• Nenhum resultado encontrado

Indicators of movement and space use for two co-occurring invasive crayfish species

N/A
N/A
Protected

Academic year: 2021

Share "Indicators of movement and space use for two co-occurring invasive crayfish species"

Copied!
11
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Ecological

Indicators

jou rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / e c o l i n d

Indicators

of

movement

and

space

use

for

two

co-occurring

invasive

crayfish

species

P.M.

Anastácio

a,∗

,

F.

Banha

a

,

C.

Capinha

b

,

J.M.

Bernardo

c

,

A.M.

Costa

c

,

A.

Teixeira

d

,

S.

Bruxelas

e

aMAREMarineandEnvironmentalSciencesCentre,DepartamentodePaisagem,AmbienteeOrdenamento,EscoladeCiênciaseTecnologia,

UniversidadedeÉvora,RuaRomãoRamalho59,7000-671Évora,Portugal

bCIBIO/InBio,CampusAgráriodeVairão,RuaPadreArmandoQuintasn7,4485-661Vairão,Portugal

cDepartamentodePaisagem,AmbienteeOrdenamento,EscoladeCiênciaseTecnologia,UniversidadedeÉvora,RuaRomãoRamalho59,

7000-671Évora,Portugal

dCIMO-ESA-IPB,MountainResearchCentre,SchoolofAgriculture,PolytechnicInstituteofBraganc¸a,CampusdeStaApolónia,Apartado1172,

5300-855Braganc¸a,Portugal

eInstitutodaConservac¸ãodaNaturezaedasFlorestas,I.P.,AvenidadaRepública16,1050-191Lisboa,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received12June2014 Receivedinrevisedform 23December2014 Accepted9January2015 Keywords: Radio-tracking Biologicalinvasions Dispersal IberianPeninsula River Crustacea

a

b

s

t

r

a

c

t

Redswampcrayfish(Procambarusclarkii)andsignalcrayfish(Pacifastacusleniusculus)aretwoinvasive freshwaterspecieswithaworldwidedistribution.Theobjectiveofthisworkwastoinvestigatehowthe twospeciesmoveandusespaceinanareaofrecentcoexistence.Simultaneously,wetesttheuseof newtoolsandindicestodescribetheirmovementpatterns.Toaccomplishthisweperformeda radio-trackingprogramwithinariver-typehabitatduringtwodifferentperiods(September/October2010and June/July2013).Weusedspatialanalysistoolstomapcrayfishradio-locationdatawithandwithout accountingforthecurvatureoftheriver.Toassesstheconsistencyofthedirectionofmovementandof thedistancestraveledbycrayfish,twoindicesweredeveloped.Toassessthehabitatpreferencesofeach speciesweappliedIvlev’sElectivityIndexandtheStandardizedForageRatio.MovementofP.clarkiiand P.leniusculusdiffered.Theaveragedetectedmovementwas8.8mday−1forP.clarkiiand17.5mday−1for

P.leniusculus.However,crayfishbehaviorrangedfromalmostcompleteimmobility–sometimesduring severaldays–tolargemovements,inhalfaday,uptoamaximumof255mforP.clarkiiand461mfor P.leniusculus.Theproportionofupstreamordownstreammovementswasindependentofthespecies andbothspeciesdisplayednopreferenceforeitherdirection.Theindicesofconsistencyofmovement showedalargeinterindividualvariation.Speciesandperiod(2010or2013)affectedthemeandaily distancetraveled,maximumobserveddistancefromlocationofreleaseandpercentageofobservations undervegetationcover.TheIvlev’sElectivityIndexandtheStandardizedForageRatiopresentedsimilar results.P.clarkiishowedapreferenceforpoolareaswithriparianvegetationcoverwhileP.leniusculus preferredriffleandpoolareaswithriparianvegetationcover.Ourworkprovidednewandvaluabledata formodelingtheactivedispersalofthesetwoproblematicinvadersinacontextofcoexistence.

©2015ElsevierLtd.Allrightsreserved.

∗ Correspondingauthor:MARE–MarineandEnvironmentalSciencesCentre, DepartamentodePaisagem,AmbienteeOrdenamento,EscoladeCiênciase Tec-nologia,UniversidadedeÉvora,RuaRomãoRamalho59,7000-671Évora,Portugal. Tel.:+351266745385.

E-mailaddresses:anast@uevora.pt(P.M.Anastácio),filipebanha@hotmail.com

(F.Banha),cesarcapinha@outlook.com(C.Capinha),jmb@uevora.pt(J.M.Bernardo),

amac@uevora.pt(A.M.Costa),amilt@ipb.pt(A.Teixeira),Sofia.Bruxelas@icnf.pt

(S.Bruxelas).

1. Introduction

Duetotheireconomicvalue,severalspeciesofcrayfishwere

introducedoutside their nativeranges.Unfortunatelythere are

numerous freshwatercrayfish speciesbecoming invasivein the

areasofintroduction(Holdich,1988;HenttonenandHuner,1999;

Gherardi,2013)andthetwomajorexamplesaretheredswamp

crayfish (Procambarus clarkii)and the signalcrayfish

(Pacifasta-cusleniusculus).Bothspeciesnowhaveverylargeinvasiveranges

worldwide and furtherspread is expected since there are still

wideareasoftheplanetwithadequateenvironmentalconditions

(Capinhaetal.,2011).

http://dx.doi.org/10.1016/j.ecolind.2015.01.019

(2)

Fig.1. Locationofthestudyarea.ThegrayareahighlightedbyanarrowindicatestheregionwithinthePortugueseterritorycoveredbythelargermap.Theredmarksignaled bytheletter“a”markstheradio-trackingareawithintheriverMac¸ãs.(Forinterpretationofthereferencestocolorinthistext,thereaderisreferredtothewebversionof thearticle.)

Theredswampcrayfishisnativetosubtropicalregionsof

north-easternMexicoandsouth-centralUSA.Thisspecieshasahighly

plasticreproductivecycle(Gherardi,2006)andawideecological

plasticity(Gherardi,2006;Souty-Grossetetal.,2006)andcurrently

itisthemostwidelyintroducedcrayfishintheworld(Gherardi,

2006).InEuropethespecieswasfirstintroducedin1973in

south-ernSpain(Habsburgo-Lorena,1978)anditrapidlyspreadacross

severalEuropeancountries(Laurent,1997; Souty-Grossetetal.,

2006)showingthewidestinvasiverangeforanaliencrayfish.

Thesignalcrayfishisnativefromthecooltemperateregions

ofWesternNorth America and it isendemic toWesternNorth

AmericabetweenthePacificOceanandtheRockyMountains.Its

habitatrangesfromlotictolenticsystemsbutitisableto

toler-ateexposuretobrackishwater(LoweryandHoldich,1988;Lewis,

2002).P.leniusculuswasfirstintroduced tonorthern Europein

the1960storeplacedecreasingstocksofthenativeAstacus

asta-cus(Abrahamsson, 1973;Westman, 1973).Currently this isthe

mostwidespreadinvasivecrayfishinEurope,beingpresentin27

countries(Holdichetal.,2010).

Invasive crayfish affect not only the distribution of native

crayfishbutalsothedynamicsandbiodiversityoftheinvaded

com-munity(GherardiandHoldich,1999;Gherardi,2006;Holdichetal.,

2010).BothP.clarkiiandP.leniusculusareresponsiblefor

multi-plenegativeimpactsonnativespecies,ecosystemsandeconomic

activitiesinthenewranges.However,thesenewarrivalsincreased

thecommercialvalueofcrayfishinEuropeandinmanyotherparts

oftheworld(Nyström,1999;Souty-Grossetetal.,2006).

Onamacroscale,humanintroductionsandenvironmental

suit-abilitycan successfullyexplain thedistributionof P.clarkii and

P.leniusculusinEurope(Capinhaetal.,2013).However,thelocal

spreadandprogressionoftheinvasionfrontswithinorevenacross

countrybordersneedstobeaddressedifmitigation,management

orcontainment actionsaretobeimplemented. Severalauthors

studiedtheprogressionoftheinvasionfrontorthemovement

pat-ternsofeachofthesespecies(e.g.Bubbetal.,2004;Aquilonietal.,

2005;Kerbyetal.,2005;Bernardoetal.,2011;Almeidaetal.,2013; Johnsonetal.,2014)butnotthecoexistenceofthetwospecies.P.

(3)

environmentalniches(CapinhaandAnastácio,2011).Aseachof

thesespeciesexpandsitsinvasiverange,theareasofcoexistence

becamewiderandthereforesomeinteractionsmayoccur,

poten-tiallyaffectingthepatternsofspaceuseandspeedoftheinvasion

front.Infact,withintheIberianPeninsula,therearealreadysome

areasofcoexistenceofbothspeciesandsomeeffortisbeing

con-ductedtodocumentonaregionalscalehowthespreadofthese

twospeciesisaffectedbythiscoexistence(Bernardoetal.,2011).

Thereareseveralsoftwaretoolsforanalyzingmovementand

spacedistributionofterrestrialspeciesthatprocessdatacollected

byradio-tracking.However,riversystemshavealinearstructure

andarethereforeinadequatelyapproachedbysomeofthesetools.

Oneoftheproblemsisthedeficientcalculusofthedistanceswhen

ariverhasastronglycurvilinearshape.Anotherdifficultyconcerns

themostlytwo-waydirectionalityofthemovement.Ourobjective

istofindouthowthetwoinvadersmoveandusespaceinanarea

ofrecentcoexistencewhilesimultaneouslytestingtheuseofnew

indicesfordescribingthepatternsofmovementinriversystems.

2. Methods

DuringthemonthsofSeptember/October2010andJune/July

2013aradio-trackingprogramwasundertakenwithinashallow

1330mstretch oftheriverMac¸ãs, Trás-os-Montes,NEPortugal

(Fig.1),betweentwoadjacentsmalldams.Thisstretchhasa

rel-ativelyrecentpopulationofboththeredswampcrayfishandthe

signalcrayfish(Bernardoetal.,2011).

2.1. Mesohabitatmapping

River shape, mesohabitat types and vegetation cover were

mapped(Fig.2)bycombiningdetailedinsitucartographic

mea-surementswithaerialimagery(1mresolution)availablefromthe

software ArcMap10.1. Vegetation cover wasmappedas

“pres-ence”or“absence”andreferredtoripariancanopyortoanykind

ofemergentvegetation.Thisincludedtrees,shrubs andaquatic

macrophytes, without species identification. Water speed was

measured using the float method (Meals and Dressing, 2008).

Mesohabitatswereclassifiedaspools,rifflesandrunsaccording

tocurrentvelocityandturbulence,whichwasvisuallyassessed.

CorrespondenceoftheobservedmesohabitattypestoNewsonand

Newson(2000)surface flow types is asfollows. Pools:no

per-ceptibleflow,smoothsurface,reflectionswithnoorveryminor

distortion; Runs: smooth boundary turbulent flow (very little

surface turbulence, very small turbulent flow cells are visible,

reflectionsaredistorted);Riffles:rippledflow(watersurfacehas

regulardisturbances,whichformlowtransverseripplesacrossthe

directionofflow),brokenstandingwaves(standingwavespresent

whichbreakatthecrestoriginatingwhitewaters),chuteflow(fast

flowoverbouldersandbedrock).Poolshadameanspeedofzero

(i.e.undetectedmovement),runshadameanspeedof0.05ms−1

andrifflespresentedameanspeedof0.25ms−1 andturbulence

causedbytheroughnessofthestreambed,slopeandshallowdepth.

Sixhabitattypesweredefinedbasedonthecombinationsof

meso-habitatandvegetationcovertypes:Poolwithoutcover,Poolwith

cover,Runwithoutcover,Runwithcover,Rifflewithoutcoverand,

Rifflewithcover.

2.2. Radiotrackingprocedures

Tracking wasperformed in two periods:September/October

2010(4P.clarkiiand8P.leniusculus)andJune/July2013(3P.clarkii

and4P.leniusculus).Bothspecieswereactiveduringtheseperiods

oftheyearandaveragewaterdepthwasenoughforcrayfish

move-mentandnottoodeepforradio-trackingalongthewholeriver

Fig.2.Vegetationcoverandturbulencemapsofthestudiedriverstretch.Pools hadameanspeedofzero(i.e.undetectedmovement),runshadameanspeedof 0.05ms−1andrifflespresentedameanspeedof0.25ms−1andturbulence.

sector. Additionally, during these periods, mesohabitat

hetero-geneitywaslargeandhabitatswereaccessibletotheradio-tracking

teammovingalongtheriver.P.leniusculustotallengthrangedfrom

7.7to10.9cm(mean=9.76cm)andP.clarkiitotallengthranged

from9to10.5cm(mean=9.78cm).In2010weusedTelenax

trans-mittersmodelTXB-004G–150MHzwithon–offmagneticswitch

(1.2g,0.7cm×0.8cm×1.3cm)andin2013weusedBiotrack

trans-mitters (PIP2 single celled tags, with medium potting). Signal

receptionwasassuredwitha3elementfoldableYaggitypeantenna

andaRX-TLNXreceiver(bothsuppliedbyTelenax).Crayfishwere

trackedtwiceaday,atsunriseandsunset,witha10–30cmradius

precisionfor a period of 6–30 days (mean=21 days;S.E.=1.6),

dependingonbattery lifeandpredationupon crayfish.The

dis-tancetothelastposition,movementdirectionanddistancetoeach

marginoftheriverweremeasured.Additionally,eachpositionin

theriverwasregisteredbyaGPSdevice(Garmin,modelOregon

550t).Waterdepthand habitattypewererecordedwhenevera

crayfishwaslocated.Duringeachradio-trackingsessionwater

vari-ablesweremeasuredwithaWTWMultilineF-set.In2010,mean

watertemperaturewas20.4◦C(SD±1.8),meanpHwas7.3(SD

±0.3),meanconductivitywas148.1␮S/cm−1(SD±14.3)andmean

dissolvedoxygenwas10.4mgL−1(SD±2.1).In2013meanwater

temperaturewas25.6◦C(SD±2.1),meanpHwas7.6(SD±0.4),

meanconductivitywas109␮S/cm−1(SD±2.6)andmeandissolved

(4)

2.3. Movementdistances

CrayfishradiolocationdatawereanalyzedonArcGIS v10.1,

usingHawth’s tools 3.27(Beyer, 2004)and FishTracker(Laffan

and Taylor, 2013) for straight line movement analysis and for

movement analysis accounting for the curvature of the river,

respectively. FishTrackeris open sourceand waswritten using

theESRIarcpysystem.Itcancalculateleastcostpathsbasedona

costsurfacemapandwasoriginallydevelopedtostudyfish

move-mentsinestuarinesystems(LaffanandTaylor,2013).Inourcase

thecostsurfacemaprestrictedthemovementpathstotheriver

bedarea,notallowingforoverlandmovement.Weextractedthe

distancesbetweentheconsecutivedetectionpointsfromthe

geo-processinglogofFishTracker.Basedontherecordedmovement

anddirectionofmovementforeachindividual,Euclideandistances

wereobtainedusingHawth’stools.Thesedistanceswereplotted

ona circulardiagram andanalyzed forrandomnessusingRao’s

spacingtest.Themedian,rangeofvaluesanddistributionofthe

pooleddistancesmovedbyallcrayfishofeachspecieswas

com-paredusingtheMediantest,theMosestestofextremereaction

andaKolmogorov–Smirnovtest,respectively.

Meandailymovementofeachindividualwasobtainedby

divid-ingthesumoftheobserveddisplacementdistances(correctedfor

thecurvatureoftheriverusingFishTracker)bythenumberof

track-ingdays.

AMANOVAwasapplied,wheretheindependentvariableswere

speciesandyearandthedependentvariablesweremeandaily

dis-tancetraveled,maximumobservedEuclideandistancefromthe

pointofreleaseandthepercentageofobservationsunder

vegeta-tioncoverforeachindividual.ALOG10transformationwasapplied

tothevariables:meandailydistanceandmaximumobserved

dis-tancefromthepointofreleaseandtheassumptionsofMANOVA

werestatisticallytestedandwerenotviolated.AftertheMANOVA,

anANOVAwasappliedtoeachdependentvariable.Thisallowedus

toidentifywhichdependentvariableswereaffectedbythetested

factors.

Statisticalanalysesonnon-circulardatawereperformedusing

IBMSPSSv.20.CirculardatawereanalyzedusingOriana4.02.

2.3.1. Upstreamvs.downstreammovements

WeusedaChi-Squaredtestonacontingencytabletoanalyzeif

theproportionofupstreamordownstreammovementswas

inde-pendentofthespecies.Toassesstheconsistencyofthemovement

direction(Idir)andofthedistancesmoved(Idist)byeachcrayfish,

twoindicesweredeveloped:

Idir=|ndownstream−n upstream|

Largest n

wherendownstreamorupstreamarethetotalnumberof

move-mentsineachdirection,respectively

Idist=



downstream distances



upstream distances



Largest



where the distances are the Euclidian distances between two

consecutive detection locations (downstream and upstream,

respectively).

2.3.2. Spaceuseandmesohabitatpreferences

Tobetterevaluatespace useby thesespecies, we produced

kerneldensitymapsforeachindividual,showingthesizeofthe

areaswithmoreintensepatternofuseandalsoiftherewasa

sin-gleareaormultipleareasofintenseuse.Thekerneldensitymaps

wereproducedbyFishTrackerusingtheaccumulatedtransitraster

withintheriverasthelocations,weightedbytheirtransittimes

(LaffanandTaylor,2013).Thissoftwareexcludedthepossibilityof

Table1

MANOVAresults,usingspeciesandyearasindependentvariablesandthemean dailydistancetraveled,themaximumobserveddistancefromthepointofrelease andthepercentageofobservationsundervegetationcoverasdependentvariables.

Effect Pillai’strace F Hypothesisdf Errordf Sig.

Intercept 0.976 173.350 3 13 0.000

Species 0.594 6.338 3 13 0.007

Year 0.504 4.409 3 13 0.024

Species*year 0.305 1.904 3 13 0.179

overland movements between two detection points, always consideringtheshortestpathwithintheriverbed.Kerneldensity surfacesweremaskedbytheriverbed.The50thand90thpercentile surfacesofthekerneldensitysurfaceexcludingzerovalueswere calculatedbythesamesoftwareandthecorrespondingareaswere extracted.Toassesshabitatpreferencesofeachindividual cray-fish,weappliedtwoindicesfrequentlyusedforfoodpreference butpreviouslyusedforhabitatpreferences(e.g.Loughmanetal.,

2013).TheseweretheIvlev’sElectivityIndex(Ivlev,1961),andthe

StandardizedForageRatio(Chesson,1983)whichismorerobust.

Botharepresentedbelow.

Ivlev’selectivityindex,Ei(Ivlev,1961)adaptedforhabitattypes

(i):

Ei= rri−Pi

i+Pi

whereriistheproportionofobservationsoftheindividualcrayfish

inahabitattype(i)andPiistherelativeabundanceofthathabitat

inthestudyarea.EiisscaledsothatEi=−1correspondstototal

avoidanceofthehabitattype(i),Ei=0representsnon-selectiveuse

ofhabitattype(i),andEi=1showsexclusiveuseofhabitattype(i).

StandardizedForageRatio(Chesson,1983)adaptedforhabitat

types(i):

Si=



nri/Pi

n=1(rn/Pn)

whereriandPiaredefinedasabove,andnisthenumberofhabitat

typesinthestudyarea.Thestandardizedforageratioasoriginally

presentedtakesvaluesbetween0and1,withSi=0representing

avoidanceofhabitattype(i)andSi=1exclusiveuseofhabitattype

(i).

3. Results

3.1. Movementdistances

PooledmovementdataofP.clarkiiand P.leniusculusdiffered

significantly in relation to median, range of values and

distri-butions (n=751and p<0.001 for all tests: median test, Moses

test of extreme reaction and Kolmogorov–Smirnov test). The

meanmovement(forbothyears)was8.8mday−1(95%confidence

interval:2.575–15.025) forP.clarkii and17.5mday−1 (95%C.I.:

8.554–26.446)forP.leniusculus(Fig.3).However,crayfish

behav-iorrangedfromalmostcompleteimmobility,sometimesforseveral

days,tolargemovements,inahalfdayperiod,reachingamaximum

of255mforP.clarkii(Fig.4)and461mforP.leniusculus(Fig.5),

calculatedwithFishTracker.Forthemajorityofthetimetherewas

nocrayfishmovementbetweenconsecutivesurveysandthis

pat-ternwasthesameforbothspecies(Fig.3d).Usingvaluesfromboth

years,P.clarkiiandP.leniusculusdidnotmoveon67.6%and57.95%

ofthehalfdayperiods,respectively.

A MANOVA (Table 1) showed that thefactors ‘species’ and

‘period’ significantly affected crayfish movement and location

metrics.Thetestalsoshowedthattherewasnointeractionbetween

(5)

Fig.3. Averagevaluesofthecollecteddataregardingspaceuseandmovement.Meanvaluesarepresentedforeachyearandspecies.Meandistanceattheendisthemean distanceofthelastdetectionofeachcrayfish.Errorbarsarethestandarderrors.7P.clarkiiand12P.leniusculusweretrackedtwiceperdayduringameanperiodof21days. Dataobtainedfromatotalof741radio-locationpoints.

thedependentvariables (Table2), foundsignificantdifferences

betweenspecies(p=0.001),regardingthepercentageof

observa-tionsundervegetationcover.Themaximumobserveddistances

fromthepointofreleaseweredifferentin2010and2013(p<0.05).

Actually,contraryto2010,in2013P.clarkiialwaysremainedinthe

vicinityofthereleasepoint.Thisresultedinasignificantinteraction

(p<0.05)betweenspeciesandyearinwhatconcernsthemaximum

observeddistancefromthepointofrelease.

Asexpected,crayfishmovementsweremainlyorientedonan

upstream/downstreamaxis(Fig.3f),withminormovements

per-pendiculartotheriver.Consequently,Rao’sspacingtestshowed

thatmovementswerenotrandomlydistributedinalldirections

foreitherofthetwospecies(Fig.6).

3.2. Upstreamvs.downstreammovements

The proportion of upstream or downstream movements

was independent of the species (Chi-squared test, X2=0.195,

d.f.=1, p=0.659). In fact, both species have a proportion of

upstream/downstreammovements not differing from1/1

(Chi-squaredtest;P.clarkii,X2=2.042,d.f.=1,p=0.153;P.leniusculus,

X2=1.843,d.f.=1,p=0.175).Thevaluesobtainedfromthe

move-mentconsistencyindices(IdirandIdist,Figs.4and5)showedalarge

interindividualvariation,withsomevaluescloseto1indicatinga

highconsistencyandothervaluesclosetozero,indicatinglackof

consistency.MeanIdirwas0.4and0.49forP.clarkiiandP.

leniuscu-lus,respectivelyandmeanIdistwas0.58and0.65alsoforP.clarkii

andP.leniusculus,respectively.

3.3. Spaceuseandmesohabitatpreferences

Considering datafromboth years,P.clarkii individuals were

locatedata meandepthof36.2cm(min:17.6;max: 60.7)and

P.leniusculusatameandepthof45.2cm(min:22.8;max:87.3)

(Fig.3f).Figs.7and8showthatcrayfishoccupiedasmallportionof

theavailablespaceforaperiodoftimeandthenmovedtoanother

smallarea.ThisbehaviorwasmorepronouncedforP.leniusculus

thanforP.clarkii.Theaverage50thpercentileareasofthekernel

densitiesobtainedwithFishtrackerwere1232m2(min:153;max:

3252)and1519m2(min:275;max:3298)forP.clarkiiandP.

lenius-culus,respectively.Theaveragesizeofthe90thpercentilekernel

densityareaswere2087m2(min:282;max:5733)and2719m2

(min:488;max:5949)forP.clarkiiandP.leniusculus,respectively.

Toassesshabitatpreferences,weappliedtheIvlev’sElectivity

IndexandtheStandardizedForageRatio.Bothindicespresented

similarresults(Fig.9)withP.clarkiishowingapreferenceforpool

areaswithriparianvegetationcoverwhileP.leniusculuspreferred

riffleandpoolareaswithriparianvegetationcover.Bothspecies

clearlyavoidedrunareas,withorwithoutvegetationcoverand

alsoriffleareaswithoutcover.

4. Discussion

Thereweredifferencesamongthetwospeciesandalsoamong

the2010and2013radio-trackingperiodsregardingthe

descrip-torsofmovementandspaceuse.Thedifferencesbetweenperiods

(6)

Fig.4.ProcambarusclarkiimovementsthroughoutthetrackingperiodobtainedusingHawth’stools.Dotsrepresentthedetectedpositionsandsequentialpositionsare representedbylinesdrawnusingHawth’sTools.Eachcrayfishisidentifiedonthetopofthefigurebythefrequencyofitstransmitter.Idir–consistencyofthemovement

directionandIdistconsistencyofthedistancesmoved;0–lackofconsistency,1–totallyconsistent.

conditions,suchasphotoperiod,rainfall,flow,temperatureor

oxy-genavailabilitywhichcanaffectcrayfishmovementandactivity

(Flint,1977;Abrahamsson,1983;Gutierrez-Yurrita andMontes, 1998;Robinsonetal.,2000;Vicky,2000;Bubbetal.,2004).Another

non-exclusiveexplanationwouldbethatcrayfish–alladultsof

approximatelythesamesize–couldpossiblybeatdifferentlife

cyclestages.Ithasbeendescribedthatundercertaincircumstances

thismayalsoaffectdispersionpatterns(GherardiandBarbaresi,

2000;Light,2003).P.clarkiimainrecruitmentperiodinPortugal

isusuallyin September/October(Anastácioand Marques,1995;

Anastácioetal.,2009)andmatingisduringMay–July.Althoughno

differencesinreproductiveformwereperceptibleamong2010and

2013individuals,the2013trackingperiodwasjustaftertheusual

matingperiod.Inwetlandsareas,matingisfrequentlyfollowedby

burrowing,especiallyoffemales.

P.leniusculusmovedmorethanP.clarkii(17.5and8.8mday−1,

respectively)andthesevaluesarewithintherangepresentedinthe

literatureonthesespecies(Table3).Usingasimplifiedapproach,

i.e.assumingcontinuousmovementinonedirectionwithout

bar-riersorwithoutperiodsofinactivity,thiswouldbeconvertedto

3.2kmyear−1forP.clarkiiand6.4kmyear−1forP.leniusculus.These

arehigherthantheaveragevaluesfortheprogressionofthe

inva-sionfrontinthearea(Bernardoetal.,2011).Possibleexplanations

forthesehighervaluesaretheabsenceofaperfectdirectionality

inthemovementandalsothefactthatthecurrentstudywas

per-formedduringthesummerandautumnwhentemperatureswere

warmandcrayfish aremoreactive(Araujoand Romaire,1989;

Bubbetal.,2002).

Afewauthorsrefertotheoccurrenceofafrightresponsein

thefirstdaysafterreleaseofradiotaggedcrayfish(Robinsonetal.,

2000)orimmediatelyafterintroductionintoanewarea(Fürst,

1977).Justlikeseveralotherauthors (Vicky,2000; Bubb etal.,

2002;Buricetal.,2009),wefoundnoclearevidencesupportingthis

typeofbehavior.Notwithstanding,wefoundalarge

interindivid-ualvariabilityinmovementbehaviorforbothspecies.Thisseems

tobeacommoncharacteristicforseveralcrayfishspecies(Flint,

1977;Robinsonetal.,2000;ByronandWilson,2001;Bubbetal., 2002,2006),whichmayindicatedifferent“personalities”regarding

thepropensityformovementanddispersion,afactorwhichcould

beresearchedinfuturestudies.Additionally,somestudieshave

mentioned thepossibility of coexistence of two spatial

(7)

Fig.5. PacifastacusleniusculusmovementsthroughoutthetrackingperiodobtainedusingHawth’stools.Dotsrepresentthedetectedpositionsandsequentialpositionsare representedbylinesdrawnusingHawth’sTools.Eachcrayfishisidentifiedonthetopofthefigurebythefrequencyofitstransmitter.Idir–consistencyofthemovement

directionandIdistconsistencyofthedistancesmoved;0–lackofconsistency,1–totallyconsistent.

populations(Gherardietal.,2000a,b,2002;GherardiandBarbaresi,

2000;Barbaresietal.,2004).Ahighvariabilityinmovement

strate-gies, when associated withsmallsample sizesof radio tagging

studies,caneventuallyaccountforsomeinter-studyvariationin

movementresults.

Large-scale animal movement behavior may be advective

(migratory), confined (home range) or diffusive (nomadic)

(Benhamou,2014)andthelatterseemstofittheobservedcrayfish

movement.Thepatternofmovementofbothspeciesofteninvolved

periodsofimmobilityforseveraldays,interruptedbylarge

move-mentsand intermittenceis commonin animal motion(Harnos

etal.,2000;KramerandMcLaughlin,2001).Fractalintermittence

involvingstops,strongre-orientationsandbehavioral

character-isticinterruptionsmayoriginateastochasticorganizationofthe

search(forexampleforresources)iftheanimalhasalow

percep-tionofthesurroundingconditions(Bartumeus,2007).Thismay

bethecasewithcrayfishmovingonthisriverbed.Bouldersand

largestonesareanimportantcomponentofthesubstratewhich

stronglyreducesthevisualorientationcapabilitiesofthecrayfish

movingontheriverbottom.Moreover,duetowaterflow,the

per-ceptionofolfactoryclues maybereduced sincethesecluesare

mostlyobtainedfromupstreamsources.

Bothspeciesseemedtouseapatchandthenmovetoanother,

andthispatternwasmorepronouncedinP.leniusculus.A

conse-quenceofthisbehavioristhatitmakesitinadequatetoquantify

truehomeranges.Infact,randomwanderingisfrequentinreptant

decapods,withsomestayingwithinahomerangeareawithno

(8)

Table2

ResultsoffactorialANOVAs,usingspeciesandyearasindependentvariables.

Source Dependentvariable TypeIIIsumofsquares df Meansquare F Sig.

Correctedmodel LOG10(MDD) 1.159a 3 .386 2.252 .124

LOG10(MOD) 2.617b 3 .872 3.574 .039 %UVC 7064.941c 3 2354.980 5.354 .010 Intercept LOG10(MDD) 14.359 1 14.359 83.670 .000 LOG10(MOD) 59.280 1 59.280 242.846 .000 %UVC 68,074.094 1 68,074.094 154.755 .000 Species LOG10(MDD) .590 1 .590 3.438 .083 LOG10(MOD) .658 1 .658 2.694 .122 %UVC 6798.449 1 6798.449 15.455 .001 Year LOG10(MDD) .196 1 .196 1.144 .302 LOG10(MOD) 1.270 1 1.270 5.201 .038 %UVC 204.035 1 204.035 .464 .506

Species*year LOG10(MDD) .689 1 .689 4.017 .063

LOG10(MOD) 1.392 1 1.392 5.703 .031 %UVC 14.414 1 14.414 .033 .859 Error LOG10(MDD) 2.574 15 .172 LOG10(MOD) 3.662 15 .244 %UVC 6598.237 15 439.882 Total LOG10(MDD) 21.732 19 LOG10(MOD) 79.531 19 %UVC 81,178.060 19

Correctedtotal LOG10(MDD) 3.733 18

LOG10(MOD) 6.279 18

%UVC 13,663.178 18

LOG10(MDD),meandailydistancetraveled;LOG10(MOD),maximumobserveddistancefromthepointofrelease;%UVC,percentageofobservationsundervegetationcover. aRsquared=.311(adjustedRsquared=.173).

b Rsquared=.417(adjustedRsquared=.300). c Rsquared=.517(adjustedRsquared=.420).

(Vannini and Cannicci, 1995). Indeed, Robinson et al. (2000)

referredtothisasephemeralhomerangesandoneconsequence

ofthiswanderingbehavioristhatthelongeracrayfishisfollowed

byradio-tracking,thelargerthe“homerange”recorded(Hazlett

etal.,1974).

LévyWalk isa form ofSimple RandomWalk inwhich turn

andorientationdistributionsareuniformlyrandom,withaheavy

tailedsteplengthdistribution(Benhamou,2014).Lévyprocesses

ofmovementcanbedescribedbyrandomwalkmodelsandamong

thelatterthereareLévyflightandLévywalkmodels.Withlarge

timescalesincomparisontothedurationofmovement,a Lévy

flightapproachismoreadequate.However,inthepresentstudy,

thedurationofthemovementsisrelevantandthereforeLévywalk

shouldprovideasuperiorapproximationwhenmodelingcrayfish

movement.As thesetwo species are currentlyexpanding their

distributionin thearea(Bernardoetal.,2011),ourresultsoffer

valuableinformationformodelingandconsequentlyformanaging

theirspread.

Thedeveloped indices (Idir and Idist)showedlarge

interindi-vidualvariationsintheconsistencyofthedirectionofmovement

but no species specific tendencies were noted. Most of the

half-day movements detected in both species are on an

upstream/downstreamaxisand this islikely due tothealmost

linear structure of the river channel. In fact, lateral

move-ment of the crayfish is limited by the narrow river channel.

The low flow during the periods of theyear when field work

tookplace maybe one of the reasons why theproportions of

upstream/downstreammovementsdidnotdifferfrom1/1.Similar

proportionsofupstream/downstreammovementswerealsofound

forothercrayfishspecies(Robinsonetal.,2000;Bubbetal.,2002;

Kadlecováetal.,2012)aswellasforP.clarkii(Kerbyetal.,2005)

butresultsaremixedforP.leniusculus,withsomeauthorsfinding

somedirectionalityinthemovementalongtheriver(Holdichetal.,

1995;GuanandWiles,1997;Buˇriˇc,2009).

The comparison of the two habitat preference indices

con-firmsthenotionthatalthoughIvlev’sElectivityIndex(Ivlev,1961)

Table3

MovementspeedofP.clarkiiandP.lenisculuspresentedintheliterature.

Species Speed(mday−1) References

P.clarkii 1.1–4.6 Gherardietal.(2000a)

P.clarkii Maximumof4000(inricefieldhabitats) GherardiandBarbaresi(2000)

P.clarkii 0.6–1.5 Gherardietal.(2000b)

P.clarkii 1–11(temporarystream) Gherardietal.(2002)

P.clarkii 2.5–38 Aquilonietal.(2005)

P.leniusculus 13.5upstream

15downstream

Bubbetal.(2004)

P.leniusculus 5(approximatemedian) Bubbetal.(2006b)

P.leniusculus Maximumof600(Introductioninanewarea) Fürst(1977)

P.leniusculus 3.29(downstreamcolonizationrate) PeayandRogers(1998)

P.leniusculus 4.1 Holdich(1991)

P.leniusculus 7.7(downstreamcolonizationrate) 4.6(upstreamcolonizationrate)

(9)

Fig.6. Circularplotofallthedataobtainedduring2010and2013regardingthe directionsandtherespectivedistancesmoved.Topfigure–P.clarkii.Bottomfigure –P.leniusculus.Alogarithmicscaleof0–1000misused.TheresultsoftheRao’s spacingtestforrandomnessofdirectionsarepresented(Ustatisticandpvalue).

is widely used, the Standardized Forage Ratio is more robust

(Chesson,1983)andprovidesaclearerpictureofthehabitat

prefer-ences.ThefindingthatP.clarkiipreferspoolareaswithvegetation

coverisinaccordancewithpreviouswork(Aquilonietal.,2005;

Banhaand Anastácio,2011).Actually,P.clarkiiis mostlya

low-landaquaticspeciesandneedstherighttypeofsedimenttobuild

burrows(CorreiaandFerreira,1995),whileP.leniusculusishighly

adaptedtolivinginmountainrivers,asobservedintheIberian

Peninsula(Rallo and García-Arberas,2002).In ourstudy inthe

riverMac¸ãs,P.leniusculusshoweda strongerpreference for

rif-flethanforpoolareas,bothwithriparianvegetationcover.These

resultsaresomewhatdifferentfromresultsobtainedinlakeand

reservoirareaswithinthenativedistribution,inwhichtheadults

Fig.7.KerneldensityplotsforProcambarusclarkii.Theredcolorindicatestheareas withahigherintensityofuseforeachindividual.Eachcrayfishisidentifiedby thefrequencyofitstransmitter.M–male;F–female.(Forinterpretationofthe referencestocolorinthistext,thereaderisreferredtothewebversionofthe article.)

Fig.8.KerneldensityplotsforPacifastacusleniusculus.Theredcolorindicatesthe areaswithahigherintensityofuseforeachindividual.Eachcrayfishisidentified bythefrequencyofitstransmitter.M–male;F–female.(Forinterpretationof thereferencestocolorinthistext,thereaderisreferredtothewebversionofthe article.)

ofthis speciespreferdeep,sandyand lessvegetatedareas (e.g.

AbrahamssonandGoldman,1970;LewisandHorton,1997).

Bothspeciesavoidedrunareas,withorwithoutvegetationcover

andalsoriffleareaswithoutcover.Spatialdisplacement

mecha-nismsduetooneofthespecieshavinganadvantageinaggressive

encounters,e.g.whilecompetingfor shelter,do notseemtobe

(10)

Fig.9.HabitatpreferencesofP.clarkiiandP.leniusculus.Twodifferentindicesarepresented.IvlevElectivityindex(E)isscaledsothatE=−1correspondstototalavoidance ofthehabitattype,E=0representsnon-selectiveuseofthehabitattype,andE=1showsexclusiveuseofthathabitattype.TheStandardizedForageRatio(S)takesvalues between0and1,withS=0representingavoidanceandS=1representingexclusiveuseofthattypeofhabitat.

andP.leniusculus(MuellerandBodensteiner,2009).Coexistenceat

asmallscalewasinfactobservedinthisstudy,withnon-tagged

crayfishofbothspeciesoftenbeingvisuallydetectedinthesame

area.

Itwaspossibletoidentifyafewlimitationsinourapproach.

Ourdatado notallowforananalysisof theannualpatternsof

variationin themovement and spaceuse. Since thestudywas

conductedintworestrictedperiods,withdifferentindividualsin

eachperiod,therewasalsonopossibilityofassessingtheeffects

ofenvironmentalvariables (e.g.temperature). Thevaluesofthe

environmentalvariableswereactuallyquiteconservative

through-outthestudy.We considerthat ourresultsreflect a maximum

dispersionofthesespeciesintheareasincethestudywas

per-formedduringtheperiodsoflargestcrayfishactivity.Duetothe

largeeffortinvolvedinradio-trackingstudies,wecouldnotmakea

directcomparisonofasituationwithandwithoutco-occurrenceof

crayfishspecies.Inspiteofthis,inotherspeciesofcrayfishsuchas

Austropotamobiustorrentium,thespreadisdependentonthe

occur-renceofA.astacus(Kadlecováetal.,2012).Fromourresultsitisclear

thatneitherofthespeciesstopsitsactivityduetothepresenceof

thecompetingspecies.

Inaddition,wewereunabletoclearlydistinguishnightandday

movementssincealltheobservationsweremadeduringdaytime,

accordingtothe12-hintervalthatwasused.Althoughcrayfishare

usuallyhighlynocturnal,inpreviousworktheproportionof

day-timemovementswasshowntobesignificantlygreaterinsummer

monthsthaninautumnmonths(Johnsonetal.,2014).

P.clarkiiiscurrentlyestablishedthroughoutalmostallofthe

IberianPeninsula(Souty-Grossetetal.,2006)butisstill

spread-ingtowardsomeheadwaterstreams.Additionally,itisspreading

strongly in other European territories(e.g. Italy; (Scalici et al.,

2010))andtherearestillwideareasenvironmentallysuitablefor

invasionworldwide(Capinhaetal.,2011).Likewise,P.leniusculusis

spreadingovertheIberianPeninsula,withwideareasavailablefor

invasioninthisterritoryandalsoworldwide(Capinhaetal.,2011,

2012).Onamacroscale,thesetwospecieshaverelativelydifferent

environmentalpreferencesbuttheirdistributionsclearlyoverlap

insomeareas,suchasthestudiedriverstretch.Ourworkprovided

newandvaluabledataformodelingthedispersionofthesetwo

speciesinacontextofcoexistence.

Acknowledgements

Wethanktheanonymousreviewerswhogavevaluable

con-tributions for improving this paper. This study was partially

financed by FEDER funds through the “Programa Operacional

de Factores de Competitividade – COMPETE” and by national

funds through “FCT – Fundac¸ão para a Ciência e Tecnologia”

within the scope of the project DID (Dispersal of Invasive

Decapoda)(PTDC/BIA-BEC/105182/2008).InstitutodaConservac¸ão

da Natureza e das Florestas also provided financial support.

FilipeBanhaholdsaPhDgrantfromFCT(SFRH/BD/81378/2011)

andCésarCapinhaacknowledgesfundingsupportfromFCT(grants

SFRH/BD/41129/2007andSFRH/BPD/84422/2012).

References

Abrahamsson,S.,1973.MethodsforrestorationofcrayfishwatersinEurope.The developmentofanindustryforproductionofyoungofPacifastacusleniusculus Dana.Freshw.Crayfish3,203–210.

Abrahamsson,S.,1983.Trappability,locomotion,anddielpatternofactivityofthe crayfishAstacusastacusandPacifastacusleniusculusDana.Freshw.Crayfish5, 239–253.

Abrahamsson,S.A.,Goldman,C.R.,1970.Distribution,densityandproductionofthe crayfishPacifastacusleniusculusDanainLakeTahoe,California-Nevada.Oikos 21,83–91.

Almeida, D., Ellis, A., England, J., Copp, G.H., 2013. Time-series analysis of nativeandnon-nativecrayfishdynamicsintheThamesRiverBasin (south-easternEngland).Aquat.Conserv.:Mar.Freshw.Ecosyst.,http://dx.doi.org/ 10.1002/aqc.2366.

Anastácio,P.M.,Marques,J.C.,1995.Populationbiologyandproductionofthered swampcrayfishProcambarusclarkii(Girard)inthelowerMondegorivervalley, Portugal.J.Crust.Biol.15,156–168.

Anastácio,P.M.,Leitão,A.S.,Boavida,M.J.,Correia,A.M.,2009.Populationdynamics oftheinvasivecrayfish(ProcambarusclarkiiGirard,1852)attwomarsheswith differinghydroperiods.Ann.Limnol.45,247–256,http://dx.doi.org/10.1051/ limn/2009025.

Aquiloni,L.,Ilheu,M.,Gherardi,F.,2005.Habitatuseanddispersaloftheinvasive crayfishProcambarusclarkiiinephemeralwaterbodiesofPortugal.Mar.Freshw. Behav.Physiol.38,225–236.

Araujo,M.A.,Romaire,R.P.,1989.Effectsofwaterquality,weatherandlunarphase oncrawfishcatch.J.WorldAquac.Soc.20,199–207.

Banha,F.,Anastácio,P.M.,2011.Interactionsbetweeninvasivecrayfishandnative rivershrimp.Knowl.Manag.Aquat.Ecosyst.401,1–12,http://dx.doi.org/10. 1051/kmae/2011033.

Barbaresi,S.,Santini,G.,Tricarico,E.,Gherardi,F.,2004.Rangingbehaviourofthe invasivecrayfish,Procambarusclarkii(Girard).J.Nat.Hist.38,2821–2832.

Bartumeus,F.,2007.Lévyprocessesinanimalmovement:anevolutionary hypoth-esis.Fractals15,151–162.

Benhamou,S.,2014.Ofscalesandstationarityinanimalmovements.Ecol.Lett.17, 261–272,http://dx.doi.org/10.1111/ele.12225.

Bernardo,J.M.,Costa,A.M.,Bruxelas,S.,Teixeira,A.,2011.Dispersalandcoexistence oftwonon-nativecrayfishspecies(PacifastacusleniusculusandProcambarus clarkii)inNEPortugalovera10-yearperiod.Knowl.Manag.Aquat.Ecosyst. 401,28.

Beyer,H.L.,2004.Hawth’sAnalysisToolsforArcGIS,http://www.spatialecology. com/htools

Bubb,D.H.,Lucas,M.C.,Thom,T.J.,2002.Wintermovementsandactivityof sig-nalcrayfishPacifastacusleniusculusinanuplandriver,determinedbyradio telemetry.Hydrobiologia483,111–119.

Bubb,D.H.,Thom,T.J.,Lucas,M.C.,2004.Movementanddispersaloftheinvasive sig-nalcrayfishPacifastacusleniusculusinuplandrivers.Freshw.Biol.49,357–368.

Bubb,D.H.,Thom,T.J.,Lucas,M.C.,2006a.Movementpatternsoftheinvasivesignal crayfishdeterminedbyPITtelemetry.Can.J.Zool.84,1202–1209.

Bubb,D.H.,Thom,T.J.,Lucas,M.C.,2006b.Movement,dispersalandrefugeuseof co-occurringintroducedandnativecrayfish.Freshw.Biol.51,1359–1368.

Buˇriˇc,M.,2009.BiologyofSpiny-cheekCrayfish(Orconecteslimosus,Rafinesque, 1817)UnderConditionsoftheCzechRepublicandtheStudyofFactors Influ-encingitsInvasiveSpreading.UniversityofSouthBohemia, ˇCeskéBudˇejovice.

Buric,M.,Kozák,P.,Kouba,A.,2009.Movementpatternsandrangingbehaviorof theinvasivespiny-cheekcrayfishinasmallreservoirtributary.Fundam.Appl. Limnol.174,329–337.

(11)

Byron,C.J.,Wilson,K.A.,2001.Rustycrayfish(Orconectesrusticus)movementwithin andbetweenhabitatsinTroutLake,VilasCounty,Wisconsin.J.N.Am.Benthol. Soc.20,606–614.

Capinha,C.,Anastácio,P.,2011. Assessingtheenvironmentalrequirementsof invadersusingensemblesofdistributionmodels.Divers.Distrib.17,13–24,

http://dx.doi.org/10.1111/j.1472-4642.2010.00727.x.

Capinha,C.,Leung,B.,Anastácio,P.,2011.Predictingworldwideinvasivenessforfour majorproblematicdecapods:anevaluationofusingdifferentcalibrationsets. Ecography34,448–459,http://dx.doi.org/10.1111/j.1600-0587.2010.06369.x. Capinha,C.,Anastácio,P.,Tenedório,J.,2012.Predictingtheimpactofclimate

changeontheinvasivedecapodsoftheIberianinlandwaters:anassessment ofreliability.Biol.Invasions14,1737–1751, http://dx.doi.org/10.1007/s10530-012-0187-z.

Capinha,C.,Brotons,L.,Anastácio,P.,2013.Geographicalvariabilityinpropagule pressureandclimaticsuitabilityexplaintheEuropeandistributionoftwohighly invasivecrayfish.J.Biogeogr.40,548–558,http://dx.doi.org/10.1111/jbi.12025. Chesson,J.,1983.Theestimationandanalysisofpreferenceanditsrelatioshipto

foragingmodels.Ecology64,1297–1304.

Correia,M.A.,Ferreira,O.,1995.Burrowingbehavioroftheintroducedredswamp crayfishProcambarusclarkii(Decapoda:Cambaridae)inPortugal.J.Crust.Biol. 15(2),248–257.

Flint,R.W.,1977.Seasonalactivity,migrationanddistributionofcrayfish, Pacifasta-cusleniusculus,inlakeTahoe.Am.Midl.Nat.97,280–292.

Fürst,M.,1977.IntroductionofPacifastacusleniusculus(Dana)intoSweden: meth-ods,resultsandmanagement.Freshw.Crayfish3,229–247.

Gherardi,F.,2006.CrayfishinvadingEurope:thecasestudyofProcambarusclarkii. Mar.Freshw.Behav.Physiol.39,175–191.

Gherardi,F.,2013.Crayfishasglobalinvaders:distributionimpactonecosystem servicesandmanagementoptions.Freshw.Crayfish19,177–187.

Gherardi,F.,Barbaresi,S.,2000.Invasivecrayfish:activitypatternsofProcambarus clarkiiinthericefieldsoftheLowerGuadalquivir(Spain).Arch.Hydrobiol.150, 153–168.

Gherardi,F.G.,Holdich,D.M.,1999.CrayfishinEuropeasAlienSpecies:HowtoMake theBestofaBadSituation?,vol.11.CRCPressLtd.

Gherardi,F.,Acquistapace,P.,Tricarico,E.,Barbaresi,S.,2000a.Rangingand bur-rowingbehaviouroftheredswampcrayfishinaninvadedhabitat:theonsetof hibernation.Freshw.Crayfish13,330–337.

Gherardi,F.,Raddi,A.,Barbaresi,S.,Salvi,G.,2000b.Lifehistorypatternsofthered swampcrayfish(Procambarusclarkii)inanirrigationditchinTuscany,Italy.In: VonVaupelKlein,J.C.,Schram,F.R.(Eds.),TheBiodiversityCrisisandCrustacea. CrustaceanIssues,vol.12.Balkema,pp.99–108.

Gherardi,F.,Tricarico,E.,Ilhéu,M.A.,2002.Movementpatternsofaninvasive cray-fish,Procambarusclarkii,inatemporarystreamofsouthernPortugal.Ethol.Ecol. Evol.14,183–197.

Guan,R.-Z.,Wiles,P.,1997.ThehomerangeofthesignalcrayfishinaBritishlowland river.Freshw.Forum8,45–54.

Gutierrez-Yurrita,P.J.,Montes,C.,1998.Environmentalfactorscontrollingcrayfish ProcambarusclarkiiactivityintheDonanaNationalParkfreshwatermarsh (SW-Spain).Comp.Biochem.Physiol.A–Mol.Integr.Physiol.120,713–721.

Habsburgo-Lorena, A.S., 1978. Present situation of exotic species of crayfish introducedintospanishcontinentalwaters.Freshw.Crayfish4,175–184.

Harnos,A.,Horvath,G.,Lawrence,A.,Vattay,G.,2000.Scalingandintermittencyin animalbehaviour.Phys.A:Stat.Mech.Appl.286,312–320.

Hazlett,B.,Rittschof,D.,Rubenstein,D.,1974.Behavioralbiologyofthecrayfish OrconectesvirilisI.Homerange.Am.Midl.Nat.,301–319.

Henttonen,P.,Huner,J.V.,1999.Theintroductionofalienspeciesofcrayfishin Europe:ahistoricalintroduction.In:Gherardi,F.,Holdich,D.(Eds.),Crayfish inEuropeasAlienSpecies.CrustaceanIssues,vol.11.Balkema,Roterdam,pp. 13–21.

Holdich,D.M.,1988.Thedangersofintroducingalienanimalswithparticular refer-encetocrayfish.Freshw.Crayfish7,15–30.

Holdich,D.,1991.Thenativecrayfishandthreatstoitsexistence.BritishWildlife2, 141–151.

Holdich,D.M.,Rogers,W.D.,Reader,J.P.,1995.CrayfishConservation.NationalRivers Authority,Bristol,UK.

Holdich,D.M.,Reynolds,J.D.,Souty-Grosset,C.,Sibley,P.J.,2010.Areviewoftheever increasingthreattoEuropeancrayfishfromnon-indigenouscrayfishspecies. Knowl.Manag.Aquat.Ecosyst.11,394–395.

Ivlev,V.S.,1961.ExperimentalEcologyoftheFeedingofFishes.YaleUniversityPress, NewHaven.

Johnson,M.,Rice,S.,Reid,I.,2014.Theactivityofsignalcrayfish(Pacifastacus lenius-culus)inrelationtothermalandhydraulicdynamicsofanalluvialstream,UK. Hydrobiologia724,41–54,http://dx.doi.org/10.1007/s10750-013-1708-1. Kadlecová,K.,Bily,M.,Maciak,M.,2012.Movementpatternsoftheco-occurring

speciesAstacusastacus(noblecrayfish)andAustropotamobiustorrentium(stone crayfish).Fundam.Appl.Limnol.180,351–360.

Kerby,J.L.,Riley,S.P.D.,Kats,L.B.,Wilson,P.,2005.Barriersandflowaslimiting factorsinthespreadofaninvasivecrayfish(Procambarusclarkii)insouthern Californiastreams.Biol.Conserv.126,402–409.

Kramer,D.L.,McLaughlin,R.L.,2001.Thebehavioralecologyofintermittent loco-motion.Am.Zool.41,137–153.

Laffan,S.W.,Taylor,M.D.,2013.FishTracker:aGIStoolboxforkerneldensity estima-tionofanimalhomerangesthataccountsfortransittimesandhardboundaries. In:PaperPresentedatthe20thInternationalCongressonModellingand Simu-lation,Adelaide,Australia,1–6December2013.

Laurent,P.J.,1997.CrayfishintroductionsintoFranceandintheworld,historyand consequences.Bull.Fr.PechePiscicult.,345–356.

Lewis,S.,2002.Pacifastacus.In:Holdich,D.(Ed.),BiologyofFreshwaterCrayfish. Blackwell,Oxford,pp.511–540.

Lewis,S.D.,Horton,H.F.,1997.Lifehistoryandpopulationdynamicsofthesignal crayfish,Pacifastacusleniusculus,inLakeBillyChinook,Oregon.Freshw.Crayfish 11,34–53.

Light,T.,2003.Successandfailureinaloticcrayfishinvasion:therolesof hydro-logicvariabilityandhabitatalteration.Freshw.Biol.48,1886,http://dx.doi.org/ 10.1046/j.1365-2427.2003.01122.x.

Loughman,Z.J.,Skalican,K.T.,Taylor,N.D.,2013.Habitatselectionandmovementof Cambaruschasmodactylus(Decapoda:Cambaridae)assessedviaradiotelemetry. Freshw.Sci.32,1288–1297.

Lowery,R.,Holdich,D.,1988.PacifastacusleniusculusinNorthAmericaandEurope, withdetailsofthedistributionofintroducedandnativecrayfishspeciesin Europe.In:Holdich,D.,Lowery,R.(Eds.),FreshwaterCrayfish:Biology, Man-agementandExploitation.CroomHelm,London,pp.283–308.

Meals,D.W.,Dressing,S.A.,2008.SurfaceWaterFlowMeasurementforWater Qual-ityMonitoringProjects,March2008,TechNotes,vol.3.Fairfax,VA,USA,pp. 1–16.

Mueller,K.W.,Bodensteiner,L.R.,2009.Shelteroccupancybymixed-speciespairs ofnativesignalcrayfishandnon-nativeredswampcrayfishheldinenclosures. J.Freshw.Ecol.24,67–76.

Newson,M.D.,Newson,C.L.,2000.Geomorphology,ecologyandriverchannel habi-tat:mesoscaleapproachestobasin-scalechallenges.Prog.Phys.Geogr.24, 195–217,http://dx.doi.org/10.1177/030913330002400203.

Nyström,P.,1999.Ecologicalimpactofintroducedandnativecrayfishon freshwa-tercommunities:Europeanperspectives.In:Gherardi,F.,Holdich,D.M.(Eds.), CrayfishinEuropeasAlienSpecies–HowtoMaketheBestofaBadSituation? CrustaceanIssues,vol.11.Balkema,Rotterdam,pp.63–85.

Peay,S.,Rogers,D.,1998.Theperistalticspreadofsignalcrayfish(Pacifastacus leniusculus) intheRiverWharfe, Yorkshire,England. Freshw.Crayfish 12, 665–676.

Rallo,A.,García-Arberas,L.,2002.Differencesinabioticwaterconditionsbetween fluvialreaches andcrayfish faunainsomenorthern riversof theIberian Peninsula. Aquat. Living Resour. 15, 119–128, http://dx.doi.org/10.1016/ S0990-7440(02)01156-7.

Robinson,C.A.,Thom,T.J.,Lucas,M.C.,2000.Rangingbehaviourofalargefreshwater invertebrate,thewhite-clawedcrayfishAustropotamobiuspallipes.Freshw.Biol. 44,509–521.

Scalici,M.,Pitzalis,M.,Gibertini,G.,2010.Crayfishdistributionupdatingincentral Italy.Knowl.Manag.Aquat.Ecosyst.394,06.

Souty-Grosset,C.,Holdich,D.,Noel,P.Y.,Reynolds,J.D.,Haffner,P.,2006.Atlasof CrayfishinEurope.MuséumNationald’HistoireNaturelle,Paris.

Vannini,M.,Cannicci,S.,1995.Homingbehaviourandpossiblecognitivemapsin crustaceandecapods.J.Exp.Mar.Biol.Ecol.193,67–91.

Vicky,A., 2000.Observations ofradiotracked crayfish (Austropotamobius pal-lipes) in a northern British river. Crayfish Conference Leeds, vol. 26., pp.58–64.

Westman,K.,1973.CultivationoftheAmericancrayfishPacifastacusleniusculus. Freshw.Crayfish3,211–220.

Referências

Documentos relacionados

Portanto, a abordagem desenvolvida por Malhotra, Chug e Khosla [48], contribuiu para a priorização de classes infectadas por smells de código baseada no cálculo do valor do

Para que a criação de um Repositório Digital Confiável se traduza numa realidade, constituindo garantia dos atributos de autenticidade, integridade, inteligibilidade e de preservação

Assim sendo, tal como é de conhecimento, uma correta maturação do sistema nervoso central deve-se a um desenvolvimento psicomotor adequado e, deste modo Fonseca (1984 in

Recorrendo à definição de aleatoriedade, descrita por Lorenz, “uma sequência de eventos aleatórios é uma sequência em que qualquer coisa que possa acontecer,

Seguindo nessa reflexão, faz-se necessário descrever brevemente a relação entre alguns conceitos como território, autonomia, direitos humanos e globalização neoliberal,

Teóricos como Moraes (2009), Vieira (2003), Peters (1973) e Moore (1973) trazem conceitos distintos, porém interligados, que apresentam a educação a distância como um rompimento de

c) no item 4, “A restrição da liberdade de imprensa como violação de direitos fundamentais: a Lei nº 5.250/67 e o julgamento da ADPF nº 130 pelo Supremo

Para determinar o teor em água, a fonte emite neutrões, quer a partir da superfície do terreno (“transmissão indireta”), quer a partir do interior do mesmo