• Nenhum resultado encontrado

Influências do esforço muscular respiratório e da assincronia pacienteventilador sobre o “stress” e o “strain” pulmonares em modelo mecânico de síndrome da angústia respiratória aguda

N/A
N/A
Protected

Academic year: 2018

Share "Influências do esforço muscular respiratório e da assincronia pacienteventilador sobre o “stress” e o “strain” pulmonares em modelo mecânico de síndrome da angústia respiratória aguda"

Copied!
59
0
0

Texto

(1)

UNIVERSIDADE FEDERAL DO CEARÁ FACULDADE DE MEDICINA

DEPARTAMENTO DE MEDICINA CLÍNICA

PROGRAMA DE PÓS-GRADUAÇÃO STRICTO SENSU EM CIÊNCIAS MÉDICAS

RAQUEL PINTO SALES

INFLUÊNCIAS DO ESFORÇO MUSCULAR RESPIRATÓRIO E DA

ASSINCRONIA PACIENTE-VENTILADOR S

OBRE O “

STRESS

” E O

STRAIN

” PULMONAR

ES EM MODELO MECÂNICO DE SÍNDROME

DA ANGÚSTIA RESPIRATÓRIA AGUDA

Orientador: Profº Dr. Marcelo Alcantara Holanda

FORTALEZA

(2)

INFLUÊNCIAS DO ESFORÇO MUSCULAR RESPIRATÓRIO E DA

ASSINCRONIA PACIENTE-

VENTILADOR SOBRE O “

STRESS

” E O

STRAIN

” PULMONAR

ES EM MODELO MECÂNICO DE SÍNDROME

DA ANGÚSTIA RESPIRATÓRIA AGUDA

Dissertação submetida ao Programa de Pós-graduação Stricto Sensu em Ciências Médicas do Departamento de Medicina Clínica da Faculdade de Medicina da Universidade Federal do Ceará como requisito parcial para a obtenção do grau de Mestre em Ciências Médicas.

Orientador: Prof. Dr. Marcelo Alcantara Holanda

FORTALEZA

(3)

INFLUÊNCIAS DO ESFORÇO MUSCULAR RESPIRATÓRIO E DA

ASSINCRONIA PACIENTE-

VENTILADOR SOBRE O “

STRESS

” E O

STRAIN

” PULMONAR

ES EM MODELO MECÂNICO DE SÍNDROME

DA ANGÚSTIA RESPIRATÓRIA AGUDA

Dissertação submetida ao Programa de Pós-graduação Stricto Sensu em Ciências Médicas do Departamento de Medicina Clínica da Faculdade de Medicina da Universidade Federal do Ceará como requisito parcial para a obtenção do grau de Mestre em Ciências Médicas.

Aprovada em: __/__/__

BANCA EXAMINADORA

______________________________________________________

Prof. Dr. Marcelo Alcantara Holanda (Orientador)

Universidade Federal do Ceará – UFC

______________________________________________________

Prof. Dr. Armênio Aguiar dos Santos

Universidade Federal do Ceará – UFC

______________________________________________________

(4)

Agradeço, primeiramente, a Deus pela graça concedida de mais uma etapa vencida em minha vida e pela fé que me fez persistir.

Aos meus pais, Francisco José Sales Bastos e Maria Erleide Pinto Sales, eternos torcedores das minhas conquistas, o meu mais profundo sentimento de amor e gratidão pela entrega desmedida ao longo de toda a minha vida, por terem vivido comigo todos os meus sonhos e lutado incansavelmente para que eu pudesse realizá-los. Pai, você é o meu maior exemplo e ainda como nas cartinhas de infância, continua sendo meu herói. Mãe, obrigada por ser o alicerce que nos sustenta. Você é nossa força, nosso maior tesouro!

Ao Tiago Lima, por ter sido companheiro, paciente e incentivador do meu crescimento. Você

foi “paz na minha guerra”, obrigada por todo carinho e amor!

A pessoa que acreditou no meu potencial e que me permitiu realizar esta tão sonhada etapa da minha vida, a quem eu devo muitos dos conhecimentos que adquiri durante esses anos, à eterna fonte de inspiração, Dr. Marcelo Alcantara Holanda, o meu carinho, agradecimento e admiração nunca serão suficientes para retribuir tudo o que me foi acrescentado. Sua competência e encantamento pela pesquisa sempre serão metas para quem o tem como mestre. Obrigada pela amizade e pelas inesquecíveis lições! Tenha certeza que os momentos em que conversamos sobre como Isaac Newton descobriu a gravidade, fizeram de mim uma pessoa diferente.

Aos queridos amigos do RespLab, Liégina Marinho, Luíz Henrique Melo, Andréa Nóbrega, Clarissa Bentes e Nathalia Parente, Juliana Arcanjo, Suzy Montenegro por termos formado uma verdadeira equipe, por termos lutado e vencido juntos e porque nossa união nos fez pessoas melhores. O apoio de vocês foi fundamental, muito obrigada!

À minha grande amiga Renata dos Santos Vasconcelos, sem a qual eu não teria conseguido entrar e nem sair desse desafio. Palavras nunca serão suficientes para agradecer a amizade sincera e despretensiosa que tens me dedicado! Ainda assim, muito obrigada pelas horas de sono que perdeu junto comigo, por tudo o que aprendemos juntas, pelo carinho e cuidado da tia Célia (sua mãe) e por terem sido uma família que ganhei de presente.

Aos eternos mestres, que muito contribuíram para minha formação acadêmica, científica e profissional, o meu respeito: Maria do Socorro Quintino Farias e Vasco Pinheiro Diógenes Bastos.

Aos nobres amigos fisioterapeutas do serviço de fisioterapia do HUWC-UFC, Daniela Gardano, Neusa Cavalcante, Soraya Viana, Wedla Matos, Carlos Henrique Reis, Josire Vitorino, Patrícia Carvalho, Flávia Amâncio, Edna Cardoso, Ana Hogla, Renata Gomes, Camila Barbosa, Richelly, Maria Helena, Soraya Lima e Patriciane que participaram direta ou indiretamente nessa conquista.

As secretárias do departamento de Ciências Médicas, Ivone Souza e Rita de Cássia Antunes pela atenção, carinho e disponibilidade de sempre para com todos os discentes deste programa.

(5)

Se não podes entender, crê para que entendas. A fé precede, o intelecto segue.

(6)

A Síndrome da Angústia Respiratória Aguda (SARA) é uma doença inflamatória caracterizada por edema pulmonar, pulmões rígidos e hipoxemia. Pacientes com SARA estão

mais suscetíveis à VILI (ventilator induced lung injury). Sob ventilação mecânica, o stress e o

strain pulmonares são os principais determinantes da VILI e nos pacientes com esforço

muscular a assincronia paciente-ventilador pode potencializar este fenômeno. Os modos

ventilatórios PCV e VCV com AutoFlow® podem minimizar a assincronia

paciente-ventilador, mas por outro lado podem liberar a oferta de fluxo e volume corrente, comprometendo a estratégia ventilatória protetora na SARA. Objetivou-se avaliar as

influências do esforço muscular e da assincronia paciente-ventilador sobre o “strain” e o

“stress” pulmonares em modelo pulmonar mecânico de síndrome da angústia respiratória

aguda. Foi realizado um estudo experimental de bancada, utilizando um simulador de pulmão,

ASL 5000® no qual foi configurado um modelo pulmonar com mecânica respiratória

restritiva, com complacência de 25ml/cmH2O e resistência de 10 cmH2O/L/sec. O esforço

muscular foi ajustado em três situações: sem esforço muscular (Pmus=0), com esforço

muscular inspiratório (Pmus= -5cmH2O) e esforço inspiratório e expiratório (Pmus= -5/+5

cmH2O), todos com frequência respiratória (f) de 20rpm. Ao simulador foram conectados

cinco ventiladores através de um tubo orotraqueal nº 8,0 mm e ajustados nos modos VCV,

VCV com sistema AutoFlow® (no ventilador que tinha o sistema disponível) e PCV, todos

com volume corrente (VC): 420 ml, PEEP: 10 cmH2O e frequência respiratória programada

em duas situações: f=15rpm (< que a f de esforço muscular respiratório) e f=25rpm (> que a f de esforço muscular respiratório). As variáveis analisadas foram: VC máximo, a pressão

alveolar no final da inspiração, PEEP efetiva, driving pressure, pressão transpulmonar no

final da inspiração e expiração, pressão transpulmonar média, pico de fluxo inspiratório e análise das curvas de mecânica. No modelo pulmonar estudado a f do ventilador pulmonar ajustada acima da f do paciente e não o esforço muscular o principal determinante para o desenvolvimento de assincronia paciente ventilador, causando grandes variações de VC e

pressões pulmonares, o que intensificou o stress e strain pulmonares. Os modos ventilatórios

tiveram comportamento semelhante, embora os modos VCV AutoFlow® e PCV tenham

apresentado valores discretamente maiores de VC e pressões pulmonares. Desta forma conclui-se que o ajuste adequado da frequência programada nos modos assistido/controlado

podem pode minimizar a assincronia paciente ventilador reduzindo o stress e strain

pulmonares.

Palavras-chaves: Síndrome da angústia respiratória; Ventilação mecânica; Assincronia

(7)

Acute Respiratory Distress Syndrome (ARDS) is an inflammatory disease characterized by pulmonary edema, stiff lungs and hypoxemia. Patients with ARDS are more susceptible to VILI (ventilator induced lung injury). Under mechanical ventilation, lung stress and strain are the main determinants of VILI and in patients with muscle effort patient-ventilator asynchrony may enhance this phenomenon. Ventilation modes PCV and VCV with auto-flow can minimize patient-ventilator asynchrony, but then can liberate the offer of flow and tidal volume, compromising the protective ventilatory strategy in ARDS. This study aimed to evaluate the influence of muscle effort and patient-ventilator asynchrony on pulmonary stress and strain in a mechanic lung model of acute respiratory distress syndrome. An experimental bench study was performed, using a lung simulator, ASL 5000TM, in which was configured a lung model with restrictive respiratory mechanics with complacency of 25ml/cmH2O and

resistance of 10 cmH2O/L/sec. Muscle effort was adjusted in three situations: no muscular

effort (Pmus = 0), with inspiratory muscle effort (Pmus = -5 cmH2O) and inspiratory and

expiratory effort (Pmus = -5/+5 cmH2O), all with breathe rate (b) of 20 bpm. Five ventilators

were connected to the simulator through and endotracheal tube No 8.0 mm and adjusted on VCV, VCV with Auto-flowTM

(in the ventilator in which it was available) and PCV modes, all with tidal volume (VT): 420 ml, PEEP: 10 cmH2O and breath rate set in two situations: b = 15

bpm (lower than b of the respiratory muscle effort) and b = 25 bpm (higher than b of the respiratory muscle effort). Variables analyzed were: maximum VT, alveolar pressure at the end of inspiration, effective PEEP, driving pressure, transpulmonary pressure at the end of inspiration and expiration, average transpulmonary pressure, inspiratory peak flow and analysis of mechanic curves. In the studied lung model the b of the ventilator adjusted higher of the b of the patient and not the muscle effort was the main determinant for the development of patient-ventilator asynchrony, causing large variations of the VT and pulmonary pressures, intensifying the lung stress and strain. The ventilatory modes had similar behavior, although VCV Auto-flowTM

and PCV have presented slightly higher values of VT and pulmonary pressures. Thus it is concluded that the proper adjustment of the programed breath rate in the assisted/controlled modes can minimize patient-ventilator asynchrony, reducing lung stress and strain.

Keywords: Acute respiratory distress syndrome; Mechanical ventilation; Patient-ventilator

(8)

FIGURA 1: Possíveis mecanismos pelos quais os bloqueadores neuromusculares reduzem a

assincronia paciente ventilador em pacientes com a Síndrome da Angústia Respiratória

Aguda... 20

FIGURA 2: Esquema representativo do funcionamento do simulador ASL 5000® ... 28

FIGURA 3: Perfil da contração muscular... 29

FIGURA 4: Montagem do experimento... 30

FIGURA 5: Ciclo respiratório representativo da análise dos desfechos do estudo ... 32

FIGURA 6: Volume corrente e pressão transpulmonar no final da inspiração na modalidade VCV ... 35

FIGURA 7: Pressão alveolar no final da inspiração e driving pressure no final da inspiração na modalidade VCV ... 36

FIGURA 8: Pressão transpulmonar no final da expiração e PEEP no final da inspiração na modalidade VCV ... 37

FIGURA 9: Volume corrente e pressão transpulmonar no final da inspiração na modalidade PCV ... 38

(9)

modalidade VCV ... 40

FIGURA 12: Curvas representativas do ventilador Savina 300, nas cinco condições

experimentais nos modos VCV (direita), VCV-AF (central) e PCV (esquerda) ... 41

FIGURA 13: Curvas representativas da pressão transpulmonar ...43 FIGURA 14: Curvas representativas do fluxo inspiratório e expiratório no ventilador Savina

300, nas cinco condições experimentais nos modos VCV (direita), VCV-AF (central) e PCV

(10)

TABELA 1: Condição experimental. Ajuste dos modos ventilatórios e frequência respiratória

de acordo com o modelo simulado ... 31

TABELA 2: Pico de fluxo inspiratório (L/min) nos ventiladores Servo I, Esprit e Dixtal 3012

no modo VCV nas cinco condições experimentais ... 57

TABELA 3: Pico de fluxo inspiratório (L/min) nos ventiladores PB 840 e Savina 300 no

modo VCV nas cinco condições experimentais ... 57

TABELA 4: Pico de fluxo inspiratório (L/min) nos ventiladores Servo I, Esprit e Dixtal 3012

no modo PCV nas cinco condições experimentais... 58

TABELA 5: Pico de fluxo inspiratório (L/min) nos ventiladores PB 840 e Savina 300 no

(11)

Lista de abreviaturas

PTP insp (pressão transpulmonar inspiratória) AF (AutoFlow®)

Lista de símbolos % (porcentagem)

cmH2O (centímetros de água)

cmH2O/L/s (centímetros de água por litro por segundo)

L/min (litros por minuto)

ml/cmH2O (mililitro por centímetros de água)

mm (milímetro) ms (milissegundos) s (segundos)

Lista de siglas CEst

CRF FI

Complacência estática

Capacidade Residual Funcional

(12)

PCV PEEP Pmus SARA Tinsp VC VCV VILI

Ventilação controlada a pressão

Pressão positiva no final da expiração

Pressão negativa criada pelos músculos respiratórios

Síndrome da angústia respiratória aguda

Tempo inspiratório

Volume corrente

Ventilação controlada a volume

(13)

1 INTRODUÇÃO ... 14

1.1 Hipóteses ... 1.2 Justificativa ... 2 OBJETIVOS... 24 25 26 2.1 Objetivo Geral... 26

2.2 Objetivos Específicos... 26

3 MATERIAIS E MÉTODOS ... 27

3.1 Configuração do “paciente” simulado: padrão de esforço muscular e mecânica respiratória ... 27

3.2 Configurações dos ventiladores pulmonares ... 29

3.3 Análise e desfechos ... 30

4 RESULTADOS ... 34

5 DISCUSSÃO ... 44

6 CONCLUSÕES ... 50

REFERÊNCIAS ... 51

APÊNDICE A ... 57

(14)

1 INTRODUÇÃO

A Síndrome da Angústia Respiratória Aguda (SARA) é uma condição

inflamatória caracterizada por edema pulmonar, pulmões com baixa complacência, e

hipoxemia. Ela afeta aproximadamente 140.000 pacientes anualmente nos Estados Unidos.

No Brasil, sua incidência é estimada em 79 casos por 100 mil habitantes ao ano, sendo

crescente com a idade e chega a 306 casos por 100 mil habitantes/ano, na faixa dos 75 aos 84

anos. A mortalidade da SARA é alta, estimada entre 34% e 60% (AMATO et al., 2007;

RAGHAVENDRAN et al., 2008; GARCIA, PELOSI, ROCCO, 2008).

Pacientes com SARA apresentam distribuição heterogênea de edema, colapso e

aeração nos pulmões que leva a uma concentração regional de forças nos pulmões. A “tensão mecânica” ou stress é a força por unidade de área que se desenvolve em reação a uma força

aplicada externamente de mesma intensidade, mas com sentido oposto, ou seja, é a

distribuição de forças por unidade de área de pulmão; o strain ou “deformação” é o

estiramento de uma estrutura ou região pulmonar causado por uma tensão em relação ao seu

comprimento no estado de relaxamento, ou seja, a deformação de uma estrutura, em

decorrência de uma força externa aplicada sobre a mesma, compreendendo a relação entre o

comprimento final da estrutura, após a deformação, e o seu comprimento inicial

(GATTINONI et al., 2003; TUCCI, BERALDO, COSTA, 2011).

Em pacientes com SARA sob ventilação mecânica, o stress e o strain pulmonares

são considerados os principais determinantes da VILI (ventilator induced lung injury)

(SLUTSKY, 1999; MENTZELOPOULOS, ROUSSOS; ZAKYNTHINOS, 2005). Diversas

variáveis respiratórias têm sido utilizadas como marcadores do stress e strain pulmonares

(DEL SORBO; SLUTSKY, 2010). A pressão transpulmonar, que é a diferença entre a pressão

(15)

pressão pleural (estimada através da pressão esofágica), é considerada o equivalente clínico da

tensão mecânica ou stress. O equivalente da deformação ou strain, por sua vez, é a relação

entre o volume corrente (VC) e o volume de repouso pulmonar ou a capacidade residual

funcional (CRF) (PLATAKI; HUBMAYR, 2010).

A VILI resulta da lesão à barreira sangue-gás causada por ventilação mecânica.

Os determinantes da VILI são mais complexos do que se pensava inicialmente, e incluem a

natureza, duração e intensidade da exposição à VM com pressão positiva, bem como o padrão

de insulto inicial do pulmão. Dessa forma, esses determinantes envolvem volutrauma,

atelectrauma, barotrauma e biotrauma. A duração da exposição, como um elemento

importante na VILI foi demonstrada a partir de estudos em animais, que mostram uma relação

clara da duração da exposição pulmonar ao estiramento mecânico (overdistention) e

anormalidades estruturais ao microscópico. Em pequenos animais, a VILI grave pode ocorrer

dentro de 1 hora, enquanto animais grandes podem exigir maior duração, em até 24 h

(DREYFUSS; SAUMON, 1998).

O impacto do volutrauma foi demonstrado por Dreyfuss et al (1998) em um

estudo em que os autores ventilaram ratos com baixos volumes correntes e elevadas pressões

nas vias aéreas e observaram que os mesmos não desenvolveram nenhum edema pulmonar.

No entanto, quando utilizaram pressões negativas (simulando a ventilação com pulmão de

aço), geraram altos volumes correntes e consequentemente, edema pulmonar, o que mostrava

que os altos volumes correntes ainda eram o principal determinante do edema pulmonar.

Porém, o edema foi marcadamente reduzido com a implementação de PEEP, que manteve o

aspecto estrutural normal do epitélio alveolar. Este efeito certamente constitui um dos efeitos

protetores da PEEP na VILI.

Gajic e colaboradores (2004) desenvolveram um estudo observacional em UTI

(16)

altos volumes correntes (12 ml /Kg do peso corporal previsto), e concluiu-se que os fatores de

risco associados ao desenvolvimento de SARA após o início da ventilação mecânica foram a

utilização de grandes volumes correntes, bem como transfusão de produtos derivados do

sangue, acidemia e histórico de doença pulmonar restritiva. No estudo realizado por

Determann e colaboradores (2010) foram comparados pacientes criticamente enfermos sem

lesão pulmonar aguda sob ventilação mecânica utilizando volume corrente convencional (10

ml / kg) versus volume corrente inferior (6 ml / Kg). No entanto, o estudo foi interrompido

precocemente por razões de segurança, uma vez que o desenvolvimento de SARA foi

significativamente mais elevado no grupo com volume corrente convencional.

O atelectrauma, ou seja, a abertura e fechamento cíclico dos alvéolos também

podem favorecer ao desenvolvimento da VILI. Esse fenômeno torna o surfactante pulmonar

deficiente nas unidades das zonas adjacentes suscetíveis a desenvolver stress, criando um

ciclo vicioso de VILI, tanto em volumes correntes altos quanto baixos (DREYFUSS et al.,

1998). Contudo, a seleção de um volume inspiratório baixo (perto do volume de relaxamento

do pulmão), promove desrecrutamento e possivelmente danos aos pulmões, ao passo que a

seleção de um volume pulmonar elevado ao final da inspiração aumenta o risco de lesão por

hiperdistensão alveolar (BIEHL et al., 2013). Altos níveis de PEEP têm sido utilizados para

diminuir a quantidade de edema nas unidades alveolares. Esta ação da PEEP pode ser

multifatorial, dado o fato de que maior nível de PEEP pode levar ao uso de baixos volumes

correntes, assim como a preservação da produção de surfactante, e não impede mudanças na

permeabilidade do endotélio (BIEHL et al., 2013).

Recentemente, uma meta-análise com um total de 2.299 pacientes com SARA

mostrou que não houve redução da mortalidade no grupo de pacientes que receberam maiores

níveis de PEEP. No entanto, em uma análise de subgrupo deste trabalho, níveis elevados de

(17)

FIO2 < 200 mmHg) e dano potencial em pacientes com hipoxemia menos grave (PaO2 / FIO2

entre 200-300 mm Hg) (BRIEL et al., 2010).

O termo “barotrauma” tem sido amplamente utilizado em conexão à VILI devido

à gravidade do enfisema pulmonar (hiperaeração pulmonar) induzida por altos volumes

correntes. Os aspectos clínicos e radiológicos de barotrauma incluem: pneumotórax,

pneumomediastino, enfisema interlobulares e enfisema subcutâneo do pescoço, face, tórax ou

saco escrotal. Estas alterações podem ocorrer individualmente ou em várias sequências

patológicas (WHITEHEAD; SLUTSKY, 2002; GATTINONI et al., 2010). A transferência de

ar para fora dos alvéolos pode ser uma manifestação de enfraquecimento do tecido conjuntivo

pulmonar devido à doença de base e pode ser causado por pressões transpulmonares não

fisiológicas utilizadas durante a ventilação mecânica (OECKLER et al., 2008).

Portanto, durante a ventilação mecânica o stress e o strain são parâmetros em

constante variação, determinados pelas pressões nas vias aéreas e de platô, e pelo volume

corrente ao final da inspiração e da expiração, respectivamente (GATTINONI et al., 2003).

Adicionalmente, no pulmão com SARA, a distribuição dessas forças mecânicas não é

uniforme, aumentando a probabilidade de gerar VILI (GATTINONI et al., 2005).

Evidências convincentes ao longo da última década têm mostrado que a evolução

de pacientes com SARA pode ser influenciada favoravelmente por ventilação mecânica

protetora, uma estratégia com o objetivo de reduzir a tensão do pulmão e estresse por meio do

controle do volume corrente (VC) e limitação da pressão de platô inspiratória (GATTINONI

et al., 2010).

Apesar de intensa pesquisa, não há nenhuma terapia farmacológica específica

comprovada para diminuir a mortalidade na SARA. A única terapia confirmada é a estratégia

pulmonar protetora que foi desenvolvida com o objetivo de minimizar o stress e strain

(18)

pressão inspiratória, pressão de platô abaixo de 30 cmH2O, uso de PEEP mais alta, embora

seus valores ainda sejam controversos na literatura; e mais recentemente, a driving pressure

abaixo de 15 cmH2O. A driving pressure é utilizada para determinar a pressão de distensão do

pulmão e é calculada através da subtração: pressão de platô menos a PEEP (AMATO et al.,

2007; FRANK et al., 2011).

Permitir que pacientes em ventilação mecânica com SARA respirem

espontaneamente pode ter benefícios fisiológicos, nomeadamente, a prevenção da disfunção

diafragmática induzida pelo ventilador. A respiração espontânea evita a monotonia do padrão

ventilatório dos ciclos controlados, pode favorecer o recrutamento de regiões pulmonares

justa-diafragmáticas e permite a redução na dosagem de sedação, acelerando o desmame da

ventilação mecânica e melhorar a hemodinâmica (NEUMANN et al., 2005; PAPAZIAN et

al., 2010; MARINNI, 2012). Por outro lado, os esforços inspiratórios espontâneos podem

levar a altos volumes correntes, altas pressões transpulmonares (PTP), e excesso de trabalho

da respiração (RICHARD et al., 2013).

No estudo clínico e de bancada realizado por Richard e colaboradores (2013) os

autores avaliaram o impacto da respiração espontânea sobre o volume corrente e pressão

transpulmonar em pacientes com SARA e concluíram que a presença do esforço respiratório

pode levar a variações substanciais no volume corrente e na pressão transpulmonar, sendo

necessário atentar para esse fenômeno, pois volumes correntes altos podem ser nocivos para

os pacientes.

Nos últimos dez anos, refletindo o aumento do reconhecimento das conseqüências

iatrogênicas de muitas terapias, tem havido uma mudança no sentido de "menor intervenção"

nos pacientes graves, a ventilação protetora pulmonar é um exemplo desta filosofia

minimalista, com foco em menos ventilação para proteger o pulmão da lesão pulmonar

(19)

no sangue em valores na faixa normal. Outros exemplos de abordagem minimalista incluem a

administração de menos transfusões, menos intubações, menos repouso aos pacientes e menos

sedação (HÉBERT et al., 1999; HILL et al., 2007; KRESS, 2009; WUNSCH; KRESS, 2009).

Os agentes bloqueadores neuromusculares também são utilizados em mais de 25%

dos pacientes com SARA, porém, a maioria dos autores recomenda minimizar a sua

utilização, em grande parte devido a preocupações de longo prazo com a fraqueza muscular

decorrente de seu uso (RAGHAVENDRAN et al., 2008; RUBENFELD et al., 2005; WARE;

MATTHAY, 2000).

Porém, em um estudo recente, Papazian e colaboradores (2010), apresentaram

resultados intrigantes sobre o uso do bloqueio neuromuscular em pacientes com SARA. Os

investigadores selecionaram aleatoriamente 340 pacientes para receber bloqueadores

neuromusculares (cisatracúrio) ou placebo por um período de 48 horas. Ambos os grupos

foram submetidos à ventilação mecânica de acordo com a estratégia de proteção previamente

citada para diminuir a mortalidade. Foi observado que a taxa ajustada de sobrevivência de 90

dias e o tempo fora do ventilador foram maiores no grupo que recebeu cisatracúrio em

comparação ao grupo que recebeu placebo. Também aumentou o tempo fora do ventilador, e,

importante, não aumentou a incidência de fraqueza muscular (PAPAZIAN et al., 2010).

Os autores acreditam que o paciente com esforço muscular pode ter um aumento

da frequência respiratória por múltiplas causas, gerando um aumento do volume corrente,

expiração ativa e assincronia paciente-ventilador, o que pode piorar potencialmente o stress, o

strain e, consequentemente, a VILI (Figura 1) (SLUTSKY; TREMBLAY, 2006, SLUTSKY,

(20)
(21)

Desta forma, a assincronia paciente-ventilador pode ser definida como um

desencontro entre os tempos inspiratório e expiratório do paciente e do ventilador pulmonar,

sendo comum durante a ventilação assistida (THILLE et al., 2006). Considerando que o

objetivo do suporte ventilatório é fornecer algum grau de descanso para os músculos

respiratórios (JOLLIET; TASSAUX, 2006), o efeito oposto pode ocorrer se o paciente e o

ventilador travarem uma luta entre objetivos conflitantes em vez de compartilharem o

trabalho respiratório (KONDILI; PRINIANAKIS; GEORGOPOULOS, 2003).

Quase um quarto dos pacientes intubados apresentam frequentes episódios de

assincronia durante a ventilação mecânica assistida (VITACCA et al., 2004; THILLE et al.,

2006). Thille et al (2006) observaram que a assincronia considerada grave acontece em 24%

dos pacientes ventilados mecanicamente e se associa, em média, a um aumento de 18 dias de

permanência do paciente na ventilação mecânica. Portanto, a assincronia pode atrasar a

descontinuação do suporte ventilatório, resultando em mais complicações, as quais

potencialmente aumentarão a morbidade, a mortalidade e o custo total para os sistemas de

saúde (OAKES; SHORTALL, 2005).

A assincronia paciente - ventilador, muitas vezes limita o uso de baixos volumes

correntes nos pacientes com alta demanda ventilatória (ou seja, pacientes com SARA

predispostos à ventilação minuto alta devido à acidose metabólica e grande espaço morto).

Portanto, ajustes nas configurações do ventilador e sedativos são modestamente eficazes na

limitação da assincronia paciente - ventilador, muitas vezes necessitando do uso de bloqueio

neuromuscular (PAPAZIAN et al., 2010; BIEHL et al., 2013).

Diante isso, a administração dos bloqueadores neuromusculares impediria as

variações do volume corrente que ocorrem por ciclos gerados pelo paciente e também a

expiração ativa, permitindo assim, uma melhor sincronia paciente-ventilador e, em teoria,

(22)

Ainda nesse contexto, com o objetivo de reduzir a assincronia paciente ventilador

os ventiladores mecânicos mais modernos oferecem vários modos e recursos ventilatórios

diferentes. Durante a ventilação mecânica passiva estes modos são indistinguíveis dos

convencionais se ajustadas as mesmas cofigurações. Porém, a presença de respiração

espontânea pode alterar significativamente o padrão respiratório, dependendo do modo com o

qual o paciente está sendo ventilado (RICHARD et al., 2013). Com base no exposto, o

sistema AutoFlow® (AF) foi desenvolvido pela Drager® com a proposta de ser um modo de

ventilação mecânica com volume controlado onde o ventilador regula automaticamente o

fluxo inspiratório além de permitir a respiração espontânea durante o ciclo respiratório com o

objetivo de melhorar a sincronia paciente ventilador (LASOCKI et al., 2010).

Para desenvolver sua função, o sistema AutoFlow® regula automaticamente o

fluxo inspiratório através de um feedback gerado pelo ajuste do volume corrente alvo dividido

pela complacência pulmonar que é medida ciclo a ciclo (LASOCKI et al., 2010). Outra

vantagem apresentada pelo fabricante é o fato de ser possível a ocorrência de respiração

espontânea durante todo o ciclo respiratório devido às válvulas inspiratória e expiratória

permanecerem abertas durante todas as fases do ciclo respiratório mecânico (DRAGER,

2012).

Ainda segundo o fabricante, nos modos convencionais de volume controlado, o

fluxo constante nem sempre corresponde à demanda do paciente levando a assincronia

paciente-ventilador, gerando picos de pressão e maior utilização de sedação para adaptar o

paciente ao ventilador. Além disso, a respiração espontânea contra válvulas fechadas se

tornaria uma luta fútil, pois tentativas de exalar o ar durante a fase inspiratória mecânica

geraria altas pressões nas vias aéreas além de assincronia paciente-ventilador. Desta forma, o

AutoFlow® tem a proposta de permitir ao paciente liberdade para respirar de forma

(23)

paciente-ventilador quando comparado com os modos ventilatórios controlados a volume

convencionais (DRAGER, 2012).

Em um estudo realizado por Pinheiro e colaboradores (2002), os autores

compararam os modos VCV e PCV em modelo animal de SARA e concluíram que o uso de

BNM é favorável no sentido de reduzir o consumo de oxigênio da respiração que pode ser

muito elevado na SARA, porém não houve diferenças significativas entre modos em relação a

trocas gasosas ou mecânica pulmonar.

Além dos modos ventilatórios, o ajuste dos parâmetros ventilatórios também é de

fundamental importância para a sincronia paciente ventilador, entre eles, o ajuste da

frequência respiratória é uma configuração fundamental no manejo da ventilação mecânica.

Os estudos em animais têm mostrado que para a mesma relação volume corrente / strain,

maiores frequências respiratórias podem intensificar VILI (HARTMANN et al., 2011). Além

disso, estudos com animais têm demonstrado que os pulmões ventilados em baixas

frequências respiratórias produziram menos edema e hemorragia perivascular do que aqueles

ventilados em frequências respiratórias mais elevadas (HOTCHKISS et al., 2000). No

entanto, na prática clínica, a frequência do ventilador muitas vezes precisa atender à demanda

do paciente.

Assim, torna-se evidente que o grau da lesão pulmonar associada à ventilação

mecânica é determinada pela interação entre os parâmetros ventilatórios ajustados e a

extensão da lesão dos pulmões dos pacientes com SARA (DREYFUSS; SAUMON, 1998;

GATTINONI et al., 2003; GARCIA; PELOSI; ROCCO et al., 2008). Por consequência, nas

últimas décadas, muitos estudos estão sendo realizados com o intuito de caracterizar

estratégias ventilatórias que minimizem a indução da lesão pulmonar associada à ventilação

mecânica, otimizando parâmetros ventilatórios, como as pressões e o volume corrente

(24)

SYNDROME NETWORK, 2000; WHITEHEAD; SLUTSKY, 2002; COOPER, 2004;

MOLONEY, GRIFFITHS, 2004; BROWER et al., 2004; GRASSO et al., 2005; VILLAR et

al., 2006).

Diante disto, este estudo levanta muitas perguntas para além dos relativos

possíveis mecanismos de ação dos bloqueadores neuromusculares. Será que a otimização de

ajustes do ventilador mecânico poderia reduzir a assincronia paciente ventilador em pacientes

com esforço muscular, reduzindo assim os determinantes da VILI (stress e strain)?

E ainda, qual seria o efeito de modos ventilatórios com fluxo livre, como PCV e

VCV com AutoFlow® sobre a manutenção da estratégia ventilatória protetora? Conseguiriam

manter o VC ao mesmo tempo que aumentariam a sincronia de fluxo?

1.1 Hipóteses

As hipóteses do estudo, com base na revisão da literatura acima apresentada, são:

1. O esforço muscular respiratório promove flutuações significativas do volume

corrente e das pressões alveolares em modos ventilatórios controlados à volume ou à pressão

ou ainda gerando assincronias paciente-ventilador

2. O ajuste da frequência respiratória programada do ventilador deve influenciar

este fenômeno por gerar menos assincronia paciente-ventilador reduzindo, portanto o stress e

o strainpulmonares causadores da VILI

3. A otimização da frequência respiratória programada do ventilador mecânico

nos modos comumente usados na estratégia protetora pode reduzir a assincronia paciente

(25)

mecânica à beira do leito e reduzindo as lesões pulmonares (stress e strain) induzidas pela

ventilação mecânica.

4. A utilização de modos ventilatórios com fluxo livre como o PCV ou VCV com

o sistema AutoFlow® podem minimizar a assincronia de fluxo mas podem eventualmente

resultar em maiores flutuações de volumes correntes e pressões pulmonares.

1.2 Justificativa

Nas últimas décadas houve grandes avanços na compreensão dos mecanismos

fisiopatológicos da VILI. Por outro lado, persiste a dúvida sobre a melhor maneira de se

implementar a estratégia ventilatória protetora de baixos volumes correntes na SARA. Na

prática diária não há consenso se faz diferença o emprego de modos ciclados a volume ou

pressão controlada, ou mesmo, modos híbridos, como o AutoFlow®. Além disso, um ajuste

fundamental, a frequência respiratória, não tem sido examinado em detalhe como parte

essencial da estratégia protetora. Abordar estes aspectos da VM na SARA se faz necessário.

Uma vez conhecido qual a melhor forma par otimização da VM protetora, é possível que se

(26)

2 OBJETIVOS

2.1 GERAL

Avaliar as influências do esforço muscular e da assincronia paciente-ventilador

sobre o “strain” e o “stress” pulmonares em modelo pulmonar mecânico de síndrome da

angústia respiratória aguda.

2.2 ESPECÍFICOS

Comparar os modos ventilatórios controlados a volume (VCV), a pressão (PCV)

e o sistema AutoFlow® quanto ao grau de “strain” e o “stress”pulmonares durante ciclos

ventilatórios assistidos com esforço muscular respiratório

Avaliar o efeito do ajuste da frequência respiratória nos modos ventilatórios com

ciclos assistidos sobre a interação paciente-ventilador e sobre o “strain” e o “stress”

(27)

3 MATERIAIS E MÉTODOS

Trata-se de um estudo experimental de bancada (bench study), realizado no

laboratório da respiração (RespLab) vinculado ao Programa de Pós-Graduação em Ciências

Médicas e ao Departamento de Medicina Clínica da Faculdade de Medicina da Universidade

Federal do Ceará (UFC).

3.1 Configuração do “paciente” simulado: padrão de esforço muscular e mecânica

respiratória

Para este estudo foi utilizado o simulador mecânico de respiração, o ASL 5000®.

Trata-se de um simulador de pulmão computadorizado, que consiste de um pistão em

movimento dentro de um cilindro complacente (INGMAR MEDICAL, Pittsburg, PA, EUA,

2006; FERREIRA et al., 2009; VASCONCELOS et al., 2013). A complacência pulmonar, a

resistência de vias aéreas e o perfil da pressão muscular inspiratória (pressão negativa criada

pelos músculos respiratórios - Pmus) podem ser detalhadamente configurados pelo usuário

(figura 2). O ASL 5000® utiliza a equação do movimento do gás para executar suas funções:

(28)

Ventilador mecânico

ASL 5000

Dados da simulação

Parâmetros do modelo e perfil da respiração

Controlador embutido

Pressão Posição

Motor de acionamento

direto

Figura 2: Esquema representativo do funcionamento do simulador ASL 5000® (Modificado

de IngMar Medical, Pittsburg, PA, EUA, 2006).

Foi estudado um modelo pulmonar com mecânica respiratória restritiva simulando

condições observadas em pacientes com SARA. A complacência foi configurada em 25ml/cm

H2O e resistência inspiratória de vias aéreas 10 cmH2O/L/sec (FERREIRA et al., 2009). O

esforço muscular (Pmus) foi ajustado em 3 situações distintas: A- modelo sem esforço

muscular (Pmus: zero cmH2O); B- modelo com esforço muscular inspiratório próximo do

normal (Pmus: -5 cmH2O) e C- modelo com esforço muscular inspiratório e expiratório

(Pmus: -5/ +5 cmH2O) (Figura 3).

Na situação A, a frequência respiratória do simulador foi ajustada em zero e nas

situações B e C a frequência respiratória foi ajustada em 20 rpm de forma que o esforço

(29)

Figura 3: Perfil da contração muscular. A- Modelo sem esforço muscular (Pmus: zero cmH2O

- f: zero rpm). B- Modelo com esforço muscular inspiratório próximo do normal (Pmus: -5

cmH2O - f: 20 rpm). C- Modelo com esforço muscular inspiratório e expiratório (Pmus: -5 /

+5 cmH2O – f: 20 rpm).

3.2 Configurações dos ventiladores mecânicos

Em seguida os ventiladores mecânicos foram conectados ao ASL 5000® através

de um tubo orotraqueal nº 8,0 mm (MURATA et al., 2010), simulando o paciente intubado na

UTI. Os ventiladores mecânicos incluídos no estudo foram: Esprit V-1000 (Respironics®,

Murrysville, EUA), DX 3012 (Dixtal®, Buenos Aires, Argentina), Servo I (Maquet®; Solna,

Suécia), Puritan-Bennet 840 (Covidien Mansfield, MA, EUA) e Savina 300 (Drager®,

Lübeck, Alemanha) todos com circuitos duplos próprios dos fabricantes, sendo um ramo

inspiratório e outro expiratório conectados através de uma peça em “Y” ao tubo traqueal.

(30)

Figura 4: Montagem do experimento. ASL 5000® conectado ao ventilador mecânico através de um tubo orotraqueal nº 8,0 mm (seta preta).

Todos os ventiladores foram calibrados e configurados em dois modos: no modo

ventilação por volume controlado (VCV), com onda de fluxo quadrada e volume corrente

(VC) de 420 ml e no modo pressão controlada (PCV), com delta de pressão inspiratória acima

da PEEP necessária para gerar um VC de 420 ml, estimando-se um VC de 6ml/kg para um

adulto do sexo masculino de 70kg de peso ideal. Em ambos os modos, foi ajustado uma PEEP

de 10 cm H2O, tempo inspiratório (TI) de 0,8 segundos e sensibilidade à pressão de -2 cmH2O

(VASCONCELOS, 2013). O ventilador Savina 300 foi testado também com o sistema

AutoFlow® ativado no modo VCV (VCV-AF) com os mesmos parâmetros descritos acima.

3.3 Análise e desfechos

Cada simulação teve a duração de 5 minutos e após a estabilização dos cenários

de cada experimento, ciclos representativos de cada simulação foram coletados para análise

off-line realizada através do software ASL 5000® (Labview; National Instruments; Austin,

TX, EUA). Foram analisadas as seguintes variáveis: o VC máximo, a pressão alveolar no

(31)

final da inspiração, a pressão transpulmonar no final da expiração, a driving pressur, opico de

fluxo inspiratório e análise das curvas de mecânica nos seguintes ajustes: nos modos VCV,

VCV-AF e PCV com frequência respiratória do ventilador de 15 rpm, (menor que a do

“paciente”) e de 25 rpm (maior que a do “paciente”). Os mesmos parâmetros foram analisados

no modelo simulado sem esforço muscular (Tabela 1).

Tabela 1: Condição experimental. Ajuste dos modos ventilatórios

e frequência respiratória de acordo com o modelo simulado.

Condição Experimental Modo VCV Modo PCV

f programada f programada

(rpm) (rpm)

Pmus 0 f = 0 15 15

Pmus - 5 f= 20 15 / 25 15 / 25

Pmus - 5 / + 5 f = 20 15 / 25 15 / 25

De acordo com as curvas e parâmetros fornecidos pelo software do ASL5000®

(Labview; National Instruments; Austin, TX), o VC máximo e a pressão alveolar foram

medidos no final da inspiração de cada ciclo respiratório; a PEEP efetiva foi medida na curva

da pressão alveolar no final da expiração e as pressões transpulmonar no final da inspiração e

no final da expiração foram calculadas através da subtração da pressão alveolar menos a Pmus

(pressão alveolar – Pmus) durante o momento final da inspiração e expiração respectivamente

(32)

Figura 5: Ciclo respiratório representativo ilustrando na cor branca a curva de VC, em laranja a curva de pressão alveolar e em azul a curva de Pmus. O ponto de mensuração do VC máximo ilustrado pela seta vermelha; a pressão alveolar no final da inspiração representado pela seta preta, a PEEP no final da expiração pela seta amarela; o ponto de mensuração e cálculo das pressões transpulmonar no final da inspiração e no final da expiração representadas pelos tracejados preto e vermelho respectivamente.

A driving pressure ou pressão de distensão foi calculada utilizando-se os valores

da pressão alveolar no final da inspiração de cada ciclo, subtraindo a PEEP correspondente

(BARBAS et al., 2014).

Foi utilizado o programa Matlab versão 8.0.0.783 (R2012b) para gerar curvas da

pressão transpulmonar dos ciclos representativos de cada condição experimental, que foram

obtidas pela resultante da pressão alveolar subtraída da Pmus.

Os resultados foram apresentados como mínimo, mediana e máximo.

Considerando-se a estabilidade do modelo mecânico e sua variabilidade mínima, quase

(33)

testes estatísticos comparativos (FERREIRA et al., 2009). Diferenças consideradas com

(34)

4 RESULTADOS

A figura 6 apresenta os valores de volume corrente e da pressão transpulmonar no

final da inspiração (PTP insp), no modo VCV, durante as cinco condições experimentais, nos

cinco ventiladores utilizados. Tanto o VC quanto a PTP insp se mantiveram estáveis (sem

variabilidade) quando simulada a condição de bloqueio neuromuscular (Pmus= 0). O mesmo

fenômeno foi observado quando o modelo se encontrava sincrônico com o ventilador (f

programada de 15 rpm); tanto com esforço muscular apenas inspiratório (Pmus -5 cmH2O)

quanto com esforço muscular inspiratório e expiratório (Pmus -5/+5 cmH2O) não houve

variabilidade da PTP insp nem do VC, no qual os valores se mantiveram abaixo ou próximo

de 6ml/kg, com exceção do ventilador Savina 300 com o sistema AF ativado, onde o VC

ultrapassou os 6ml/kg mesmo na condição de bloqueio neuromuscular. Embora os valores de

PTP insp e VC tenham permanecido estáveis e sem variabilidade nas condições de sincronia

como nos demais ventiladores, o ventilador Savina com sistema AF ativado, ofertou VC

maior e gerou maiores PTP insp em todas as condições experimentais.

Nas condições em que o modelo se encontrava assincrônico (f programada de

25rpm), tanto para a Pmus -5 cmH2O quanto para Pmus -5/+5 cmH2O, houve variação da PTP

insp e do VC, sendo extrapolado o limite ajustado de 6ml/kg em alguns ventiladores,

especialmente na condição de Pmus -5/+5 cmH2O. Ressalta-se que a PTP insp e o VC

seguiram mesmo padrão de variabilidade nas cinco condições experimentais estudadas.

Porém, observa-se que os valores de PTP insp se mantiveram próximos ou acima do valor

considerado pela literatura como fisiológico de < 25 cmH2O (TALMOR et al., 2008) em todas

as condições experimentais, enquanto que o VC só esteve acima de 6ml/kg nas situações de

(35)

A figura 7 mostra os valores de pressão alveolar no final da inspiração e driving

pressure na modalidade VCV. A pressão alveolar no final da inspiração manteve valores

semelhantes nas condições de bloqueio neuromuscular e com Pmus – 5 cmH2O quando houve

sincronia, porém observa-se uma variabilidade, com valores inferiores de pressão alveolar no

final da inspiração na condição de assincronia com a mesma Pmus. Observa-se ainda,

elevação da pressão alveolar no final da inspiração quando ajustado Pmus – 5/+5 cmH2O

tanto na condição sincrônica quanto assincrônica ultrapassando o valor considerado de

segurança pela literatura de 30 cmH2O. A driving pressure apresentou mesmo comportamento

da pressão alveolar no final da inspiração em todas as condições experimentais, porém os

valores ultrapassaram o limite de segurança (15 cmH2O) principalmente nas condições Pmus

– 5 cmH2O quando assincrônico e Pmus – 5/+5 cmH2O, tanto sincrônico quanto assincrônico.

Vale destacar que os valores de mediana da driving pressure e de pressão alveolar ao final da

inspiração foram mais elevados nas condições com sincronia do que com assincronia,

principalmente na condição de esforço muscular inspiratório e expiratório.

Assincrônico Sincrônico Assincrônico

Pmus -5 Pmus -5/+5

Vol um e C orr ent e (m L/ Kg) 3 4 5 6 7 8 9 Sincrônico Bloqueado Pre ss ão t ra ns pul m ona r fi na l da ins pi ra çã o (c m H2 O)

Bloqueado Sincrônico Assincrônico Sincrônico Assincrônico Pmus -5 Pmus -5/+5

20 22 24 26 28 30 32

Assincrônico Sincrônico Assincrônico

SERVO I ESPRIT DIXTAL PB 840 SAVINA SAVINA AF Col 7 Col 8 SERVO I ESPRIT DIXTAL PB 840 SAVINA SAVINA AF Col 15 Col 16 SERVO I ESPRIT DIXTAL PB 840 SAVINA SAVINA AF Col 23 Col 24 Sincrônico

VCV

(36)

15 20 25 30 35

Bloqueado Sincrônico Assincrônico Sincrônico Assincrônico

Pmus -5 Pmus -5/+5

Pre ss ão a lve ol ar fi na l da ins pi ra çã o (c mH 2 O) 5 10 15 20 25

Bloqueado Sincrônico Assincrônico Sincrônico Assincrônico

Pmus -5 Pmus -5/+5

Dri vi ng Pre ss ure (c m H2 O)

Assincrônico Sincrônico Assincrônico

SERVO I ESPRIT DIXTAL PB 840 SAVINA SAVINA AF Col 7 Col 8 SERVO I ESPRIT DIXTAL PB 840 SAVINA SAVINA AF Col 15 Col 16 SERVO I ESPRIT DIXTAL PB 840 SAVINA SAVINA AF Col 23 Col 24 Sincrônico VCV

Figura 7: Pressão alveolar no final da inspiração (esquerda) e Driving pressure no final da inspiração (direita)

nas cinco condições experimentais, nos cinco ventiladores estudados na modalidade VCV. Valores apresentados em mínimo, mediana e máximo.

A figura 8 ilustra os valores de PEEP e pressão transpulmonar no final da

expiração na modalidade VCV. A PEEP se manteve com valores próximos ao ajustado (10

cmH2O) em todas as condições, com exceção das condições de assincronia, observando-se

tanto um aumento da PEEP total (PEEP + auto-PEEP), quanto sua redução abaixo do

programado (despressurização) quando Pmus – 5/+5 cmH2O. Apenas o ventilador Savina

300, no modo VCV-AF, não apresentou queda dos valores de PEEP abaixo do valor

programado (despressurização) nas condições de assincronia. A pressão transpulmonar no

final da expiração apresentou comportamento semelhante ao da PEEP em todas as condições

(37)

6 8 10 12 14 16 18 20 PEE P (c m H2 O)

Bloqueado Sincrônico Assincrônico Sincrônico Assincrônico

Pmus -5 Pmus -5/+5

7 8 9 10 11 12 13 14

Bloqueado Sincrônico Assincrônico Sincrônico Assincrônico

Pmus -5 Pmus -5/+5

Pr es sã o t ra ns pu lm on ar fi na l da exp ira çã o (c m H2 O)

Assincrônico Sincrônico Assincrônico

SERVO I ESPRIT DIXTAL PB 840 SAVINA SAVINA AF Col 7 Col 8 SERVO I ESPRIT DIXTAL PB 840 SAVINA SAVINA AF Col 15 Col 16 SERVO I ESPRIT DIXTAL PB 840 SAVINA SAVINA AF Col 23 Col 24 Sincrônico

VCV

Figura 8: PEEP no final da inspiração (direita) e Pressão transpulmonar no final da expiração (esquerda) nas cinco condições experimentais, nos cinco ventiladores estudados na modalidade VCV. Valores apresentados em mínimo, mediana e máximo.

A figura 9 apresenta os valores de volume corrente e da pressão transpulmonar no

final da inspiração (PTP insp), no modo PCV, durante as cinco condições experimentais, nos

cinco ventiladores utilizados. Assim como no modo VCV, o VC e a PTP insp se mantiveram

sem variabilidade quando simuladas as condições de bloqueio neuromuscular e com sincronia

(f programada de 15). Nas condições de assincronia houve variabilidade da PTP insp e do

VC, especialmente quando Pmus -5/+5 cmH2O, onde os valores mínimos de VC

ultrapassaram o limite de 6ml/kg, e dessa forma tanto VC quanto PTP insp obtiveram valores

(38)

3 4 5 6 7 8 9 Vol um e C orre nt e (m l/ kg)

Bloqueado Sincrônico Assincrônico Sincrônico Assincrônico

Pmus -5 Pmus -5/+5

20 22 24 26 28 30 Pre ss ão t ra ns pul m ona r no fina l da ins pi ra çã o (c m H2 O)

Bloqueado Sincrônico Assincrônico Sincrônico Assincrônico

Pmus -5 Pmus -5/+5

SERVO I ESPRIT DIXTAL PB 840 SAVINA Col 6 Col 7 Col 8 Col 9 Col 10 Col 11 SAVINA Col 13 Col 14 Col 15 Col 16 Col 17 Col 18 SAVINA Col 20 Col 21 Col 22 Col 23 Col 24 Col 25 SAVINA Col 27 Col 28 Col 29 Pre ss ão t ra ns pul m ona r fi na l da e xpi ra çã o (c m H

Sincrônico Assincrônico Sincrônico Assincrônico

PCV

Figura 9: Volume corrente (esquerda) e Pressão transpulmonar no final da inspiração (direita) nas cinco condições experimentais, nos cinco ventiladores estudados na modalidade PCV. Valores apresentados em mínimo, mediana e máximo.

A figura 10 mostra os valores de pressão alveolar no final da inspiração e driving

pressure na modalidade PCV. Assim como no modo VCV, também foi observada

variabilidade dos valores pressão alveolar no final da inspiração e da driving pressure nas

condições assincrônicas, estando os valores de pressão alveolar acima de 30 cmH2O quando

Pmus – 5/+5 cmH2O, tanto na condição sincrônica quanto assincrônica e os valores de driving

pressure acima de 15 cmH2O em todas as condições, especialmente quando Pmus – 5/+5

cmH2O. Observou-se que também no modo PCV os valores de mediana da driving pressure e

de pressão alveolar ao final da inspiração foram mais elevados nas condições com sincronia

do que com assincronia, principalmente na condição de esforço muscular inspiratório e

(39)

15 20 25 30 35 Pre ss ão a lve ol ar no fina l da ins pi ra çã o (c m H2 O)

Bloqueado Sincrônico Assincrônico Sincrônico Assincrônico

Pmus -5 Pmus -5/+5

5 10 15 20 25 Dr ivi ng Pre ss ure (c m H2 O)

Bloqueado Sincrônico Assincrônico Sincrônico Assincrônico

Pmus -5 Pmus -5/+5

SERVO I ESPRIT DIXTAL PB 840 SAVINA Col 6 Col 7 Col 8 Col 9 Col 10 Col 11 SAVINA Col 13 Col 14 Col 15 Col 16 Col 17 Col 18 SAVINA Col 20 Col 21 Col 22 Col 23 Col 24 Col 25 SAVINA Col 27 Col 28 Col 29 Pre ss ão t ra ns pul m ona r fi na l da e xpi ra çã o (c m H

Sincrônico Assincrônico Sincrônico Assincrônico

PCV

Figura 10: Pressão alveolar no final da inspiração (esquerda) e Driving pressure no final da inspiração

(direita) nas cinco condições experimentais, nos cinco ventiladores estudados na modalidade PCV. Valores apresentados em mínimo, mediana e máximo.

A figura 11 ilustra os valores de PEEP e pressão transpulmonar no final da

expiração na modalidade PCV, que assim como em VCV, apresentaram comportamento

semelhante com a PEEP, se mantendo próximo ao valor ajustado de 10 cmH2O, com exceção

das condições com assincronia onde houve variabilidade dos valores, observando-se tanto

aumento da PEEP efetiva (auto-PEEP) quanto sua redução abaixo do programado

(40)

PCV

6 8 10 12 14 16 18 20 PE E P (c m H2 O)

Bloqueado Sincrônico Assincrônico Sincrônico Assincrônico

Pmus -5 Pmus -5/+5

6 8 10 12 14 SERVO I ESPRIT DIXTAL PB 840 SAVINA Col 6 Col 7 Col 8 Col 9 Col 10 Col 11 SAVINA Col 13 Col 14 Col 15 Col 16 Col 17 Col 18 SAVINA Col 20 Col 21 Col 22 Col 23 Col 24 Col 25 SAVINA Col 27 Col 28 Col 29 Pre ss ão t ra ns pul m ona r fi na l da e xpi ra çã o (c m H2 O)

Bloqueado Sincrônico Assincrônico Sincrônico Assincrônico

Pmus -5 Pmus -5/+5

Figura 11: Pressão transpulmonar no final da expiração (esquerda) e PEEP no final da inspiração (direita) nas cinco condições experimentais, nos cinco ventiladores estudados na modalidade PCV. Valores apresentados em mínimo, mediana e máximo.

A figura 12 ilustra as curvas representativas (de apenas um dos cinco

ventiladores) que foram reproduzidas na simulação durante as cinco condições experimentais

estudadas, nos modos VCV, VCV-AF e PCV respectivamente. Na figura pode-se observar o

comportamento variável do VC e da pressão alveolar nas condições de assincronia tanto com

Pmus -5 cmH2O quanto com Pmus -5/+5 cmH2O , destacando o impacto do efeito Pmus

(respiração espontânea) nas situações de assincronia. Observa-se no quadrante C a ocorrência

de esforço negativo no meio ou final de alguns ciclos respiratórios causando queda da pressão

alveolar e o mesmo efeito se repetindo no quadrante E, além do esforço positivo gerando

aumento da pressão alveolar no meio ou no final do ciclo e causando variações do VC em

ambas as situações, o que impacta de forma direta na pressão transpulmonar tanto no final da

inspiração quanto no final da expiração. Observa-se ainda que no modo VCV com o sistema

AutoFlow® ativado, o VC e a pressão alveolar atingiram valores maiores em todas as

(41)

o modo PCV (Observar escalas das curvas representativas). O pico de fluxo inspiratório dos

cinco ventiladores durante as cinco condições experimentais está descrito nas tabelas 2, 3, 4 e

5 representadas no APÊNDICE A. Curvas representativas do fluxo inspiratório e expiratório e

de apenas um dos cinco ventiladores estão ilustradas no APÊNDICE B.

A A

B

C

D

E

VCV

VCV - AF

PCV

A A

B B

C C

D D

E E

Figura 12: Curvas representativas do ventilador Savina 300, nas cinco condições experimentais nos modos VCV (esquerda), VCV-AF (central) e PCV (direita). Curva de cor branca representando VC; cor

laranja a pressão alveolar e cor azul a Pmus. Condição A: bloqueado Pmus 0; B: Pmus -5 cmH2O (f 15)

- sincrônico; C: Pmus -5 cmH2O (f 25) - assincrônico; D: Pmus -5/+5 cmH2O (f 15) – sincrônico; E:

(42)

A figura 13 ilustra as curvas da pressão transpulmonar de ciclos representativos

(de apenas um dos cinco ventiladores), nas cinco condições experimentais em ambos os

modos (VCV à esquerda e PCV à direita), onde se pode observar de forma clara a

variabilidade e instabilidade da PTP quando o modelo encontrava-se em assincronia com o

ventilador (situações C e E). Abaixo de cada curva está destacado o valor médio da pressão

transpulmonar medido para a faixa de tempo representada, evidenciando maiores valores de

pressão transpulmonar nas situações de assincronia, sendo cerca de 1 a 2 cmH2O mais

(43)

A A

B B

C C

D D

E E

Figura 13: Curvas da pressão transpulmonar de ciclos representativos com os respectivos valores médios. VCV (esquerda), PCV (direita). Condição A: bloqueado Pmus 0; B: Pmus

-5 cmH2O (f 15) - sincrônico; C: Pmus -5 cmH2O (f 25) - assincrônico; D: Pmus -5/+5

cmH2O (f 15) – sincrônico; E: Pmus -5/+5 cmH2O (f 25) – assincrônico.

Valor médio: 13,1 Valor médio: 13,8

Valor médio: 14,5

Valor médio: 16,1

Valor médio:15,2

Valor médio:17,0

Valor médio: 13,9

Valor médio: 15,5

Valor médio: 14,9

(44)

5 DISCUSSÃO

Diante da complexidade de se estudar o impacto da assincronia

paciente-ventilador em pacientes criticamente doentes com SARA, o presente estudo utilizou um

modelo de bancada experimental, que agregou variações de modos ventilatórios, frequência

respiratória do ventilador e padrões de esforço muscular respiratório que permitiu simular

situações de assincronia e estudar seu impacto na mecânica respiratória de um pulmão com

SARA. Tendo em vista as dificuldades de se realizar estudos à beira do leito, o simulador de

pulmão, ASL 5000®, permite executá-los com uma simulação bastante realista, apresentando

boa reprodutibilidade e confiabilidade, com risco zero para os pacientes.

Os principais achados desse estudo foram: a frequência respiratória do ventilador

pulmonar ajustada acima da frequência respiratória do paciente gera assincronia paciente

ventilador causando grandes variações de VC e pressões pulmonares o que pode intensificar o

stress e strain pulmonares. O esforço muscular inspiratório e expiratório intensifica esse

fenômeno. As variações do VC refletem-se de forma direta na pressão transpulmonar no final

da inspiração. A driving pressure reflete a pressão transpulmonar de forma mais fidedigna do

que a pressão alveolar no final da inspiração. O sistema AutoFlow® gerou maiores volumes

correntes e pressões pulmonares diante das situações estudadas.

O ajuste da frequência respiratória é um parâmetro fundamental no manuseio da

ventilação mecânica (VM), especialmente nos pacientes que desenvolvem SARA. Na prática

clínica, a frequência ventilatória do ventilador muitas vezes precisa atender a demanda do

paciente, levando em consideração que na maioria dos ventiladores, nas modalidades

assistidas, a relação I:E é dependente da frequência respiratória e o tempo inspiratório é fixo,

fazendo com que o paciente eleve a frequência respiratória para suprir sua demanda. De

(45)

exigirá uma frequência entre 20 e 30 ciclos / min de acordo com a sua necessidade (BIEHL et

al., 2013). Porém, estudos em animais têm mostrado que altas frequências respiratórias podem

intensificar a VILI e que os pulmões ventilados em frequências respiratórias baixas

produziram menos edema e hemorragia perivascular do que aqueles ventilados em

frequências mais elevadas (HARTMANN et al., 2012). Os resultados do presente estudo

corroboram com esses achados, uma vez que o ajuste da frequência respiratória do ventilador

acima da frequência respiratória do paciente gerou assincronia paciente ventilador e variações

do volume corrente e pressões pulmonares incluindo valores acima dos limites considerados

seguros para a estratégia ventilatória protetora, o que pode favorecer o stress e strain

pulmonares. E ainda que se deva levar em consideração que o estudo trata-se de um modelo

mecânico no qual a frequência respiratória do paciente é fixa e não varia de acordo com suas

necessidades metabólicas, Richard et al (2013) compararam experimentos de bancada com

um estudo in vivo e mostrou que tanto em modelo mecânico quanto em pacientes o VC e sua

variabilidade pareciam ser influenciadas pela relação entre a frequência respiratória do

paciente e o ajuste da frequência respiratória do ventilador, que quanto maior fosse ajustada,

menor a possibilidade de ciclos respiratórios sincrônicos.

De acordo com Papazian e colaboradores (2010), permitir que pacientes em

ventilação mecânica com SARA respirem espontaneamente pode ter benefícios fisiológicos

como a prevenção da disfunção diafragmática induzida pelo ventilador. A respiração

espontânea reduz um padrão ventilatório monótono e pode favorecer o recrutamento do

pulmão, pode permitir a redução na dosagem de sedação e acelerar o desmame da ventilação

mecânica. Por outro lado, os esforços inspiratórios espontâneos podem levar a altos VC, altas

pressões transpulmonares e excesso de trabalho respiratório, de forma que o bloqueio

neuromuscular torna-se necessário para evitar assincronia paciente ventilador e facilitar a

(46)

enfatizam que a assincronia paciente-ventilador, muitas vezes limita o uso de baixos VC nos

pacientes com SARA e que os ajustes dos parâmetros ventilatórios e o uso de sedativos são

apenas modestamente eficazes na limitação da assincronia, muitas vezes necessitando do uso

de bloqueio neuromuscular. O presente estudo mostrou que no modelo mecânico, a condição

experimental que simulou bloqueio neuromuscular e as condições com esforço muscular

inspiratório e ainda, esforço muscular inspiratório/expiratório apresentaram efeitos

semelhantes sobre o VC e a pressão transpulmonar no final da inspiração, quando o modelo se

encontrava sincrônico com o ventilador (f 15rpm), sendo encontrados padrões diferentes de

variabilidade no VC e nas pressões pulmonares apenas nas condições em que o esforço

muscular estava associado à assincronia paciente ventilador (f 25rpm). Desta forma, é

razoável consderar que não necessariamente a presença do esforço muscular respiratório, ou

seja, da respiração espontânea seja o principal agravante dos mecanismos geradores da VILI

(volutrauma, barotrauma e atelectrauma). Por outro lado, o ajuste inadequado do ventilador,

sobretudo da frequência respiratória, ao gerar assincronias, este sim seria um fator associado a

potencializar os riscos de desenvolvimento de VILI. Esses dados corroboram com o estudo de

Richard et al (2013) que mostra que a presença de respiração espontânea tem efeitos

diferentes sobre a variabilidade do VC entre os diferentes modos ventilatórios e que este

efeito é fortemente dependente do nível de sincronia paciente- ventilador.

Segundo Gattinoni e colaboradores (2012) a pressão transpulmonar é considerada

como equivalente clínico de stress, enquanto o strain se associa com a variação de volume

corrente. No presente estudo observou-se uma semelhança dos padrões de variabilidade do

VC e da pressão transpulmonar no final da inspiração durante todas as condições

experimentais em ambos os modos. Nas condições de assincronia, especialmente quando

ajustado Pmus -5/+5 cmH2O, verificou-se uma variabilidade dos valores tanto do VC quanto

(47)

alveolar causada pelo esforço inspiratório no meio do ciclo respiratório o que pode gerar

atelectrauma. Os valores mais altos de PTP insp e VC, podem ser justificados pela presença

de auto-PEEP o que pode gerar volutrauma, fenômeno que sugere a ocorrência de stress e

strain pulmonar. Observou-se ainda que embora o VC e a PTP insp tenham apresentado

padrões semelhantes de variabilidade, a PTP insp se manteve próximos ou acima do valor

considerado pela literatura como fisiológico de < 25 cmH2O em todas as condições

experimentais, enquanto que o VC só esteve acima de 6ml/kg nas situações de assincronia,

com exceção de alguns ventiladores, sugerindo que o stress pulmonar pode ocorrer sem

necessariamente corresponder ao mesmo nível de strain pulmonar.

Briel e colaboradores (2010) afirmam que a redução do atelectrauma está ligada

com à otimização dos valores de PEEP. O nível de PEEP adequada, no entanto, continua a ser

um assunto de controvérsias. Ensaios clínicos randomizados e multicêntricos bem como

estudos de meta-análises, não confirmaram que PEEP superior a 12 cm de H2O, reduz a

mortalidade de pacientes com SARA (MEADE et al., 2008; BROWER et al., 2004;

MERCAT et al., 2008). Porém, sabe-se que um volume pulmonar no final da expiração muito

baixo pode estar relacionado nomeadamente a abertura cíclica e colapso de unidades

alveolares instáveis. Neste contexto, os efeitos prejudiciais da ventilação podem ser aliviados

pela aplicação de PEEP para impedir o desrecrutamento cíclico dos alvéolos, mas não alto o

suficiente para levar a sua inflação excessiva. No presente estudo os níveis de PEEP se

mantiveram próximos aos valores ajustados de 10 cmH2O em ambos os modos, com exceção

das condições em que houve assincronia, onde os valores de PEEP atingiram valores

superiores ao ajustado quando Pmus -5 cmH2O, sugerindo hiperinsuflação devido a presença

de auto PEEP; e valores inferiores ao ajustado quando Pmus -5/+5 cmH2O, sugerindo

Imagem

Figura 1: Mecanismos geradores da VILI. Parte superior da figura ilustrando uma situação  com  respiração  espontânea  gerando  assincronia  paciente-ventilador  e  os  mecanismos  causadores  da  VILI  (barotrauma,  volutrauma  e  atelectrauma)
Figura  2:  Esquema  representativo  do  funcionamento  do  simulador  ASL  5000 ®   (Modificado  de IngMar Medical, Pittsburg, PA, EUA, 2006)
Figura 3: Perfil da contração muscular. A- Modelo sem esforço muscular (Pmus: zero cmH 2 O  -  f:  zero  rpm)
Figura 4:  Montagem  do experimento.  ASL 5000 ®   conectado ao ventilador mecânico através  de um tubo orotraqueal nº 8,0 mm (seta preta)
+7

Referências

Documentos relacionados

EXPERIMENTANDO E DESCOBRINDO: A CONTRIBUIÇÃO DE UMA OFICINA PARA DESPERTAR ALUNOS DE NÍVEL MÉDIO PARA AS DIMENSÕES DA ÓPTICA COMO DISCIPLINA E CAMPO DE PESQUISA..

A realização deste trabalho teve como finalidade propiciar, por meio da escrita, um espaço de manifestação para os adolescentes participantes do PROJOVEM Adolescente,

Realizar a manipulação, o armazenamento e o processamento dessa massa enorme de dados utilizando os bancos de dados relacionais se mostrou ineficiente, pois o

As rimas, aliterações e assonâncias associadas ao discurso indirecto livre, às frases curtas e simples, ao diálogo engastado na narração, às interjeições, às

Estudos sobre privação de sono sugerem que neurônios da área pré-óptica lateral e do núcleo pré-óptico lateral se- jam também responsáveis pelos mecanismos que regulam o

Os filmes finos dos óxidos de níquel, cobalto e ferro, foram produzidos por deposição dos respectivos metais sobre a superfície de substratos transparentes no

Este trabalho tem como objetivo contribuir para o estudo de espécies de Myrtaceae, com dados de anatomia e desenvolvimento floral, para fins taxonômicos, filogenéticos e

Crisóstomo (2001) apresenta elementos que devem ser considerados em relação a esta decisão. Ao adquirir soluções externas, usualmente, a equipe da empresa ainda tem um árduo