• Nenhum resultado encontrado

Antimicrobial susceptibility of hospital acquired Stenotrophomonas maltophilia isolate biofilms

N/A
N/A
Protected

Academic year: 2021

Share "Antimicrobial susceptibility of hospital acquired Stenotrophomonas maltophilia isolate biofilms"

Copied!
9
0
0

Texto

(1)

braz j infect dis 2 0 1 6;20(4):365–373

w w w . e l s e v i e r . c o m / l o c a t e / b j i d

The

Brazilian

Journal

of

INFECTIOUS

DISEASES

Original

article

Antimicrobial

susceptibility

of

hospital

acquired

Stenotrophomonas

maltophilia

isolate

biofilms

Erlin

Sun

a,∗,1

,

Gehong

Liang

b,1

,

Lining

Wang

a

,

Wenjie

Wei

c

,

Mingde

Lei

a

,

Shiduo

Song

b

,

Ruifa

Han

a

,

Yubao

Wang

b

,

Wei

Qi

b,∗

aTheSecondHospitalofTianjinMedicalUniversity,TianjinInstituteofUrology,Tianjin,China bTheSecondHospitalofTianjinMedicalUniversity,DepartmentofInfectiousDisease,Tianjin,China cUniversityofPennsylvania,DepartmentofAnatomyandCellBiology,Philadelphia,PA,UnitedStates

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8January2016

Accepted20April2016

Availableonline13May2016

Keywords: Stenotrophomonasmaltophilia Biofilm Antibioticresistance Nosocomial

a

b

s

t

r

a

c

t

Aims: WesoughttocharacterizetheantibioticsusceptibilityofstrainsofStenotrophomonas maltophiliaisolatedfromclinicalsamples,andtheroleofStenotrophomonasmaltophiliabiofilm

inantibioticresistance.

Methods:Fifty-oneclinicalStenotrophomonasmaltophiliaisolateswereobtainedfrompatients

withnosocomialinfectioninthesurgicalwardsandICUsofsixgeneralhospitalsinTianjin,

China.InvitromodelsofStenotrophomonasmaltophiliabiofilmswereestablishedand

con-firmedbyscanningelectronmicroscopyandfluorescencemicroscopywithsilverstaining.

Theminimalinhibitoryconcentrationsandbiofilminhibitoryconcentrationsofcommonly

usedantibioticsweredetermined.

Results:47of51strainswereresistanttothreeormoreantibiotics.42of51strainsformed

Stenotrophomonasmaltophiliabiofilmsinvitro.Stenotrophomonasmaltophiliabiofilmformation

greatlyreducedsensitivitytomosttestedantibiotics,butnottolevofloxacin.However,inthe

presenceoferythromycinscanningelectronmicroscopyrevealedthatlevofloxacininhibited

Stenotrophomonasmaltophiliabiofilmformation.FactorialANOVArevealedthaterythromycin

enhancedsusceptibilitytolevofloxacin,cefoperazone/sulbactam,andpiperacillin(p<0.05),

and an E modelrevealed thatlevofloxacin anderythromycin actedsynergistically in

biofilms,suggestingspecificuseofcombinedmacrolidetherapymayrepresentaneffective

treatmentforStenotrophomonasmaltophiliainfection.

Conclusions: Antibioticscouldactsynergisticallytocombattheprotectionconferredto

clini-calisolatesofStenotrophomonasmaltophiliabybiofilms.Macrolideantibioticsmaybeeffective

whereusedincombination.

©2016ElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-ND

license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthors.

E-mailaddresses:irenesunsun@yahoo.com(E.Sun),qiweitianjin@yahoo.com(W.Qi).

1 Theseauthorscontributedequallytothispaper.

http://dx.doi.org/10.1016/j.bjid.2016.04.002

1413-8670/©2016ElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

(2)

Introduction

Stenotrophomonas maltophilia (SMA) is an environmental

pathogen and opportunistic Gram-negative bacterium that

can infect immunocompromised patients or otherwise

healthypatientswhenintroducedbycontaminatedinvasive

medical devices.1 Dialysis technology, intubation, artificial

implantsandotherwidelyemployedmedicalmaterialscan

be colonized by bacteria, and SMA has been observed to

form bacterial biofilms (BBF) on this equipment. In

surgi-caldepartments,device-relatedcontaminationbypotentially

pathogenicbacteriacanserveasasourceforcross-infection,2

and nosocomial SMA infections have received increased

attention in recent years.3–11 SMA bacteremia has been

associatedwith mortality rates rangingfrom 14 to 69% in

immunocompromisedpatients.12–14

Treatment of SMA infection is complicated by its

nat-ural resistance to many antimicrobial drugs, including

carbapenems, and the rapid adaptation to the pulmonary

environment.15 SMAcanformBBFonhosttissues,

dramat-ically enhancing the resistance of SMA to therapeutically

important antibiotics including aminoglycosides,

fluoro-quinolones, and tetracycline.16–20 Thus, biofilm formation

represents an important mechanism of bacterial

antibi-oticresistance, and presents unique challenges in surgical

medicine, complicating therapeutic management of such

BBF.21,22

SMA biofilm formation was previously reported to be

associated with resistance to ceftazidime, cefepime,

ticar-cillin/clavulanic acid, piperacillin/tazobactam, aztreonam,

and gentamicin, but not to ciprofloxacin,

levoflox-acin, trimethoprim/sulfamethoxazole (TMP/SMX), or

meropenem.23 The fluoroquinolone moxifloxacin was

reportedtointerferewithSMABBFformation24,25; however

antibioticresistanceofclinicalisolateshasalsobeenwidely

reported,26mostlyinvolvingthestudyofstrainsisolatedfrom

cysticfibrosis(CF)patients.

In this study we sought to investigate the

antibiotic-susceptibility of SMA strains isolated from invasive

infec-tions in non-CF patients. Using a methodology previously

reported27,28weestablishedaninvitromodelofSMABBF,and

investigatedtheantibiotic-susceptibilityofSMAbiofilmsand

planktonicbacteria.Weassessedthecapacityofantibiotics,

appliedindividuallyandincombination,toreducegrowthand

biofilmformationofclinicalisolatesofSMA,inordertoguide

futureclinicaltreatmentofthesepatients.

Materials

and

methods

AntibioticsusceptibilityofSMAisolates

ClinicalSMAstrainswereobtainedfromhospitalizedpatients

with invasive infections that had originated from medical

manipulationinthesurgicalwardsandsurgicalICUsofsix

generalhospitalsinTianjin,China,between 2006and 2012

(Table1).TheMICsofSMAto12antibioticscommonlyused

forGram-negativebacilliweredeterminedbymicrobroth

dilu-tion,analyzedaccording tothe American National Clinical

and Laboratory Standards Institute(CLSI) guidelines.29 The

following strainswere assessedinparallel forquality

con-trol:ATCC27853,ATCC25922andATCC25923,preservedinthe

InfectiousDiseaseInstituteoftheSecondHospitalofTianjin

MedicalUniversity,China.

InvitromodelofSMABBF

UsingamethodologypreviouslyreportedbyCeri27,28we

estab-lished an in vitro model of SMA BBF, in a Mueller–Hinton

broth(MHB)-silicafilm system,aspreviouslydescribed.30,31

CryopreservedSMAwasrecoveredinsheepbloodagarplates

incubated aerobicallyovernight. A fresh singlecolony was

transferredtofreshMHBandincubatedfor8hat35◦C,from

which a 200␮L suspensionof 0.5McFarland was prepared

andtransferredtoa12-wellflat-bottomplate,inwhich

ster-ilesilicafilm(1cm×1cm×1mm,L×W×T)and1.8mLMHB

wereco-culturedat35◦Cfor12and24h.Afterwashingthree

timeswith0.9%sodiumchloridetoremoveplanktonic

bacte-ria, the BBF on the silica films was prepared. Theculture

mediumwas regarded asthenegativecontrol. Morphology

wasobservedbyscanningelectronmicroscopy(SEM)and

flu-orescencemicroscopy(FSM)asdescribedbelow.

Biofilmformationassessedusingfluorescencemicroscopy

withsilverstaining

Aspreviouslydescribed,32,33thebiofilmwasfixedin2.5%(v/v)

glutaraldehydeinPBS(0.1M,pH7.4)for24h,thenimmersed

insaturatedcalciumchloridesolutionfor15min,andrinsed

withddH2Obetweeneachstep.Thefilmwasimmersedin5%

silvernitratesolutionfor15min,immediatelystainedwith1%

hydroquinonefor2min,thenrinsedwithddH2O.Thefilmwas

fixedin5%sodiumthiosulfatesolutionfor2min,thenrinsed

inddH2OandanalyzedbyFSM.

Biofilmformationassessedusingscanningelectron

microscopy

Aspreviouslydescribed,25thesilicabiofilmwasfixedin2.5%

(v/v)glutaraldehydeinPBS(0.1M,pH7.4)at4◦Cfor2h,fixed

againwith1%osmicacidfor1h,thenrinsedwithPBS,

dehy-drated through a series of ethanol dilutions, then treated

withisoamylacetate.Thespecimenwasdriedinavacuum,

thencoatedwithplatinum–palladiumandanalyzedbySEMat

5–10kV.

Table1–SamplesfromwhichSMAwasisolated.

Tissues n(%)

Pus 7(13.7)

Intravascularcatheter 7(13.7) Postoperativeandburnwound 7(13.7) Bronchialsecretions/lavage 6(11.8) Urinarycatheter 6(11.8) Urine 5(9.8) Sputum 4(7.8) Bile 4(7.8) Blood 3(5.9) Asciticfluid 2(3.9)

(3)

brazj infect dis.2016;20(4):365–373

367

DeterminationoftheMIC

MICvaluesofthefollowingantibioticswerecalculatedwitha

brothmicrodilutionassayusingthetwofolddilutionmethod

accordingtotheCLSIguidelines34:ciprofloxacin (CIP),

levo-floxacin(LEV),piperacillin(PIP),ceftazidime(CAZ),

cefopera-zone/sulbactam(SCF),erythromycin(ERY),sulfamethoxazole

(SXT), and gentamycin (GM) within the range of CIP was

256–0.125mg/L,or512–0.125mg/L.

DeterminationoftheBIC

After dilution of the fresh SMA to 3×1010CFU/mL, 100␮L

oftheculturewastransferredtoeachwell ofaflat-bottom

96-wellmicrotiterplate.Aspreviouslydescribed,27,28,35,36BBF

wereformedbyimmersingthepegsofamodifiedpolystyrene

microtiterlidintothisplate,whichwasthenincubatedat35◦C

for24h.Peglidswereremoved,rinsedinPBS,thenplacedon

flat-bottommicrotiterplatescontainingantibiotics,and

incu-batedat35◦C.After24hpeglidswereremoved,rinsedthree

times in PBS, then transferredonto flat-bottom microtiter

platescontaining100␮LofMHBperwell,andbiofilmswere

transferredfrompegstowellsbycentrifugationat805×gfor

20min.Theopticaldensitywasmeasuredat650nm(OD650)

onamicrotiterplatecolorimeterbeforeandafterincubation

at35◦Cfor6h.

AdequatebiofilmgrowthwasdefinedasameanOD650

dif-ference(OD650at6hminustheOD650at0h)of≥0.05.BICsare

definedasthelowestconcentrationofantibioticinwhichthe

OD650was10%orlessofthemeanofthepositivecontrolwell

readings,representingatleasta1−log10growthdifference.

BBFcombinationsensitivitytestbycheckerboardmethod

ThesusceptibilityofbiofilmstoLEV,SCFandPIPaloneandin

combinationwithERYwasdeterminedbythecheckerboard

method.FivestrainsofSMA(numbered0020,0037,0040,0088,

0256)were selectedforthe followingtest. Silica filmswere

transferred toa 24-well flat-bottom microtiter plate. Then

2.0mLMHBwastransferredtothewell(blankcontrol),1.8mL

MHBwastransferredtoeachoftheotherwells.Accordingto

theMICvaluesofLEV,SCFandPIPagainsteachstrain,LEV,SCF

andPIPwasaddedtoyieldafinalconcentrationof1/2MIC,1

MICand2MIC,andERYwasaddedtoyieldafinal

concentra-tionof1/16MICand1/4MIC.Theplatewasincubatedat35◦C

for24h,thenafterwashingwithsterilephysiologicalsaline,

the silica films were ultrasonicated at 60W for at 15min.

ThecolonyconcentrationwascalculatedfromtheOD650 by

theATCC27853standardcurve(Y=1.26514×10−8X+0.48028,

withalinear rangebetween1.5×108 and9.6×103CFU/mL,

p<0.01).Thedensityofcoloniesonthesilicafilmwasrecorded

fromthreewellsinparallel.

Statisticalanalysis

CFUpercentimeterwasindicatedbymean±standard

devi-ation,andtheinteractionofcombinedtestingwasanalyzed

byfactorialexperimentdesignANOVA.Theimpactof

antibi-oticson biofilmgrowth was calculatedusing anE model

is based on the Bliss independence theory, described by

the equation Ii=(IA+IB)−(IIB), whereIi is the predicted

growth inhibitioncausedbythetheoretical combinationof

drugsAandB,andIAandIBrepresentthegrowthinhibition

causedbyeachdrugindividually.SinceI=1−E,whereE

rep-resentsgrowthinhibition,thefollowingequationisderived:

Ei=EEB. Ei represented the predicted growth inhibition

ofthetheoretical non-interactivecombination ofthedrugs

A and B, and EA and EB represent the growth inhibition

causedbyeach drugindividually.Interactionwasdescribed

asthedifference(E)betweenthepredictedand measured

growthinhibition(E=Epredicted−Emeasured).Statistically

sig-nificantinteractionsof<100%wereconsideredweak,thoseof

100–200%wereconsideredmoderate,andthose>200%were

consideredstrong.

Results

AntibioticsusceptibilityofclinicalSMAisolates

TheantibioticsusceptibilityofSMAisolateswasassessedand

intotal,47(92.1%)ofisolatedstrainswereresistanttothree

ormoreantibiotics.Themajorityoftestedstrainswere

resis-tanttocefotaxime(94.1%)amikacin(90.2%)cefritaxone(88.2%)

GM (82.4%) and CAZ(60.8%), and almost half ofall tested

strainswereresistanttocefoperazone(49.0%),PIP(45.1%)and

cefepime(45.1%).

ClinicalSMAisolatesformBBF

ThecapacityofclinicalisolatesofSMAstrain0314toform

biofilmsonthesurfaceofthesilicafilmsincubatedinMHB

wasassessedbyfluorescentmicroscopy.Maturebiofilmswere

formedby42ofthe51SMAisolates(82.35%).After24h,

sil-verstainingrevealedmaturebiofilmtobecomposedofblack

irregularsheets,scattereddotsandblackcottonymembranes,

and fine rod-shapedbacteria were observedatthe borders

(Fig.1).Noblackaggregationwasobservedonthesurfaceof

silicafilmculturedinMHBintheabsenceofSMA.These

find-ingswereconfirmedbySEM(Fig.2).Biofilmultrastructurewas

observedafter12h(Fig.2C),andmaturebiofilmwasobserved

at24h(Fig.2AandB).SMAwasobservedtobeclusteredon

the surfaceofthebiofilm,andSMA wasmostlyshortrods

ofabout1.5␮m×1.0␮m,partiallyorentirelyencompassedby

theextracellularmatrix(Fig.2AandC).Finebacillialternated

crosslotsofextracellularmucusfilaments,somecellswere

visibleinsplitphaseorundergoingapoptosis,andthe

bac-terialcommunitypresentonthebiofilmwasheterogeneous

(Fig.2B).Nobacteriawereobservedonthesurfaceofsilica

filmculturedinMHBintheabsenceofSMA(Fig.2D).

BBFformationenhancesSMAantibioticresistance

Theeffectofantibioticagentsonbiofilmformationwas

ana-lyzedbycomparingMICswithBIC.Theformationofbiofilms

enhancedtheresistanceofsomestrainstoalltested

antibi-oticsasidefromGMandERY,towhichallthetestedstrains

wereresistantevenintheabsenceofbiofilm,andLEV(Table2).

Afterbiofilmformation,21(50.0%)testedisolateswere

(4)

b r a z j i n f e c t d i s . 2 0 1 6; 2 0(4) :365–373

Table2–TheSusceptibilityof42SMAstrainsandtheirbiofilmsto8antibioticagents.

Antibioticagent MIC BIC

Breakpoint R Strains(%) I Strains(%) S Strains(%) Range(␮g/ml) R Strains(%) I Strains(%) S Strains(%) Range(␮g/mL) Levofloxacin R≥8 S≤2 4(9.52) 3(7.14) 35(83.33) 0.125–32 21(50.00) 6(14.29) 15(35.71) 0.125–512 Ciprofloxacin R≥4 S≤1 16(38.10) 17(40.48) 9(21.43) 0.5–128 32(76.19) 9(21.43) 1(2.38) 0.5–1024 Ceftazidime R≥32 S≤8 26(61.90) 10(23.81) 6(14.29) 0.5–512 32(76.19) 2(4.76) 8(19.05) 0.5–1024 Cefoperazone/sulbactam R≥64 S≤16 16(38.10) 13(30.95) 13(30.95) 0.5–512 32(76.19) 1(2.38) 9(21.43) 0.5–1024 Piperacillin R≥128 S≤64 18(42.86) 0(0.00) 24(57.14) 0.5–512 33(78.57) 0(0.00) 9(21.43) 2–4096 Erythromycin R≥8 S≤0.5 42(100.00) 0(0.00) 0(0.00) 0.5–512 42(100.00) 0(0.00) 0(0.00) 0.5–1024 Sulfamethoxazole R≥152 S≤38 10(23.81) 8(19.05) 24(57.14) 2.375–608 33(78.57) 3(7.14) 6(14.29) 2.38–2432 Gentamycin R≥8 S≤4 41(97.62) 0(0.00) 1(2.38) 0.5–512 42(100.00) 0(0.00) 0(0.00) 0.5–1024

R,resistant;I,intermediatesusceptibility;S,susceptible.

SusceptibilityofthebacteriainBBFwasestimatedfromcriteriasetforplanktoniccells,becauseofnoidentifiedcriteriathatwereespeciallyapplicabletoBBF.MICs,weredeterminedbythemicrobroth two-folddilutionmethod.BICs,refertoapreviouslydevelopedtechnique(Hilletal.,35Moskowitzetal.,36Olsonetal.,27Tomlinetal.28).Theresultsrepresentall42isolatesthatcouldformmature

(5)

brazj infect dis.2016;20(4):365–373

369

Fig.1–InvitroSMABBFformationwasvisualizedbyfluorescencemicroscopy(×200).After24hSMAstrain0314culturedin

MHBformedBBFonsilicafilm.Blackirregularsheets,scatteredblackdots,andcotton-likemembraneswereobserved,and

finerod-shapedbacteriawereobservedattheborders(A).Noblackaggregationwasobservedonthesurfaceofsilicafilm

culturedinMHBintheabsenceofSMA(B).

Table3–Comparisonofantibioticsusceptibilityoftheplanktonicbacteriaandbiofilmsof42SMAstrains.

Antibioticagent MIC(␮g/ml) BIC(␮g/ml)

MIC50a MIC90b Range BIC50c BIC90d Range

Levofloxacin 0.25 2 0.125–32 4 64 0.125–512 Ciprofloxacin 2 8 0.5–128 8 256 0.5–1024 Ceftazidime 32 128 0.5–512 128 512 0.5–1024 Cefoperazone/sulbactam 16 64 0.5–512 128 1024 0.5–1024 Piperacillin 64 512 0.5–1024 256 >1024 0.5–1024 Erythromycin 32 256 0.5–1024 128 >1024 0.5–1024 Sulfamethoxazole 19 76 2.375–608 304 >2432 2.375–2432 Gentamycin 32 512 0.5–1024 256 >1024 0.5–1024

a MICinhibited50%oftheisolatestested. b MICinhibited90%oftheisolatestested. c BICinhibited50%oftheisolatestested. d BICinhibited90%oftheisolatestested.

toCAZ,32(76.19%)toSCF,and32(76.19%)toCIP.Theaverage

BIC90wasalsomuchhigherthantheMIC90(Table3).

CapacityofERYtoovercomeBBF-mediatedantibiotic

resistance

TheeffectsofcombiningERYwithotherantibioticswas

inves-tigatedinfiveSMAisolateswhichweredeterminedtohave

moderatesusceptibilitytoLEV,SCFandPIP.TheMICofLEV

inthechosenstrains(0020,0037,0040,0080and0256) was

between0.5and64mg/L,theMICofSCFwasbetween8and

32mg/LandtheMICofPIPwasbetween2and64mg/L.

Addi-tionofERYdidnotsignificantlyenhancetheefficacyofSCF

(p=0.06),but didsignificantlyenhanceLEVand PIPefficacy

(allp<0.05).FactorialANOVAanalysisrevealedthatthe

effi-cacyofSCF,LEV,and PIPwas significantlyimprovedinthe

Fig.2–UltrastructureofinvitroSMABBFvisualizedbyscanningelectronmicroscopy.After12hthebiofilmofSMAstrain

0314culturedinMHBonsilicafilmwasobserved(C),andwasmatureat24h(A,B).SMAbiofilmultrastructureincluded

clustersofproliferatingbacteria(A,C).SMAwasmostlyshortrodsofabout1.5␮m×1.0␮m,partiallyorentirely

encompassedbytheextracellularmatrix.Alargenumberoffinebacillialternatedacrossnumerousfilamentousstrands(B).

NobacteriawereobservedonthesurfaceofsilicafilmculturedinMHBintheabsenceofSMA(D).B×20,000,Bar=50␮m;A,

(6)

Table4–EffectofantibioticsaloneandincombinationontheSMAbiofilms.

Antibioticagent Colonydensity(104CFU/cm2)a

½

MIC 1MIC 2MIC

SCF NoERY 149.6±3.8 150.80±3.7 153.40±4.9 152.20±4.8 ERY1/16MIC 149.2±5.0 147.60±6.3 140.00±3.4 132.80±4.7 ERY¼MIC 150.2±4.0 141.00±5.4 132.20±3.3 130.00±4.5 PIP NoERY 148.4±5.6 146.20±3.4 153.20±3.7 148.20±5.5 ERY1/16MIC 147.4±4.8 144.60±5.5 143.80±5.4 133.20±5.2 ERY1/4MIC 150.6±5.8 143.40±5.9 140.40±4.6 130.80±3.7 LEV NoERY 153.0±4.1 131.80±4.5 117.40±5.1 108.20±4.9 ERY1/16MIC 149.2±5.4 120.40±3.6 89.80±4.4 80.60±3.9 ERY1/4MIC 151.2±4.3 96.00±7.5 75.60±5.8 66.20±5.5 LEV,levofloxacin;PIP,piperacillin;SCF,cefoperazone/sulbactam;ERY,erythromycin.

CombinationtestsallrevealedastatisticalinteractionbyfactorialexperimentdesignandANOVA,ofSCFwithERY(F=8.460,p=0.000),LEVwith ERY(F=20.825,p=0.000),andPIPwithERY(F=4.506,p=0.00)respectively.

a ResultswereexpressedasthemeanoffiveSMAisolates.

presenceofERY(F=8.460,p=0.000;F=20.825,p=0.000;and

F=4.506,p=0.001,respectively;Table4,andone-wayANOVA,

p<0.05).ThesynergyofantibioticswasassessedbytheE

model, andthe combination ofERYandLEV was foundto

haveasynergisticeffectagainstfourofthefivestrainstested

(Table5).

SMA strain 0020 biofilm formation was also assessed

in the presence of SCF, LEV, PIP and/or ERY (Fig. 3). We

observedthatLEVdamagedBBFinthepresenceorabsence

ofERY(Fig.3AandB),butthecombinationofERYwithLEV

reducedthenumberofbacteriaanchoredtotheBBF,thinned

thepolysaccharidematrixandalteredbacterialmorphology.

Somespherical,irregularlyshaped,orcrackedbacteriawere

observed.Intheabsenceofantibiotics,theBBFwasmature

andbacterialcellswere packagedinalotofsticky

polysac-charidematrix.Bacterialgrowthwasstrongandsomebacteria

wereobservedtobeinthedivisionphase(Fig.3C).NeitherPIP

norSCF,inthepresenceorabsenceofERY,alteredthestateof

thebacteriaorbiofilm(Fig.3D).

Discussion

TreatmentofnosocomialSMA infectionsiscomplicated by

highratesofantibioticresistance.Although

pharmacokine-ticsand drug penetrationinfluence the clinical efficacy of

antibiotics against planktonic bacterial, resistance can be

characterized in in vitro susceptibility tests. In this study

wesoughttoinvestigatetheantibiotic-susceptibilityofSMA

strainsisolatedfrominvasiveinfectionsinnon-CFpatients.

WeestablishedaninvitromodelofSMABBF,andinvestigated

theantibiotic-susceptibilityofSMAbiofilmsand planktonic

bacteria.Fifty-oneclinicalisolatesofSMAwere takenfrom

patients infectedwith SMA through medical manipulation

and/or immunosuppressivetherapy in the surgical

depart-mentsofTianjinhospitals.

Inoursamplethevastmajorityofisolatedstrains(92.16%)

wereresistanttothreeormoreantibiotics.Thehighestrate

ofresistancewastocefotaxime(94.1%)andthelowest(only

13.7%)wastoLEV.TheintrinsicoracquiredresistanceofSMA

to antibioticshasbeen previouslyreported, and drastically

reducestheantibioticoptionsavailablefortreatment.22

BBF formation was also reported to enhance antibiotic

resistance.Bacterial adhesioninvolves developmentofpili,

changes in cell surface and hydrophobicity, and is crucial

toBBFformation,37,38 but themechanismofBBFformation

varies by attachment substrate.38 We selected silicon film

asanattachment matrixbecause ofitssuperiorresistance

tocorrosion,chemicalstabilityandnon-tackiness.A

major-ity ofSMAstrainsincludedinourstudyformedbiofilmsin

vitro, and maturebiofilms were observed within24h,

sug-gestingthattransmissionoftheseclinicalisolatesmayhave

beenfacilitatedbydevelopmentofbiofilmsonclinicaltools.

BBF structure was identified by silver staining

character-izedbySEMultrastructureanalysis.Theextracellularmatrix

around the bacteria appeared to be made up of secreted

exopolysaccharide.BBFformationwaspreviouslyreportedto

beassociatedwithS.maltophiliafimbriae1(SMF-1),whichis

composedoffimbrinsubunitsandsharessignificantsimilarity

withtheN-terminalaminoacidsequencesofseveralfimbrial

adhesinsofpathogenicEscherichiacolistrainsandtheCupA

fimbriaeinPseudomonasaeruginosa.39

In our sample, all clinical isolates were more resistant

to antibiotics in the BBF than in planktonic state. BBF

have been previously reported to confer antibiotic

resis-tance of up to 1000-fold,16–20 and thus BBF formation is

thought tobeanimportantmechanism ofantibiotic

resis-tance by SMA. The BBF constitute a positively charged

polysaccharide matrix barrier to antibiotics with a

nega-tive charge, such as aminoglycosides.21 The extracellular

polysaccharide matrixcanalsoabsorb highlevelsof

extra-cellularenzymes,suchas␤-lactamase.Wefoundthatmost

isolates were resistant to ␤-lactams, including third and

fourthgenerationcephalosporins,althoughresistanceto

cef-operazone/sulbactam was lower. SMA strains wrapped in

extracellularpolysaccharidematricesarelessabletoobtain

molecular oxygen and nutrients,andto eliminate

metabo-lites,whichcancausebacterialdormancyorretardedgrowth

rates,andlocalmetaboliteaccumulation.22Thus,inthisstudy,

antimicrobialagentsthattargetbacterialgrowth,suchas

(7)

b r a z j i n f e c t d i s . 2 0 1 6; 2 0(4) :365–373

371

Table5–InvitrointeractionsofERYincombinationwithSCF,PIP,andLEVagainstBBF,andasindicatedbytheEmodel.

Strains Evaluemean(range)



Syn(n)%a



Ant(n)%b Interpretation

SCF PIP LEV SCF PIP LEV SCF PIP LEV SCF PIP LEV

0020 8.97(−0.64to16.62) 9.43(2.05to15.78) 17.38(−0.85to29.65) 54.44(5) 56.55(6) 105.13(5) −0.64(1) 0(0) −0.85(1) NI NI SYN 0037 15.37(4.13to22.26) 4.18(−2.04to8.96) 27.29(12.17to38.71) 92.32(6) 27.09(5) 163.72(6) 0(0) −2.04(1) 0(0) NI NI SYN 0040 10.05(1.34to18.15) 3.54(−10.83to15.75) 19.33(8.55to28.94) 60.29(6) 34.88(4) 115.96(6) 0(0) −13.62(2) 0(0) NI NI SYN 0088 7.64(−0.68to13.68) 7.10(2.04to13.33) 12.77(0.10to20.21) 46.10(6) 42.57(60 76.63(6) 0(0) 0(0) 0(0) NI NI NI 0256 9.01(5.39to12.84) 12.57(8.06to17.99) 17.37(6.12to25.99) 54.06(6) 75.44(6) 104.21(6) 0(0) 0(0) 0(0) NI NI SYN NI,nointeraction;SYN,synergism;ANT,antagonism;n,numberofinteractions.

(8)

Fig.3–ImpactofantibioticagentsonultrastructureofinvitroBBFvisualizedbyscanningelectronmicroscopy.SMAstrain

0020BBFformedacompletematurestructureinwhichthebacterialwerepackagedwithdensematrix(C).Inthepresence

oferythromycin(B)orerythromycinandlevofloxacin(A)theBBFmatrixbecamethin,feweradheredbacteriawereobserved

andsomeexhibitedsphericalorirregularform.Theblackarrowindicatesabacterialcellundergoingdivisionphase.Inthe

presenceoferythromycinandpiperacillintheBBFremainedsimilartothatseenintheblankcontrol(D).D×20,000;

Bar=100␮m;A,B,C×5000;Bar=50␮m.

tolocalmetaboliteaccumulation,the microenvironmentof

bacterialivingdeepintissuesisacidic,whichinactivatesmost

ofthetherapeuticdrugsthatoptimallyactinneutral

condi-tions.

SMAgeneexpressionprofileshavebeenreportedtochange

significantlyonBBFformation,presentingarangeof

mecha-nismsfordevelopmentofantibioticresistance.40

Development of BBF also enables evasion of the host

immune response. The glycocalyx shell protects bacteria

fromphagocytosisandsecretedquorum-sensingfactor

N-(3-oxododecanoyl)-l-homoserinelactone(HSL)andC4-HSLcan

inhibitleukocyteproliferationandcytokinesecretion.41

Pro-tectionfromthehostimmuneresponseprovidesaprotected

nicheinwhichSMAcanevolveresistancetopreviously

effec-tiveantimicrobials.

In this study, formation of biofilm conferred resistance

to all tested antimicrobials aside from LEV, according to

CLSI break points. LEV alone inhibits mature BBF in a

concentration-dependentmanner, whichindicates thatthe

invivomaximumpermissibledosageforBBFshouldbe

inves-tigated. Complete elimination ofbiofilm infection remains

challenging, but inhibiting bacterial adherence or

destroy-ingthematrixmayproveusefultactics,incombinationwith

activatedhostimmunity.Macrolideshavebeenreported to

assistotherantibioticsinbactericidaleffectsonP.aeruginosa

BBF,byinhibitingsynthesisofGDP-mannosedehydrogenase,

the maincomponent ofbiofilms.42,43 Moreover, macrolides

caninhibitneutrophilaccumulation,andpromoteimproved

CD4+/CD8+Tcellratios.44,45InthisstudyERY,a14-membered

ring macrolide,actedsynergistically withLEV,SCFand PIP,

even whereSMA strains were resistant to ERYalone. ERY

markedly enhanced efficacy of LEV and was observed to

reducebacterialadhesiontobiofilmsandunderminedbiofilm

architecture.WeselectedLEV,SCFandPIPtotestin

combina-tionwithERYbasedontheirBICvalue,butothercombinations

ofantimicrobialsmayalsoshowclinicaleffectiveness.

There-fore,furthercombinationsofantimicrobialsshouldbetested

infuture.

Insummary,wefoundthatantibioticscouldact

synergis-ticallytocombattheprotectionconferredtoclinicalisolates

ofSMAbyBBF.Ourfindingssuggestthatmacrolideantibiotics

maybeeffectivewhereusedincombination.Howeverfurther

specificinvivostudieswillberequiredtoconfirmwhetherthis

approachcantreatnosocomialSMAinfectionintheclinic.

Funding

The study was supported bythe National Natural Science

FoundationofChina(GrantNo.:81402095).

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

1.AzizRK,BartelsD,BestAA,etal.TheRASTserver:rapid annotationsusingsubsystemstechnology.BMCGenomics. 2008;9:75.

2.BrookeJS.Stenotrophomonasmaltophilia:anemergingglobal opportunisticpathogen.ClinMicrobiolRev.2012;25:2–41.

3.AisenbergG,RolstonK,DickeyB,KontoyiannisD,RaadI, SafdarA.Stenotrophomonasmaltophiliapneumoniaincancer patientswithouttraditionalriskfactorsforinfection, 1997–2004.EurJClinMicrobiolInfectDis.2007;26:13–20.

4.AnsariSR,HannaH,HachemR,JiangY,RolstonK,RaadI. Riskfactorsforinfectionswithmultidrug-resistant

Stenotrophomonasmaltophiliainpatientswithcancer.Cancer.

2007;109:2615–22.

5.HanesSD,DemirkanK,TolleyE,etal.Riskfactorsfor late-onsetnosocomialpneumoniacausedby

Stenotrophomonasmaltophiliaincriticallyilltraumapatients.

ClinInfectDis.2002;35:228–35.

6.LaiCH,ChiCY,ChenHP,etal.Clinicalcharacteristicsand prognosticfactorsofpatientswithStenotrophomonas

maltophiliabacteremia.JMicrobiolImmunolInfect.

2004;37:350–8.

7.LeroyO,d’EscrivanT,DevosP,DubreuilL,KipnisE,GeorgesH. Hospital-acquiredpneumoniaincriticallyillpatients:factors associatedwithepisodesduetoimipenem-resistant organisms.Infection.2005;33:129–35.

8.GutierrezRoderoF,MasiaMM,CortesJ,OrtizdelaTablaV, MainarV,VilarA.EndocarditiscausedbyStenotrophomonas

(9)

brazj infect dis.2016;20(4):365–373

373

maltophilia:casereportandreview.ClinInfectDis.

1996;23:1261–5.

9. TsaiWP,ChenCL,KoWC,PanSC.Stenotrophomonas

maltophiliabacteremiainburnpatients.Burns.2006;32:155–8.

10.TzanetouK,TriantaphillisG,TsoutsosD,etal.

StenotrophomonasmaltophiliaperitonitisinCAPDpatients:

susceptibilitytoantibioticsandtreatmentoutcome:areport offivecases.PeritDialInt.2004;24:401–4.

11.YeshurunM,Gafter-GviliA,ThalerM,KellerN,NaglerA, ShimoniA.ClinicalcharacteristicsofStenotrophomonas

maltophiliainfectioninhematopoieticstemcell

transplantationrecipients:asinglecenterexperience. Infection.2010;38:211–5.

12.JangTN,WangFD,WangLS,LiuCY,LiuIM.Xanthomonas

maltophiliabacteremia:ananalysisof32cases.JFormosMed

Assoc.1992;91:1170–6.

13.VictorMA,ArpiM,BruunB,JonssonV,HansenMM.

Xanthomonasmaltophiliabacteremiainimmunocompromised

hematologicalpatients.ScandJInfectDis.1994;26:163–70.

14.FalagasME,KastorisAC,VouloumanouEK,RafailidisPI, KapaskelisAM,DimopoulosG.Attributablemortalityof

Stenotrophomonasmaltophiliainfections:asystematicreviewof

theliterature.FutureMicrobiol.2009;4:1103–9.

15.SafdarA,RodriguezG,BalakrishnanM,TarrandJ,RolstonK. Changingtrendsinetiologyofbacteremiainpatientswith cancer.EurJClinMicrobiolInfectDis.2006;25:522–6.

16.DiBonaventuraG,ProssedaG,DelChiericoF,etal.Molecular characterizationofvirulencedeterminantsof

Stenotrophomonasmaltophiliastrainsisolatedfrompatients

affectedbycysticfibrosis.IntJImmunopatholPharmacol. 2007;20:529.

17.HoffmanLR,D’ArgenioDA,MacCossMJ,ZhangZ,JonesRA, MillerSI.Aminoglycosideantibioticsinducebacterialbiofilm formation.Nature.2005;436:1171–5.

18.LinaresJ,GustafssonI,BaqueroF,MartinezJ.Antibioticsas intermicrobialsignalingagentsinsteadofweapons.Sci Signal.2006;103:19484.

19.MolinaA,DelCampoR,MáizL,etal.Highprevalencein cysticfibrosispatientsofmultiresistanthospital-acquired methicillin-resistantStaphylococcusaureusST228-SCCmecI capableofbiofilmformation.JAntimicrobChemother. 2008;62:961–7.

20.SinghPK,SchaeferAL,ParsekMR,MoningerTO,WelshMJ, GreenbergE.Quorum-sensingsignalsindicatethatcystic fibrosislungsareinfectedwithbacterialbiofilms.Nature. 2000;407:762–4.

21.JuckerBA,HarmsH,ZehnderA.Adhesionofthepositively chargedbacteriumStenotrophomonas(Xanthomonas)maltophilia 70401toglassandTeflon.JBacteriol.1996;178:5472–9.

22.LewisK.Riddleofbiofilmresistance.AntimicrobAgents Chemother.2001;45:999–1007.

23.LiawSJ,LeeYL,HsuehPR.Multidrugresistanceinclinical isolatesofStenotrophomonasmaltophilia:rolesofintegrons, effluxpumps,phosphoglucomutase(SpgM),andmelaninand biofilmformation.IntJAntimicrobAgents.2010;35:126–30.

24.DiBonaventuraG,SpedicatoI,D’AntonioD,RobuffoI, PiccolominiR.BiofilmformationbyStenotrophomonas

maltophilia:modulationbyquinolones,

trimethoprim-sulfamethoxazole,andceftazidime. AntimicrobAgentsChemother.2004;48:151–60.

25.PompilioA,CatavitelloC,PiccianiC,etal.Subinhibitory concentrationsofmoxifloxacindecreaseadhesionand biofilmformationofStenotrophomonasmaltophiliafromcystic fibrosis.JMedMicrobiol.2010;59:76–81.

26.BarbollaR,CatalanoM,OrmanBE,etal.Class1integrons increasetrimethoprim-sulfamethoxazoleMICsagainst epidemiologicallyunrelatedStenotrophomonasmaltophilia isolates.AntimicrobAgentsChemother.2004;48:666–9.

27.OlsonME,CeriH,MorckDW,BuretAG,ReadRR.Biofilm bacteria:formationandcomparativesusceptibilityto antibiotics.CanJVetRes.2002;66:86.

28.TomlinKL,CollOP,CeriH.Interspeciesbiofilmsof

PseudomonasaeruginosaandBurkholderiacepacia.CanJ

Microbiol.2001;47:949–54.

29.InstituteCaLS.LaboratoryStandardsInstitute.Performance standardsforantimicrobialsusceptibilitytesting.In:16th informationalsupplement.2006.M100-S116.

30.AshbyM,NealeJ,KnottS,CritchleyI.Effectofantibioticson non-growingplanktoniccellsandbiofilmsofEscherichiacoli.J AntimicrobChemother.1994;33:443–52.

31.SobohF,KhouryA,ZamboniA,DavidsonD,MittelmanM. Effectsofciprofloxacinandprotaminesulfatecombinations againstcatheter-associatedPseudomonasaeruginosabiofilms. AntimicrobAgentsChemother.1995;39:1281–6.

32.PassarielloC,BerluttiF,SelanL,ThallerM,PezziR.Arapid stainingproceduretodemonstrateglycocalyxproductionand bacterialbiofilms.NewMicrobiol.1994;17:225.

33.DixBA,CohenPS,LauxDC,CleelandR.Radiochemical methodforevaluatingtheeffectofantibioticson

Escherichiacolibiofilms.AntimicrobAgentsChemother.

1988;32:770–2.

34.ManoharanA,PaiR,ShankarV,ThomasK,LalithaM. Comparisonofdiscdiffusion&Etestmethodswithagar dilutionforantimicrobialsusceptibilitytestingofHaemophilus

influenzae.IndianJMedRes.2003;117:81–7.

35.HillD,RoseB,PajkosA,etal.Antibioticsusceptibilitiesof

Pseudomonasaeruginosaisolatesderivedfrompatientswith

cysticfibrosisunderaerobic,anaerobic,andbiofilm conditions.JClinMicrobiol.2005;43:5085–90.

36.MoskowitzSM,FosterJM,EmersonJ,BurnsJL.Clinically feasiblebiofilmsusceptibilityassayforisolatesof

Pseudomonasaeruginosafrompatientswithcysticfibrosis.J

ClinMicrobiol.2004;42:1915–22.

37.Il’inaT,RomanovaI,GintsburgA.Biofilmsasamodeof existenceofbacteriainexternalenvironmentandhostbody: thephenomenon,geneticcontrol,andregulationsystemsof development.Genetika.2004;40:1445.

38.CritchleyM,CromarN,McClureN,FallowfieldH.The influenceofthechemicalcompositionofdrinkingwateron cuprosolvencybybiofilmbacteria.JApplMicrobiol. 2003;94:501–7.

39.Oliveira-GarciaD,Dall’AgnolM,RosalesM,etal.Fimbriaeand adherenceofStenotrophomonasmaltophiliatoepithelialcells andtoabioticsurfaces.CellMicrobiol.2003;5:625–36.

40.DragoL,DeVecchiE,NicolaL,GismondoM.Antimicrobial activityandinterferenceoftobramycinandchloramphenicol onbacterialadhesiontointraocularlenses.DrugsExpClin Res.2003;29:25–35.

41.DaviesDG,ParsekMR,PearsonJP,IglewskiBH,CostertonJ, GreenbergE.Theinvolvementofcell-to-cellsignalsinthe developmentofabacterialbiofilm.Science.1998;280:295–8.

42.TanakaG,ShigetaM,KomatsuzawaH,SugaiM,SuginakaH, UsuiT.EffectofclarithromycinonPseudomonasaeruginosa biofilms.Chemotherapy.1999;46:36–42.

43.XuZ,LiuF,WangX.Effectsoferythromycinandfosfomycin

onPseudomonasaeruginosabiofilminvitro(ArticleinChinese).

Zhonghuajiehehehuxizazhi.2001;24:342–4.

44.FerreiraAG,LeaoRS,Carvalho-AssefAPDA,FolescuTW,Barth AL,MarquesEA.Influenceofbiofilmformationinthe susceptibilityofPseudomonasaeruginosafromBrazilian patientswithcysticfibrosis.APMIS.2010;118:606–12.

45.TakeokaK,IchimiyaT,YamasakiT,NasuM.Theinvitroeffect ofmacrolidesontheinteractionofhuman

polymorphonuclearleukocyteswithPseudomonasaeruginosa inbiofilm.Chemotherapy.1998;44:190–7.

Referências

Documentos relacionados

Para determinação do escoamento de ar no interior do refrigera- dor, foram realizados ensaios experimentais em um túnel de vento (apa- rato e procedimentos descritos

Although DNA-based techniques are the “gold standard” for the epidemiological study of Pseudomonas aeruginosa , antibiotic profiles and biochemical results are used because they

Refe rence (S pergel et al. ,2007) Sub ject ca tegory HYP ER HYP ER GIT HEA LTH GIT HEALTH Targe t indic ation Foo d all ergy Foo d all ergy Eosino philic esoph ageal in flamm

The research covered 4 stages, as follows: the first one was the pretest in order to answer the first specific objective of assessing the group’s knowledge about delirium and the

Em mãos disso, o cientista afirma que as partículas negativas (elétrons) que compunham os raios catódicos estariam presentes em todos os materiais, sendo assim

In conclusion, our results demonstrated an association of the T allele for the LRP5 4037 C&gt;T polymorphism with T1DM susceptibility in a Brazilian population, moreover

Disponível em: &lt;http://www.tst.jus.br/prevencao/estatistica.html&gt;.. “Dados estatísticos do INSS apontam que no Brasil, em 2009, ocorreu cerca de uma morte a cada 3,5

As variáveis escolhidas, a serem analisadas, foram: média anual de internações (por 100.000 habitantes), média anual de óbitos (por 100.00 habitantes), taxa média de