• Nenhum resultado encontrado

Zinc accumulation and translocation in Solanum nigrum: effect of arbuscular mycorrhizal fungi and matrix concentration

N/A
N/A
Protected

Academic year: 2021

Share "Zinc accumulation and translocation in Solanum nigrum: effect of arbuscular mycorrhizal fungi and matrix concentration"

Copied!
21
0
0

Texto

(1)

ZINC ACCUMULATION AND

ZINC ACCUMULATION AND

TRANSLOCATION IN

TRANSLOCATION IN SOLANUM

SOLANUM

NIGRUM

NIGRUM

: EFFECT OF ARBUSCULAR

: EFFECT OF ARBUSCULAR

MYCORRHIZAL FUNGI AND MATRIX

MYCORRHIZAL FUNGI AND MATRIX

CONCENTRATION

CONCENTRATION

CONCENTRATION

CONCENTRATION

Ana P. G. C. Marques

Rui S. Oliveira

Paula M. L. Castro

António O. S. S. Rangel

(2)

Plant species colonising contaminated soils

are potential metal accumulators and may be

very useful for

PHYTOREMEDIATION

PHYTOREMEDIATION

very useful for

PHYTOREMEDIATION

PHYTOREMEDIATION

strategies (Álvarez et al., 2003).

Álvarez, E., Fernández-Marcos, M.L., Vaamonde, C., Fernández-Sanjurjo, M.J., 2003. Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation. Sci. Total Environ. 313, 185-197.

(3)

Heavy metal contaminated

Heavy metal contaminated

sites in Portugal

sites in Portugal

(4)

High permeability of the soils

Estarreja

Estarreja: Situation analysis

: Situation analysis

Discharge of solid residues in the surrounding area

Conducting of industrial wastewaters into a stream nearby

(“

Esteiro de Estarreja

”)

Total metal in the banks (mg kg

-1

soil)

Z n

8 9 8 .9 (12 5 -3 6 2 0 )

P b

8 3 5 .4 (16- 3 7 4 0 )

H g

6 6. 6 (0 .3- 2 7 5)

A s

1 4 9 5 ( 4 5 -5 6 2 0 )

(5)

Rubus ulmifolius

Plant survey in “Esteiro de

Plant survey in “Esteiro de Estarreja

Estarreja”

714 mg Zn kg

-1

Convolvulus sp.

Solanum nigrum

Phragmites australis

374 mg Zn kg

-1

599 mg Zn kg

-1

1130 mg Zn kg

-1

(6)



Soil microorganisms



Form symbiotic associations with plant roots



Receive carbohydrates from associated

Arbuscular mycorrhizal fungi

Arbuscular mycorrhizal fungi



Receive carbohydrates from associated

plants



Capture mineral nutrients from soil  plant

growth is improved

(7)



metal uptake and accumulation

Aims of the study

Aims of the study

Assess the influence of Zn and of different

AMF isolates on S. nigrum :



metal uptake and accumulation



growth



metal translocation from root to the

(8)

Zn= 0 mg kg

-1

dry sand

fungus A

fungus B fungus C fungus D

Mixture

No fungi

Zn= 100 mg kg

-1

dry sand

fungus A

fungus B fungus C fungus D

Mixture

No fungi

Zn= 500 mg kg

-1

dry sand

Experimental design

Experimental design

Zn= 500 mg kg dry sand

fungus A

fungus B fungus C fungus D

Mixture

No fungi

Zn= 1000 mg kg

-1

dry sand

fungus A

fungus B fungus C fungus D

Mixture

No fungi

fungus A Glomus sp. BEG140 (isolated from a Mn contaminated soil); fungus B

-Glomus claroideum

(isolated from a Cd and Zn contaminated soil); fungus C

-Glomus mosseae

(isolated from a Cd and Zn contaminated soil); fungus D – Glomus

(9)

Experimental procedure

Experimental procedure

Growth of the plants for 25 weeks

(6 weeks for 500 and 1000 mg kg

-1

levels)

Harvest

Separation of root, stem and leaves

Biomass

determination

Acid digestion

Zn determination

via FA-AAS

AMF colonisation

determination

Experimental

data

(10)

AMF

Zn (mg kg

-1

)

0

100

500

1000

G. sp. BEG140

9.3

±

0.8

c

9.1

±

0.5

bc

4.9

±

0.5

bc

4.2

±

0.6

ab

G. claroideum

8.4

±

0.6

bc

7

±

1

d

7.1

±

0.3

a

5.0

±

0.4

a

G. mosseae

9.6

±

0.4

bc

8.4

±

0.4

c

5.7

±

0.8

b

4.7

±

0.8

a

G. intraradices

11

±

2

ab

10.2

±

0.6

ab

5.7

±

0.6

b

3

±

2

ab

Mixture

12

±

2

a

10.5

±

0.7

a

4.5

±

0.6

c

3.5

±

0.7

b

Results: AMF colonisation

Results: AMF colonisation

Mixture

12

±

2

a

10.5

±

0.7

a

4.5

±

0.6

c

3.5

±

0.7

b

Results are expressed as percentual means ± SD (n=6). One way ANOVA was performed for each Zn concentration in the sand. Means in the same column with different letters are significantly different from each other (P<0.05) according to the Tukey test.

Few significant (P < 0.05) differences in colonisation

were found when inoculation was made with different

AMF for each Zn treatment

(11)

AMF

Zn (mg kg

-1

)

0

100

500

1000

G. sp. BEG140

9.3

±

0.8

c

9.1

±

0.5

bc

4.9

±

0.5

bc

4.2

±

0.6

ab

G. claroideum

8.4

±

0.6

bc

7

±

1

d

7.1

±

0.3

a

5.0

±

0.4

a

G. mosseae

9.6

±

0.4

bc

8.4

±

0.4

c

5.7

±

0.8

b

4.7

±

0.8

a

G. intraradices

11

±

2

ab

10.2

±

0.6

ab

5.7

±

0.6

b

3

±

2

ab

Mixture

12

±

2

a

10.5

±

0.7

a

4.5

±

0.6

c

3.5

±

0.7

b

Results: AMF colonisation

Results: AMF colonisation

Mixture

12

±

2

a

10.5

±

0.7

a

4.5

±

0.6

c

3.5

±

0.7

b

Results are expressed as percentual means ± SD (n=6). One way ANOVA was performed for each Zn concentration in the sand. Means in the same column with different letters are significantly different from each other (P<0.05) according to the Tukey test.

The metal concentration induced significant (P < 0.05)

differences in the fungi colonisation: higher Zn levels in the

matrix resulted in lower percentage mycorrhizal colonisation

in S. nigrum.

(12)

Results: Root biomass and Zn accumulation

Results: Root biomass and Zn accumulation

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 0 100 500 1000

mg Zn/kg dry sand

ro

o

t

b

io

m

a

s

s

(

g

)



AMF did not affect

significantly root biomass

No AMF G. sp. BEG 140 G. claroideum G. mosseae G. intraradices AMF mixture



Higher concentration of

Zn in the sand matrix

resulted in higher Zn

accumulation



S. nigrum roots

accumulated up to 3810

mg Zn kg

-1

with no visual

toxicity signs

mg Zn/kg dry sand

0 5000 10000 15000 20000 25000 30000 35000 0 100 500 1000

mg Zn/kg dry sand

m

g

Z

n

/k

g

d

ry

r

o

o

t

ti

s

s

u

e



The inoculation with G.

intraradices and G.

claroideum led to

significantly higher Zn

accumulation in the roots

(13)

0,0 1,0 2,0 3,0 4,0 5,0 6,0 0 100 500 1000 s te m b io m a s s ( g ) No AMF G. sp. BEG 140 G. claroideum G. mosseae G. intraradices AMF mixture



AMF did not affect

significantly stem

biomass

Results: Stem biomass and Zn accumulation

Results: Stem biomass and Zn accumulation



All the AMF induced

significantly higher Zn

accumulations in the

m g Zn/kg dry sand 0 10000 20000 30000 40000 50000 0 100 500 1000 mg Zn/kg dry sand m g Z n /k g d ry s te m t is s u e

stem tissue, with the

exception of G. sp.

BEG140.



S. nigrum stems

accumulated up to

3240 mg Zn kg-1

with no visual toxicity

signs

(14)

0,0 0,5 1,0 1,5 2,0 2,5 3,0 le a v e s b io m a s s ( g ) No AMF G. sp. BEG 140 G. claroideum G. mosseae G. intraradices AMF mixture



AMF did not affect

significantly leaves biomass

Results: Leaves biomass and Zn accumulation

Results: Leaves biomass and Zn accumulation



S. nigrum leaves

accumulated up to 1450 mg

Zn kg-1 with no visual

toxicity signs

0,0 0 100 500 1000 mg Zn/kg dry sand 0 5000 10000 15000 20000 25000 0 100 500 1000

mg Zn/kg dry sand

m

g

Z

n

/k

g

d

ry

l

e

a

f

ti

s

s

u

e

toxicity signs



Zn accumulation in the

leaf tissues was

significantly higher when

S. nigrum was inoculated

with G. claroideum, G.

intraradices and the fungi

(15)

Zn level

in the

matrix

Percent increase in the Zn accumulation

levels in the tissues (%)

Results: Enhancement of Zn accumulation

Results: Enhancement of Zn accumulation

matrix

(mg kg

-1

)

Glomus claroideum Glomus intraradices

100

30

36

500

62

58

(16)

Conclusions: Zn accumulation

Conclusions: Zn accumulation

Zn accumulation in all tissues was significantly higher when

S. nigrum was inoculated with G. claroideum, G.

intraradices

Higher Zn levels in the sand matrix resulted in higher Zn

accumulation in all plant tissues

(17)

Root to Aboveground Translocation

Root to Aboveground Translocation

Translocation of the contaminant from the root to the

stems and leaves

Translocation factor higher than 1 (McGrath and

McGrath, S., Zhao, F.J., 2003. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotech. 14, 227-282.

(

)

(

)

(

)

>

1

+

=

root root leaves leaves stem stem

on

accumulati

Zn

x

biomass

on

accumulati

Zn

x

biomass

on

accumulati

Zn

x

biomass

factor

Transfer

Translocation factor higher than 1 (McGrath and

Zhao, 2003).

(18)

5 6 7 8 9 10

T

ra

n

sl

o

ca

ti

o

n

f

a

ct

o

r

No AMF

G. sp. BEG 140

G. claroideum

G. mosseae

G. intraradices

Results: Root to Aboveground Translocation

Results: Root to Aboveground Translocation

b ab ab c b a a 0 1 2 3 4 5 0 100 500 1000

matrix Zn concentration (mg/kg dry sand)

T

ra

n

sl

o

ca

ti

o

n

f

a

ct

o

r

G. intraradices

AMF mixture

Bars upon the columns represent ± SD. One-way ANOVA was performed for each Zn concentration in the sand.

Means in the same concentration group with different letters are significantly different from each other (P<0.05)

according to the Tukey test

a a a a a a a a a a a a a ab a a a a

(19)

Conclusions: Zn translocation

Conclusions: Zn translocation

High translocation factors S. nigrum might be a good Zn phytoextractor

The inoculation with AMF resulted, generally, in equal or higher

translocations from root to aboveground tissues of S. nigrum.

High Zn levels in the sand matrix induced higher translocations

The tested AMF do not seem to act as a zinc barrier in the roots of S.

(20)

The use of S. nigrum inoculated with G.

claroideum or G. intraradices appears as a

good option for the decontamination of polluted

soils with low available Zn levels

Final Remarks

Final Remarks

At higher contamination levels, higher

translocation rates may occur, but at the cost

of poor plant biomass development and

(21)

Aknowledgments

Aknowledgments

The authors wish to thank Câmara Municipal de

Estarreja for the provision of access to the site.

This work was supported by Fundação para a

Ciência e a Tecnologia and Fundo Social Europeu

(III Quadro Comunitário de apoio), research grants

(III Quadro Comunitário de apoio), research grants

of Ana Marques (SFRH/BD/7030/2001) and Rui

Oliveira (SFRH/BD/1464/2000). Miroslav Vosátka is

acknowledged for providing the mycorrhizal fungi

inocula. This work was funded by Project

MICOMETA - POCI/AMB/60131/2004 (Fundação

para a Ciência e Tecnologia)

Referências

Documentos relacionados

Deste modo, a presente investigação tem por objetivo identificar e analisar os principais fatores que impulsionam a introdução de eco-inovações na indústria transformadora

Desta forma, foi notório perceber que, de acordo as dimensões analisadas neste estudo, a saber: a organização do serviço de atenção à saúde e sistema de informação

Portanto, por força de lei, todas as peças de planejamento e orçamento público deverão ser sempre coerentes e compatibilizadas entre si (CF/88, art.. tratar sobre

Com os olhos bem abertos e a testa franzida eleva os dois braços à altura do peito, com dos dedos polegar e indicador de ambas as mãos juntos (demais fechados) como se pontuasse

Para entender melhor a proposta, nas próximas seções serão explicados com mais detalhes a máquina de estados hierárquica, a partir da qual o monitor será gerado; a lógica

[r]

O menu tradicional alentejano também po- de contar a sua história que atravessa os tem- pos: Para entrada insinuam-se petiscos de forte matriz árabe, como os

Assim, conclui-se com este estudo que, na realidade do Tattva Design Hostel, as dimensões culturais influenciam a qualidade percebida do serviço, Os resultados