Cha,S.W.,Hwang,B.,2007.Enhancedproductionofasiaticosidefromhairyroot culturesofCentellaasiatica(L.)Urbanelicitedbymethyljasmonate.PlantCell Rep.26,1941–1949.

Korsangruang, S., Soonthornchareonnon, N., Chintapakorn, Y., Saralamp, P., Prathanturarug,S.,2010.Effectsofabioticandbioticelicitorsongrowthand isoflavonoidaccumulationinPuerariacandolleivar.candolleiandP.candollei var.mirificacellsuspensioncultures.PlantCellTissueOrg.Cult.103,333–342. Kuboyama,T.,Yokoshima,S.,Tokuyama,H.,Fukuyama,T.,2004.Stereocontrolled

totalsynthesisof(+)vincristine.Proc.Natl.Acad.Sci.U.S.A.101,11966–11970. Kutney,J.P.,1990.Biosynthesisandsynthesisofindolealkaloidsinplantcell

cul-tures:apersonaloverview.Nat.Prod.Rep.7,85–103.

Kutney,J.P.,Choi,L.S.L.,Nakano,J.,Tsukamoto,H.,Boulet,C.A.,McHugh,M.,1991. Processofsynthesisofvinblastineandvincristine.USPatent5047528. Lu,M.B.,Wong,H.L.,Teng,W.L.,2001.Effectsofelicitationontheproductionof

saponinincellcultureofPanaxginseng.PlantCellRep.20,674–677. Ma,Q.,Ding,Y.,Chang,J.,Sun,X.,Zhang,L.,Wei,Q.,Cheng,Y.,Chen,L.,Xu,J.,Deng,X.,

2014.Comprehensiveinsightsonhow2,4-dichlorophenoxyaceticacidretards senescenceinpost-harvestcitrusfruitsusingtranscriptomicandproteomic approaches.J.Exp.Bot.65,61–74.

Mahalingam,R.,Fedoroff,N.,2003.Stressresponse,celldeathandsignalling:the manyfacesofreactiveoxygenspecies.Physiol.Plant119,56–68.

Menke,F.L.H.,Parchmann,S.,Mueller,M.J.,Kijne,J.W.,Memelink,J.,1999. Involve-mentoftheoctadecanoidpathwayand proteinphosphorylationinfungal

elicitorinducedexpressionofterpenoidindolealkaloidbiosyntheticgenesin Catharanthusroseus.PlantPhysiol.119,1289–1296.

Mittler,R.,2002.Oxidativestress,antioxidantsandstresstolerance.TrendsPlant Sci.7,405–410.

Mizukam,H.T.,Ogawa,H.,Ohashi,B.,Ellis,E.,1992.Inductionofrosmarinicacid biosynthesisinLithospermumerythrorhizoncellsuspensionculturesbyyeast extract.PlantCellRep.11,480–483.

Montesano,M.,Brander,G.,Tapio,P.E.,2003.Pathogenderivedelicitors:searching forreceptorsinplants.Mol.PlantPathol.4,73–79.

Moreno,P.R.H.,VanderHeijden,R.,Verpoorte,R.,1995.Cellandtissueculturesof Catharanthusroseus:aliteraturesurveyII.Updatingfrom1998to1993.Plant CellTissueOrg.Cult.42,1–25.

Moreno,P.R.H.,(Ph.Dthesis)1995.Influenceofstressfactorsonthesecondary metabolisminsuspensionculturedCatharanthusroseuscells.LeidenUniversity, Leiden.

Mujib,A.,Ilah,A.,Aslam,J.,Fatima,S.,Siddiqui,Z.H.,Maqsood,M.,2012.Catharanthus roseusalkaloids:applicationofbiotechnologyforimprovingyield.PlantGrowth Reg.68,111–127.

Mukherjee,A.K.,Basu,S.,Sarkar,N.,Ghosh,A.C.,2001.Advancesincancertherapy withplantbasednaturalproducts.Curr.Med.Chem.8,1467–1486.

Murashige,T.,Skoog,F.,1962.Arevisedmediumforrapidgrowthandbioassaywith tobaccotissuecultures.Physiol.Plant15,473–497.

Murthy,H.N.,Lee,E.J.,Paek,K.Y.,2014.Productionofsecondarymetabolitesfrom cellandorgancultures:strategiesandapproachesforbiomassimprovement andmetaboliteaccumulation.PlantCellTissueOrg.Cult.118,1–16.

Mustafa,N.R.,Kim,H.K.,Choi,Y.H.,Erkelens,C.,Lefeber,A.W.,Spijksma,G.,Vander Heijden,R.,Verpoorte,R.,2009.Biosynthesisofsalicylicacidinfunguselicited Catharanthusroseuscells.Phytochemistry70,532–539.

Naz,R.,Anis,M.,Aref,M.I.,2015.Managementofcytokinin-auxininteractionsfor invitroshootproliferationofAlthaeaofficinalisL.:avaluablemedicinalplant. Rend.Fis.Acc.Lincei.26,323–334.

Nakano,Y.,Asada,K.,1981.Hydrogenperoxideisscavengedbyascorbate-specific peroxidaseinspinachchloroplasts.PlantCellPhysiol.22,867–880.

Neurnberger,T.,1999.Signalperceptioninplantpathogendefense.Cell.Mol.Life Sci.55,167–182.

Ogata,A.,Tsuruga,A.,Matsunob,M.,Mizukami,H.,2004.Elicitor-inducedrosmarinic acidbiosynthesisinLithospermumerythrorhizoncellsuspensioncultures: activ-itiesofrosmarinicacidsynthaseandthefinaltwocytochromeP450-catalyzed hydroxylations.PlantBiotechnol.2,393–396.

Ozgur, C., Sule, A., 2009. Defensive and secondary metabolism in Astragalus chrysochloruscellculturesinresponsetoyeastextractstressor.J.Environ.Biol. 30,51–55.

Pauw,B.,Duijn,B.,Kijne,J.W.,Memelink,J.,2004.Activationoftheoxidativeburstby yeastelicitorinCatharanthusroseuscellsoccursindependentlyoftheactivation ofgenesinvolvedinalkaloidbiosynthesis.PlantMol.Biol.55,797–805. Pazmino,D.M.,Romero-Puertas,M.C.,Sandalio,L.M.,2012.Insightsintothe

differ-entialresponseofwoundandleavestoherbicides2,4-dichlorophenooxyacetic acidinpeaplants:roleofreactiveoxygenspecies. PlantSignal.Behav.7, 425–427.

Prakash,G.,Srivastava,A.K.,2008.Statisticalelicitoroptimizationstudiesforthe enhancementofazadirachtinproductioninbioreactorAzadirachtaindicacell cultivation.Biochem.Eng.J.40,218–226.

Putalun,W.,Luealon,W.,De-Eknamkul,W.,Tanaka,H.,Shoyama,Y.,2007. Improve-mentofartemisininproductionbychitosaninhairyrootculturesofArtemisia annua.Biotechnol.Lett.29,1143–1146.

Qiong,Y.,Ming,S.,Janet,N.,Jian,Y.W.,2006.Elicitor-inducedrosmarinicacid accu-mulationandsecondarymetabolismenzymeactivitiesinSalviamiltiorrhiza hairyroots.PlantSci.170,853–858.

Radman,R.,Saez,T.,Bucke,C.,Keshavarz,T.,2003.Elicitationofplantsandmicrobial cellsystems.Biotechnol.Appl.Biochem.37,91–102.

Ren,A.Z.,Gao,Y.B.,Liu,S.,2002.ResponseofsomeprotectiveenzymesinBrassica chinensisseedlingtoPb++,Cd+andCr+++stress.Chin.J.Appl.Ecol.13,510–512. Rhee,H.S.,Cho,H.Y.,Son,S.Y.,Yoon,S.Y.H.,Park,J.M.,2010.Enhancedaccumulation ofdecursinanddecursinolangelateinrootculturesandintactrootsofAngelica gigasNakaifollowingelicitation.PlantCellTissueOrg.Cult.101,295–302. Samar,F.,Mujib,A.,Dipti,T.,2015.NaClamendmentimprovesvinblastineand

vin-cristinesynthesisinCatharanthusroseus:acaseofstresssignallingasevidenced byantioxidantenzymesactivities.PlantCellTissueOrg.Cult.121,445–458. Sanchez-Sampedro,M.A.,Fernandez-Tarrago,J.,Corchete,P.,2005.Yeastextract

andmethyljasmonate-inducedsilymarinproductionincellculturesofSilybum marianum(L.)Gaertn.J.Biotechnol.119,60–69.

Schmeller,T.,Wink,M.,1998. Utilizationofalkaloidsinmodernmedicine.In: Roberts,M.F.,Wink,M.(Eds.),Alkaloids,Biochemistry,EcologyandMedicinal Applications.PlenumPress,NewYork,pp.435–459.

Smith, J.I., Amouzou, E., Yamaguchi, A., 2003. Peroxidase from bioreactor cultivatedCatharanthusroseuscellculturesmediatesbiosynthesisof␣-3′,4 -anhydrovinblastine.Biotechnol.Appl.Biochem.10,568–575.

Szabo,E.,Thelen,A.,Petersen,M.,1999.Fungalelicitorpreparationsandmethyl jas-monateenhancerosmarinicacidaccumulationinsuspensionculturesofColeus blumei.PlantCellRep.18,485–489.

Tanabe,S.,Hayashi,N.,Nishizawa,Y.,Yamane,H.,Shibuya,N.,Minami,E.,2008. Elicitorandcalatalseactivityofconidiasuspensionsofvariousstrainsof Mag-naporthegriseainsuspension-culturedcellsofrice.Biosci.Biotechnol.Biochem. 72,889–892.

(8)

Valluri,J.V.,2009.Bioreactorproductionofsecondarymetabolitesfromcellcultures ofperiwinkleandsandalwood.MethodsMol.Biol.54,325–335.

VanDerHeijden,R.,Jacobs,D.I.,Snoeijer,W.,Hallared,D.,Verpoorte,R.,2004.The Catharanthusalkaloids:pharmacognosyandbiotechnology.Curr.Med.Chem. 11,607–628.

Veerashree,V.,Anuradha,C.M.,Kumar,V.,2012.Elicitor-enhancedproductionof gymnemicacidincellsuspensionculturesofGymnemasylvestreR.Br.PlantCell TissueOrg.Cult.108,27–35.

Verpoorte,R.,Contin,A.,Memelink,J.,2002.Biotechnologyfortheproductionof plantsecondarymetabolites.Phytochem.Rev.1,13–25.

Yoon,J.H.,Kim,K.H.,Ma,J.C.,Huh,H.,2000.Inducedaccumulationoftriterpenoids inScutellariabaicalensissuspensionculturesusingayeastelicitor.Biotechnol. Lett.22,1071–1075.

Zarate,R.,Verpoorte,R.,2007.Strategiesforthegeneticmodificationofthe medic-inalplantCatharanthusroseus(L.)G.Don.Phytochem.Rev.6,475–491. Zhao,J.,Zhou,L.,Wu,J.,2010.Effectsofbioticandabioticelicitorsoncellgrowth

andtanshinoneaccumulationinSalviamiltiorrhizacellcultures.Appl.Microbiol. Biotechnol.87,137–144.

Zhao,J.,Zheng,B.,Li,Y.,Shan,T.,Mou,Y.,Lu,S.,Li,P.,Zhou,L.,2011.Enhancement ofDiepoxin␨productionbyyeastextractanditsfractionsinliquidculture ofBerkleasmium-likeendophyticfungusDzf12fromDioscoreazingiberensis. Molecules16,847–856.

Imagem

Fig. 2. (a) Isolated protoplasts; (b) development of embryogenic callus from protoplasts; (c) individual embryo developed from PDEC treated with T3 treatment of YE and (d) regenerated plantlet from protoplast derived embryo, grown in MS medium containing Y

Referências

Documentos relacionados

Thiobarbituric acid reactant substances (TBARs) content, and the activities of glucose-6-phosphate dehydrogenase (G6PDh), citrate synthase (CS), Cu/Zn- and Mn-superoxide

Tissue levels of the antioxidant enzymes superoxide dismutase and catalase in fish Astyanax bimaculatus from the Una River Basin..

The protective effect of the extract was assessed by quantifying the level of lipid peroxidation and the activities of antioxidant enzymes such as catalase (CAT),

BACKGROUND: To determine the concentration of the Lipid Peroxidation Marker: Malondialdehyde (MDA), and Antioxidant Markers: Superoxide Dismutase (SOD), Glutathione Peroxidase

Sendo assim, o esgoto tratado por esta fossa séptica biodigestora, pode ser aplicado no solo onde se deseja cultivar as monoculturas de milho e soja, com a utilização

Este projeto tem como objetivo selecionar e analisar os principais stocks de embalagens utilizadas para ensacar os produtos finais, de forma a otimizar a sua gestão, tendo

Lipid peroxidation (MDA) and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) in

Statistical analysis (t values) demonstrated that molasses and yeast extract and incubation temperature had significant pos- itive influences on the EPS production with main effects