• Nenhum resultado encontrado

O ajuste de retas pelo método dos mínimos quadrados e secções didáticas de solução LSQ para o ensino médio

N/A
N/A
Protected

Academic year: 2018

Share "O ajuste de retas pelo método dos mínimos quadrados e secções didáticas de solução LSQ para o ensino médio"

Copied!
65
0
0

Texto

(1)

❛ ❯◆■❱❊❘❙■❉❆❉❊ ❋❊❉❊❘❆▲ ❉❖ ❈❊❆❘➪ ❈❊◆❚❘❖ ❉❊ ❈■✃◆❈■❆❙

❉❊P❆❘❚❆▼❊◆❚❖ ❉❊ ▼❆❚❊▼➪❚■❈❆

P❘❖●❘❆▼❆ ❉❊ PÓ❙✲●❘❆❉❯❆➬➹❖ ❊▼ ▼❆❚❊▼➪❚■❈❆ ❊▼ ❘❊❉❊ ◆❆❈■❖◆❆▲

❆◆❚❖◆■❖ ❊❱❊❘❚❖◆ ❙❖❯❙❆ ❉❆ ❙■▲❱❆

❖ ❆❏❯❙❚❊ ❉❊ ❘❊❚❆❙ P❊▲❖ ▼➱❚❖❉❖ ❉❖❙ ▼❮◆■▼❖❙ ◗❯❆❉❘❆❉❖❙ ❊ ❙❊❈➬Õ❊❙ ❉■❉➪❚■❈❆❙ ❉❊ ❙❖▲❯➬➹❖ ▲❙◗ P❆❘❆ ❖ ❊◆❙■◆❖ ▼➱❉■❖

(2)

❆◆❚❖◆■❖ ❊❱❊❘❚❖◆ ❙❖❯❙❆ ❉❆ ❙■▲❱❆

❖ ❆❏❯❙❚❊ ❉❊ ❘❊❚❆❙ P❊▲❖ ▼➱❚❖❉❖ ❉❖❙ ▼❮◆■▼❖❙ ◗❯❆❉❘❆❉❖❙ ❊ ❙❊❈➬Õ❊❙ ❉■❉➪❚■❈❆❙ ❉❊ ❙❖▲❯➬➹❖ ▲❙◗ P❆❘❆ ❖ ❊◆❙■◆❖ ▼➱❉■❖

❉✐ss❡rt❛çã♦ ❞❡ ▼❡str❛❞♦ ❛♣r❡s❡♥t❛❞❛ ❛♦ Pr♦❣r❛♠❛ ❞❡ Pós✲●r❛❞✉❛çã♦ ❡♠ ▼❛t❡♠át✐❝❛ ❡♠ ❘❡❞❡ ◆❛❝✐♦♥❛❧ ✭P❘❖❋▼❆❚✮✱ ❞♦ ❉❡✲ ♣❛rt❛♠❡♥t♦ ❞❡ ▼❛t❡♠át✐❝❛ ❛ ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞♦ ❈❡❛rá✱ ❝♦♠♦ r❡q✉✐s✐t♦ ♣❛r❝✐❛❧ ♣❛r❛ ♦❜t❡♥çã♦ ❞♦ tát✉❧♦ ❞❡ ▼❡str❡ ❡♠ ▼❛t❡♠á✲ t✐❝❛✳ ➪r❡❛ ❞❡ ❝♦♥❝❡♥tr❛çã♦✿ ❊♥s✐♥♦ ❞❡ ▼❛✲ t❡♠át✐❝❛✳

❖r✐❡♥t❛❞♦r✿ Pr♦❢✳ ▼❡✳ ❏✉♥✐♦ ▼♦r❡✐r❛ ❞❡ ❆❧❡♥❝❛r

(3)

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará

Biblioteca do Curso de Matemática

S578a Silva, Antonio Everton Sousa da.

O ajuste de retas pelo método dos mínimos quadrados e secções didáticas de solução LSQ para o ensino médio / Antonio Everton Sousa da Silva. – 2015.

65 f.: il.; enc.; 30 cm.

Dissertação (Mestrado) – Universidade Federal do Ceará, Centro de Ciências, Departamento de Matemática, Mestrado Profissional em Matemática em Rede Nacional, Juazeiro do Norte, 2015.

Orientação: Prof. Me. Júnio Moreira de Alencar.

1. Cálculo. 2. Álgebra. 3. Excel (Programa de computador). I. Título.

(4)
(5)

❆ ❉❡✉s✳

(6)

❆●❘❆❉❊❈■▼❊◆❚❖❙

❆❣r❛❞❡ç♦✱ ♣r✐♠❡✐r❛♠❡♥t❡✱ ❛ ❉❡✉s ♣❡❧❛s ❜❡♥çõ❡s ❡ ❣r❛ç❛s ❛❧❝❛♥ç❛❞❛s ♥❛ ✈✐❞❛ ❡ ❞✉r❛♥t❡ ❡ss❡ ♠❡str❛❞♦✳

❆❣r❛❞❡ç♦ ❛ t♦❞❛ à ♠✐♥❤❛ ❢❛♠í❧✐❛✱ ♣❡❧❛ ♣❛❝✐ê♥❝✐❛ ❡ ✐♥❝❡♥t✐✈♦ ♥❛ ✈✐❞❛✳

❆❣r❛❞❡ç♦ à ♠✐♥❤❛ ♥❛♠♦r❛❞❛✱ ❉❛♥✐❡❧❡ ❈♦rr❡✐❛ ❙❛♠♣❛✐♦✱ ♣❡❧♦ ❛♣♦✐♦ ❡ ♠♦t✐✈❛çã♦ ♥♦s ♠♦♠❡♥t♦s ❞✐❢í❝❡✐s✳

❆❣r❛❞❡ç♦ ❛♦s ♣r♦❢❡ss♦r❡s✱ ♣r✐♥❝✐♣❛❧♠❡♥t❡ ❛♦ ♠❡✉ ♣r♦❢❡ss♦r ♦r✐❡♥t❛❞♦r✱ ▼❡✳ ❏✉♥✐♦ ▼♦r❡✐r❛✱ ♣❡❧❛ ♣❛❝✐ê♥❝✐❛ ❡ ❝♦♥tr✐❜✉✐çã♦✳

❆❣r❛❞❡ç♦ ❛♦s ♠❡✉s ❝♦❧❡❣❛s ❞❡ tr❛❜❛❧❤♦✱ ♣❡❧♦ ❛♣♦✐♦ ❡ ✐♥❝❡♥t✐✈♦✳

❆❣r❛❞❡ç♦ ❛♦ Pr♦❢✳ ●✉st❛✈♦ ◆♦❣✉❡✐r❛✱ ♣❡❧❛ ❝♦♥tr✐❜✉✐çã♦ ♥❛ ✉t✐❧✐③❛çã♦ ❞♦ ❙♦❢t✇❛r❡ ▲❆❚❊❳✳

❆❣r❛❞❡ç♦ ❛ Pr♦❢❛✳ P❛✉❧❛ ❍❡✈❡❧✐♥❡ ♣❡❧❛ ❝♦rr❡çã♦ ♦rt♦❣rá✜❝❛✳

❆❣r❛❞❡ç♦ ❛ t♦❞♦s q✉❡ ❛q✉✐ ♥ã♦ ❢♦r❛♠ ❝✐t❛❞♦s✱ ♠❛s q✉❡ ❝♦♥tr✐❜✉ír❛♠ ❞❡ ❢♦r♠❛ ❞✐r❡t❛ ♦✉ ✐♥❞✐r❡t❛ ♣❛r❛ ❛ ❝♦♥❝❧✉sã♦ ❞❡ss❡ ▼❡str❛❞♦✳

(7)

❘❊❙❯▼❖

❘❡♣r❡s❡♥t❛r ❛tr❛✈és ❞❡ ✉♠❛ r❡t❛ ♦s ❞❛❞♦s ❞❡ ✉♠ ❡①♣❡r✐♠❡♥t♦ ❞❡ ♠♦❞♦ q✉❡ ♣♦ss❛ ❢❛③❡r ✐♥❢❡rê♥❝✐❛s✱ ♣♦ss✐❜✐❧✐t❛✱ ❛♦ ❡①♣❡r✐♠❡♥t❛r✱ ❡❧❛❜♦r❛r ❤✐♣ót❡s❡s ✐♠♣♦rt❛♥t❡s s♦❜r❡ ✉♠ ❞❡t❡r✲ ♠✐♥❛❞♦ ❢❡♥ô♠❡♥♦✳ ❊st❡ tr❛❜❛❧❤♦ t❡♠ ♣♦r ♦❜❥❡t✐✈♦ ❛♣r❡s❡♥t❛r ♦ ♠ét♦❞♦ ❞♦s ▼í♥✐♠♦s ◗✉❛❞r❛❞♦s ❝♦♠♦ ❝❛♠✐♥❤♦ ♣❛r❛ ❡♥❝♦♥tr❛r ❛ r❡t❛ q✉❡ ♠❛✐s s❡ ❛❥✉st❛ ❛ ✉♠ ❝♦♥❥✉♥t♦ ❞❡ ❞❛❞♦s✳ P❛r❛ ♦ ❞❡s❡♥✈♦❧✈✐♠❡♥t♦ ❞❡st❛ ✐♥✈❡st✐❣❛çã♦✱ ♦♣t♦✉✲s❡ ♣♦r ❢❛③❡r ✉♠❛ ♣❡sq✉✐s❛ ✐♥✲ t❡✐r❛♠❡♥t❡ ❜✐❜❧✐♦❣rá✜❝❛✱ ♣❡r♠✐t✐♥❞♦ r❡❛❧✐③❛r ✉♠ ❧❡✈❛♥t❛♠❡♥t♦ t❡ór✐❝♦ ❛❝❡r❝❛ ❞❡ ❛❧❣✉♥s ❝♦♥❝❡✐t♦s ❡ ❞❡♠♦♥str❛çõ❡s ❞❡ ❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧✱ ●❡♦♠❡tr✐❛ ❆♥❛❧ít✐❝❛ ♥❛ ❘❡t❛ ❡ ➪❧❣❡❜r❛ ▲✐♥❡❛r✱ ❝♦♠♦ ❛✐♥❞❛✱ ❞❡✜♥✐r ♦ ♠ét♦❞♦ ❞♦s ♠í♥✐♠♦s q✉❛❞r❛❞♦s ❡ ❛♣❧✐❝❛r ❛ s♦❧✉çã♦ ▲❙◗ ♥❛ r❡s♦❧✉çã♦ ❞❡ ✉♠ s✐st❡♠❛ ✐♠♣♦ssí✈❡❧ ♥♦ s❡♥t✐❞♦ ✉s✉❛❧✳ ❚❛♠❜é♠ s❡ ❡①♣❧♦r♦✉ ♥❡st❡ ❡st✉❞♦ ♦ ✉s♦ ❙♦❢t✇❛r❡ ❊①❝❡❧ ❝♦♠♦ ❢❡rr❛♠❡♥t❛ ❞❡ ❛♣♦✐♦ ❞✐❞át✐❝♦ ❡ s✉❛ ❛♣❧✐❝❛❜✐❧✐❞❛❞❡ ❡♠ s❛❧❛ ❞❡ ❛✉❧❛✳ ❋✐♥❛❧✐③❛✲s❡ ❝♦♠ s✉❣❡stã♦ ❞❡ ❛✉❧❛ ✐♥t❡r❞✐s❝✐♣❧✐♥❛r s♦❜r❡ ♦ t❡♠❛✱ q✉❡ ♣♦r s✉❛ ✈❡③✱ ❡stá ❡♠ ✉♠❛ ❧✐♥❣✉❛❣❡♠ ❛❝❡ssí✈❡❧ ❡ ❝❧❛r❛ ❛♦ ♣r♦❢❡ss♦r✳ ❊ss❛ ❛✉❧❛ ❢♦✐ ❞❡s❡♥✈♦❧✈✐❞❛ ❡♠ ❡t❛♣❛s ❞✐❞át✐❝❛s✱ ♥❛ q✉❛❧ ❛ ú❧t✐♠❛✱ ✉t✐❧✐③❛✲s❡ ♦ ❙♦❢t✇❛r❡ ❊①❝❡❧ ❝♦♠♦ ❢❡rr❛♠❡♥t❛ ❛✉①✐❧✐❛r✳ ◆❛ ♣❡rs♣❡❝t✐✈❛ ❞❡ ✉♠❛ ✜①❛çã♦ ♠❛✐s ♣r♦❢✉♥❞❛ ❞♦ ❝♦♥t❡ú❞♦✱ ❡♥✉♠❡r❛♠♦s ❛♦ ✜♥❛❧ ❞❛ ❛✉❧❛✱ ✈ár✐♦s ❡①❡r❝í❝✐♦s ❞❡ ❛♣❧✐❝❛çã♦✳

(8)

❆❇❙❚❘❆❈❚

❚r② t♦ r❡♣r❡s❡♥t ❛ ❧✐♥❡ t❤r♦✉❣❤ t❤❡ ❞❛t❛ ♦❢ ❛♥ ❡①♣❡r✐♠❡♥t✱ s♦ t❤❛t ✐t ❝❛♥ ❞r❛✇ ✐♥❢❡r❡♥❝❡s✱ ❡♥❛❜❧❡s t❤❡ ❡①♣❡r✐❡♥❝❡ ❞❡✈❡❧♦♣ ✐♠♣♦rt❛♥t ❤②♣♦t❤❡s✐s ❛❜♦✉t ❛ ♣❤❡♥♦♠❡♥♦♥✳ ❚❤✐s ✇♦r❦ ❛✐♠s t♦ ♣r❡s❡♥t t❤❡ ♠❡t❤♦❞ ♦❢ ❧❡❛st sq✉❛r❡s ❛s ❛ ✇❛② t♦ ✜♥❞ t❤❡ ❧✐♥❡ t❤❛t ❜❡st ✜ts ❛ s❡t ♦❢ ♣♦✐♥ts✳ ❋♦r ❞❡✈❡❧♦♣♠❡♥t ♦❢ t❤✐s r❡s❡❛r❝❤✱ ✐t ✇❛s ❞❡❝✐❞❡❞ t♦ ❞♦ ❛ ✇❤♦❧❡ ❧✐t❡r❛t✉r❡✱ ❛❧❧♦✇✐♥❣ t♦ ♠❛❦❡ t❤❡♦r❡t✐❝❛❧ s✉r✈❡② ❛❜♦✉t s♦♠❡ ❝♦♥❝❡♣ts ❛♥❞ ❞✐✛❡r❡♥t✐❛❧ ❝❛❧❝✉❧✉s ❞❡♠♦♥str❛t✐♦♥s✱ ❛♥❛❧②t✐❝❛❧ ❣❡♦♠❡tr② ♦♥ t❤❡ str❛✐❣❤t ❛♥❞ ❧✐♥❡❛r ❛❧❣❡❜r❛✱ ❛s ②❡t✱ ❞❡✜♥❡ t❤❡ ♠❡t❤♦❞ ♦❢ ❧❡❛st sq✉❛r❡s ❛♥❞ ❛♣♣❧② ▲❙◗ s♦❧✉t✐♦♥ t♦ r❡s♦❧✈❡ ❛♥ ✐♠♣♦ss✐❜❧❡ s②st❡♠ ✐♥ t❤❡ ✉s✉❛❧ s❡♥s❡✳ ❆❧s♦ ❡①♣❧♦r❡❞ ✐♥ t❤✐s st✉❞② ✉s✐♥❣ ❊①❝❡❧ s♦❢t✇❛r❡ ❛s ❛ t❡❛❝❤✐♥❣ s✉♣♣♦rt t♦♦❧ ❛♥❞ ✐ts ✉s❡ ✐♥ t❤❡ ❝❧❛ssr♦♦♠✳ ❲❡ ✜♥✐s❤ ✇✐t❤ ❛ ❤✐♥t ♦❢ ❛♥ ✐♥t❡r❞✐s❝✐♣❧✐♥❛r② ❧❡❝t✉r❡ ♦♥ t❤❡ s✉❜❥❡❝t✱ ✇❤✐❝❤ ✐♥ t✉r♥✱ ✐s ✐♥ ❛♥ ❛❝❝❡ss✐❜❧❡ ❛♥❞ ❝❧❡❛r ❧❛♥❣✉❛❣❡ t♦ t❤❡ t❡❛❝❤❡r✳ ❚❤✐s ❝❧❛ss ❤❛s ❜❡❡♥ ❞❡✈❡❧♦♣❡❞ ❢♦r t❡❛❝❤✐♥❣ st❡♣s✱ ✐♥ ✇❤✐❝❤ t❤❡ ❧❛tt❡r ✐s ♣❡r❢♦r♠❡❞ ✉s✐♥❣ ❊①❝❡❧ s♦❢t✇❛r❡ ❛s ❛♥ ❛✉①✐❧✐❛r② t♦♦❧✳ ❋♦r ❛ ❞❡❡♣❡r ❛tt❛❝❤♠❡♥t ❝♦♥t❡♥t✱ ✇❡ ❡♥✉♠❡r❛t❡❞ t❤❡ ❡♥❞ ♦❢ ❝❧❛ss s❡✈❡r❛❧ ♣r❛❝t✐❝❛❧ ❡①❡r❝✐s❡s✳

(9)

❙✉♠ár✐♦

✶ ■◆❚❘❖❉❯➬➹❖ ✾

✷ P❘❊▲■▼■◆❆❘❊❙ ✶✶

✷✳✶ ❊①♣❧♦r❛♥❞♦ ❝♦♥❝❡✐t♦s ❞❡ ●❡♦♠❡tr✐❛ ❆♥❛❧ít✐❝❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✷✳✷ ❊①♣❧♦r❛♥❞♦ ❝♦♥❝❡✐t♦s ❞❡ ➪❧❣❡❜r❛ ▲✐♥❡❛r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻ ✷✳✷✳✶ ❙✐st❡♠❛s ▲✐♥❡❛r❡s ❡ ▼❛tr✐③❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✽ ✷✳✸ ❱❊❚❖❘ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✵ ✷✳✸✳✶ ❱❡t♦r❡s ♥♦ R2 ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✶

✷✳✸✳✷ ❱❡t♦r❡s ♥♦ R3 ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷

✷✳✹ ❊①♣❧♦r❛♥❞♦ ❝♦♥❝❡✐t♦s ❞❡ ❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✻

✸ ❖ ▼➱❚❖❉❖ ❉❖❙ ▼❮◆■▼❖❙ ◗❯❆❉❘❆❉❖❙ ✷✾

✸✳✶ Pr✐♥❝✐♣✐♦ ❞♦ ♠ét♦❞♦ ❞♦s ▼í♥✐♠♦s ◗✉❛❞r❛❞♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✵ ✸✳✷ ❙♦❧✉çã♦ ▲❙◗ ❞❡ ✉♠ s✐st❡♠❛ ▲✐♥❡❛r ❝♦♠ ❞✉❛s ✐♥❝ó❣♥✐t❛s ❡ ♥ ❡q✉❛çõ❡s ✳ ✳ ✳ ✸✶ ✸✳✸ ❆ r❡t❛ ❞♦s ▼í♥✐♠♦s ◗✉❛❞r❛❞♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✻

✹ ❚❊❈◆❖▲❖●■❆ ◆❖ ❊◆❙■◆❖ ❉❊ ▼❆❚❊▼➪❚■❈❆ ✹✵

✹✳✶ ❙✉❣❡stã♦ ❞❡ ❛✉❧❛✿ ♠ét♦❞♦ ❞♦s ▼í♥✐♠♦s ◗✉❛❞r❛❞♦s ❡ ♦ ❙♦❢t✇❛r❡ ❊①❝❡❧ ✳ ✳ ✳ ✹✸ ✹✳✷ ❊t❛♣❛s ❞❡ ❞❡s❡♥✈♦❧✈✐♠❡♥t♦ ❞❛ ❛✉❧❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✹ ✹✳✷✳✶ ✶❛ ❊t❛♣❛✿ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✹ ✹✳✷✳✷ ✷❛ ❊t❛♣❛✿ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✹ ✹✳✷✳✸ ✸❛ ❊t❛♣❛✿ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✹ ✹✳✷✳✹ ✹❛ ❊t❛♣❛✿ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✺ ✹✳✷✳✺ ✺❛ ❊t❛♣❛✿ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✻

(10)

❙❯▼➪❘■❖ ✶✵

■ ✕ P♦r ❝á❧❝✉❧♦ ❞✐❢❡r❡♥❝✐❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✼ ■■ ✕ ❆♣❧✐❝❛çã♦ ❞✐r❡t❛ ❞❛ ❢ór♠✉❧❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✽ ✹✳✷✳✻ ✻❛ ❊t❛♣❛✿ ❯t✐❧✐③❛♥❞♦ ♦ s♦❢t✇❛r❡ ❊①❝❡❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✵ ❆t✐✈✐❞❛❞❡✿ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✶ Pr♦❝❡❞✐♠❡♥t♦✿ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✶ ✹✳✸ ▲✐st❛ ❞❡ ❡①❡r❝í❝✐♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✵

✺ ❈❖◆❙■❉❊❘❆➬Õ❊❙ ✻✶

(11)

❈❛♣ít✉❧♦ ✶

■◆❚❘❖❉❯➬➹❖

❉✉r❛♥t❡ ♦ ♣❡rí♦❞♦ ❞❡ ❢♦r♠❛çã♦ ❛❝❛❞ê♠✐❝❛✱ ❝♦♠♦ t❛♠❜é♠ ❞✉r❛♥t❡ ❛ r♦t✐♥❛ ❞❛s ❛t✐✈✐❞❛❞❡s ♣r♦✜ss✐♦♥❛✐s✱ ♣❡r❝❡❜❡✲s❡ q✉❡ ❤á ❛❧❣✉♥s ♠ét♦❞♦s r❡s♦❧✉t✐✈♦s ❞❡ ♣r♦❜❧❡♠❛s ♠❛✲ t❡♠át✐❝♦s q✉❡ ❞❡✐①❛♠ ❝❡rt❛ ✐♥q✉✐❡t❛çã♦✱ ♣♦r s❡r❡♠ ❞❡s❝♦♥❤❡❝✐❞♦s ♦✉ ❛✐♥❞❛ ♣❡❧♦ s❡✉ ❣r❛✉ ❞❡ ❞✐✜❝✉❧❞❛❞❡✳ ❈♦♠♦ é ♦ ❝❛s♦ ❞❡ s✐t✉❛çõ❡s ❡♠ q✉❡ é ♥❡❝❡ssár✐♦ ✉♠ ♠♦❞❡❧♦ ♠❛t❡♠át✐❝♦ ♣❛r❛ ❞❡s❝r❡✈❡r ✉♠ ❢❡♥ô♠❡♥♦ ❡s♣❡❝í✜❝♦✳

P❛r❛ t❛♥t♦ ❞❡❝✐❞✐✉✲s❡ ❞❡s❡♥✈♦❧✈❡r ✉♠❛ ♣❡sq✉✐s❛ s♦❜r❡ ♦ ♠ét♦❞♦ ❞♦s ✏▼í♥✐♠♦s ◗✉❛❞r❛❞♦s✑ ❡ s✉❛ ❛♣❧✐❝❛çã♦ ♥❛ ❞❡t❡r♠✐♥❛çã♦ ❞❛ ❡q✉❛çã♦ ❞❛ r❡t❛✱ ❛♣r❡s❡♥t❛♥❞♦ ✐♥✐❝✐❛❧✲ ♠❡♥t❡ ❛❧❣✉♠❛s ❞❡✜♥✐çõ❡s ❡ t❡♦r❡♠❛s ♣❛r❛ ❡♠❜❛s❛♠❡♥t♦ t❡ór✐❝♦✱ ❝♦♠♦ t❛♠❜é♠ ❡①♣❧♦r❛ ❛♣❧✐❝❛çõ❡s ✉t✐❧✐③❛♥❞♦ ♦ ♠ét♦❞♦ ❡✱ ❛✐♥❞❛ s✉❣❡r❡ ✉♠❛ ❛✉❧❛ ♣✐❧♦t♦ s♦❜r❡ ♦ ❛ss✉♥t♦ ♣❛r❛ t✉r♠❛s ❞♦ ❊♥s✐♥♦ ▼é❞✐♦✳

❆ ♣r♦❜❧❡♠át✐❝❛ q✉❡ ♥♦rt❡✐❛ ❛ r❡❛❧✐③❛çã♦ ❞❡st❛ ✐♥✈❡st✐❣❛çã♦ é s✉st❡♥t❛❞❛ ♣❡❧❛ ❥✉st✐✜❝❛t✐✈❛ ❛♥t❡r✐♦r✳ ▼♦t✐✈❛❞♦s ❛ ❞❡s❡♥✈♦❧✈❡r ✉♠ ❡st✉❞♦ ❝♦❧❛❜♦r❛t✐✈♦ ♥❛ ár❡❛ ❞❛ ▼❛t❡✲ ♠át✐❝❛ ❡ s✉❛s ❚❡❝♥♦❧♦❣✐❛s ♣❛r❛ ♦ ❊♥s✐♥♦ ▼é❞✐♦✱ ❧❡✈❛♥t❛♠♦s ♦ s❡❣✉✐♥t❡ q✉❡st✐♦♥❛♠❡♥t♦✿ ❈♦♠♦ ❛❜♦r❞❛r ❛ r❡t❛ ❞♦s ▼í♥✐♠♦s ◗✉❛❞r❛❞♦s ♥♦ ❊♥s✐♥♦ ▼é❞✐♦✱ ❛tr❛✈és ❞❛s s❡çõ❡s ❞✐❞át✐❝❛s s♦❜r❡ ❛ s♦❧✉çã♦ ▲❙◗✶

▲❙◗✿ ❙✐❣❧❛ ✐♥❣❧❡s❛ q✉❡ s✐❣♥✐✜❝❛✿ ▲❡❛st ❙q✉❛r❡s ◗✉❛❞r❛t✐❝✳ ❚r❛❞✉çã♦✿ ▼í♥✐♠♦s ◗✉❛❞r❛❞♦s ◗✉❛❞rá✲

t✐❝❛s✳

(12)

❈❆P❮❚❯▲❖ ✶✳ ■◆❚❘❖❉❯➬➹❖ ✶✵

▼♦t✐✈❛❞♦s ❛ ❡♥❝♦♥tr❛r r❡s♣♦st❛s ♣❛r❛ ♦ ♣r♦❜❧❡♠❛ ♣❡♥s❛❞♦✱ tr❛ç♦✉✲s❡ ♦s s❡✲ ❣✉✐♥t❡s ♦❜❥❡t✐✈♦s✿

❆♣r❡s❡♥t❛r ♦ ♠ét♦❞♦ ❞♦s ▼í♥✐♠♦s ◗✉❛❞r❛❞♦s✱ ❡ s❡çõ❡s ❞✐❞át✐❝❛s s♦❜r❡ ❛ s♦❧✉✲ çã♦ ▲❙◗✱ ♥♦ ❛❥✉st❡ ❞❡ r❡t❛s ♣❛r❛ s❡r❡♠ tr❛❜❛❧❤❛❞♦s ♥♦ ❊♥s✐♥♦ ▼é❞✐♦✳

P❛r❛ ❛t✐♥❣✐r ♦ ♣r✐♥❝✐♣❛❧ ♠♦t✐✈♦ ❞❡st❡ ❡st✉❞♦ ❞❡ ♣❡sq✉✐s❛✱ tr❛ç❛r❛♠✲s❡ ❛❧❣✉♥s ♦❜❥❡t✐✈♦s ❡s♣❡❝í✜❝♦s✿

✯ ❊①♣❧♦r❛r ♦ ❝♦♥❝❡✐t♦ ❞❡ ♠ét♦❞♦ ✏▼í♥✐♠♦s ◗✉❛❞r❛❞♦s✑❀

✯ ❊①❡♠♣❧✐✜❝❛r ♣♦r ♠❡✐♦ ❞❡ ❛♣❧✐❝❛çõ❡s ✉♠ ♠ét♦❞♦ ♠❛t❡♠át✐❝♦✿ ❙♦❧✉çã♦ ▲❙◗❀

✯ ❱❡r✐✜❝❛r ❛ ❝♦♥tr✐❜✉✐çã♦ ❞♦ ✉s♦ ❞❡ t❡❝♥♦❧♦❣✐❛ ❝♦♠♦ ❢❡rr❛♠❡♥t❛ ❞❡ ❛♣♦✐♦✳

❊ss❛ ♣❡sq✉✐s❛ s❡ ✐♥✐❝✐❛ ❝♦♠ ♦ ❡st✉❞♦ ❞❡ ❞❡✜♥✐çõ❡s ❡ t❡♦r❡♠❛s✱ q✉❡ ♣❡r♠✐t✐rã♦ ♦ ❡♠❜❛s❛♠❡♥t♦ t❡ór✐❝♦ ♥❡❝❡ssár✐♦ ❛✜♠ ❞❡ ❞❡s❡♥✈♦❧✈❡r ❛ ❢ór♠✉❧❛✱ q✉❡ ❞❡✜♥❡ ♦s ♣❛râ♠❡tr♦s ❞❛ ❡q✉❛çã♦ ❞❛ r❡t❛ ❞♦s ♠í♥✐♠♦s q✉❛❞r❛❞♦s✳

❊♠ s❡❣✉✐❞❛✱ s❡rá ❡①♣❧♦r❛❞♦ ♦ ♣r✐♥❝í♣✐♦ ♠❛t❡♠át✐❝♦ ❞♦ ♠ét♦❞♦ ❞♦s ▼í♥✐♠♦s ◗✉❛❞r❛❞♦s ❡ s✉❛ ♣r✐♥❝✐♣❛❧ ❛♣❧✐❝❛çã♦✱ ♦✉ s❡❥❛✱ ♦ ❛❥✉st❡ ❞❡ ❝✉r✈❛s✳ ◆❡st❡ ♣♦♥t♦ s❡rá ♠♦s✲ tr❛❞♦✱ q✉❡ ❛ ❝✉r✈❛ ❡s❝♦❧❤✐❞❛ ❞❡♣❡♥❞❡rá ❞♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❞♦s ❞❛❞♦s ♥♦ ❞✐❛❣r❛♠❛ ❞❡ ❞✐s♣❡rsã♦✱ ❡ q✉❡ ❡ss❛ ❝✉r✈❛ ♣♦ss✐❜✐❧✐t❛rá ❢❛③❡r ✐♥❢❡rê♥❝✐❛s ❢✉t✉r❛s s♦❜r❡ ♦ ❡①♣❡r✐♠❡♥t♦ ❛♥❛❧✐s❛❞♦✳

(13)

❈❛♣ít✉❧♦ ✷

P❘❊▲■▼■◆❆❘❊❙

◆❡st❡ ❝❛♣ít✉❧♦ ❡①♣õ❡✲s❡ ✐♥✐❝✐❛❧♠❡♥t❡ ❛s ♣r✐♥❝✐♣❛✐s ❞❡✜♥✐çõ❡s ❡ t❡♦r❡♠❛s q✉❡ ❞❛rã♦ s✉♣♦rt❡ t❡ór✐❝♦ ♣❛r❛ ♦ tr❛❜❛❧❤♦✳ ❉❡♣♦✐s ❞❡✜♥❡✲s❡ s♦❧✉çã♦ ▲❙◗ ❞❡ ✉♠ s✐st❡♠❛ ❧✐♥❡❛r✱ ❝♦♠ ❞✉❛s ✐♥❝ó❣♥✐t❛s✱ ♥♦ Rn✱ ❡♥❝♦♥tr❛♥❞♦ ❡ss❛ s♦❧✉çã♦ ✈✐❛ á❧❣❡❜r❛ ❧✐♥❡❛r ❡ ✈✐❛ ❝á❧❝✉❧♦

❞✐❢❡r❡♥❝✐❛❧ ❡ ✜♥❛❧✐③❛✲s❡ ❝♦♠ ❛ r❡s♦❧✉çã♦ ❞❡ ❛❧❣✉♥s ❡①❡♠♣❧♦s ❡♥✈♦❧✈❡♥❞♦ ❡ss❛ s♦❧✉çã♦ ▲❙◗✳

✷✳✶ ❊①♣❧♦r❛♥❞♦ ❝♦♥❝❡✐t♦s ❞❡ ●❡♦♠❡tr✐❛ ❆♥❛❧ít✐❝❛

❉❡✜♥✐çã♦ ✷✳✶✳✶ ✭❉✐stâ♥❝✐❛ ❡♥tr❡ ❞♦✐s ♣♦♥t♦s✮✳ ❉❛❞♦s ❞♦✐s ♣♦♥t♦sA(x1, x2) ❡ B(y1, y2)✱

❝❛❧❝✉❧❡♠♦s ❛ ❞✐stâ♥❝✐❛ ❞✭❆✱ ❇✮ ❡♥tr❡ ❡❧❡s ❧❡✈❛♥❞♦ ❡♠ ❝♦♥s✐❞❡r❛çã♦ três ❝❛s♦s✿

❋✐❣✉r❛ ✷✳✶✿ ❉✐stâ♥❝✐❛ ❡♥tr❡ ❞♦✐s ♣♦♥t♦s

(14)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✶✷

❚❡♠♦s ✐♥✐❝✐❛❧♠❡♥t❡✿

d(A, C) =|x2−x1|❡d(B, C) =|y2−y1|

❆♣❧✐❝❛♥❞♦ ♦ t❡♦r❡♠❛ ❞❡ P✐tá❣♦r❛s ❛♦ tr✐â♥❣✉❧♦ABC✱ t❡♠♦s✿

[d(A, B)]2

= [d(A, C)]2

+ [d(B, C)]2

[d(A, B)]2

= (x2−x1)2 + (y2−y1)2

d(A, B) = q

(x2 −x1) 2

+ (y2 −y1) 2

❚❡♦r❡♠❛ ✷✳✶✳✶✳ ❉❛❞❛f :R→R ❞❡✜♥✐❞❛ ♣♦r f(x) =ax+b✱ ♦ ❣rá✜❝♦ ❞❡ f é ✉♠❛ r❡t❛✳

❉❡♠♦♥str❛çã♦✿ ❱❛♠♦s ♣r♦✈❛r q✉❡ três ♣♦♥t♦s q✉❛✐sq✉❡r ❞♦ ❣rá✜❝♦ sã♦ ❝♦❧✐♥❡❛r❡s ❡✱ ♣♦rt❛♥t♦ ❞❡t❡r♠✐♥❛♠ ✉♠❛ r❡t❛✳ ❈♦♥s✐❞❡r❡

P1 = (x1, ax1+b)

P2 = (x2, ax2+b)

P3 = (x3, ax3+b)

P❛r❛ ♣r♦✈❛r♠♦s q✉❡ ❡st❡s três ♣♦♥t♦s sã♦ ❝♦❧✐♥❡❛r❡s é ♥❡❝❡ssár✐♦ ❡ s✉✜❝✐❡♥t❡ q✉❡ ❛ ♠❛✐♦r ❞✐stâ♥❝✐❛ ❡♥tr❡ ❞♦✐s ❞❡❧❡s s❡❥❛ ✐❣✉❛❧ à s♦♠❛ ❞♦s ♦✉tr♦s ❞♦✐s✳ ❙✉♣♦♥❤❛ q✉❡ x1 < x2 < x3✳ ❆ss✐♠✱ ✉t✐❧✐③❛♥❞♦ ❛ ❢ór♠✉❧❛ ❞❛ ❞✐stâ♥❝✐❛ ❡♥tr❡ ❞♦✐s ♣♦♥t♦s t❡♠♦s✿

❞✐stâ♥❝✐❛ ❞❡P1 ❛P2

d(P1, P2) = p

(x2−x1)2+ [(ax2+b)−(ax1+b)]2

=p(x2−x1)2+ [a(x2−x1)]2

d(P1, P2) = (x2−x1) √

(15)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✶✸

❞✐stâ♥❝✐❛ ❞❡P2 ❛P3

d(P2, P3) = p

(x3−x2)2+ [(ax3+b)−(ax2+b)]2

=p(x3−x2)2+ [a(x3−x2)]2

d(P2, P3) = (x3−x2) √

1 +a2,

❞✐stâ♥❝✐❛ ❞❡P1 ❛P3

d(P1, P3) = p

(x3−x1)2+ [(ax3+b)−(ax1+b)]2

=p(x3−x1)2+ [a(x3−x1)]2

d(P1, P3) = (x3−x1) √

1 +a2.

❉❛í s❡❣✉❡ q✉❡

(x2−x1) √

1 +a2+ (x

3−x2) √

1 +a2 = (x

3−x1) √

1 +a2

❙❡❣✉❡ ❡♥tã♦ q✉❡

d(P1, P3) =d(P1, P2) +d(P2, P3)

▲♦❣♦ ♦s três ♣♦♥t♦s ❡stã♦ ❛❧✐♥❤❛❞♦s ❡✱ ♣♦rt❛♥t♦ ❞❡t❡r♠✐♥❛♠ ✉♠❛ r❡t❛✳

❚❡♦r❡♠❛ ✷✳✶✳✷✳ ❚♦❞❛ r❡t❛ ♥ã♦ ✈❡rt✐❝❛❧ é ♦ ❣rá✜❝♦ ❞❛ ❡q✉❛çã♦ ❞❛ ❢♦r♠❛y=ax+b✳

❉❡♠♦♥str❛çã♦✿ ❈♦♥s✐❞❡r❡♠♦s ❞♦✐s ♣♦♥t♦s ❞✐st✐♥t♦s A = (x1, y1) ❡ B = (x2, y2) ♥❡ss❛

r❡t❛✳ P♦r ❤✐♣♦t❡s❡ ❛ r❡t❛ é ♥ã♦ ✈❡rt✐❝❛❧✱ ❧♦❣♦ x1 6= x2✳ ◗✉❡r❡♠♦s ❞❡t❡r♠✐♥❛r a ❡ b ❞❡

(16)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✶✹

❝♦♠ a ❡b s❡♥❞♦ ❛s ✐♥❝ó❣♥✐t❛s✿

ax1+b=y1

ax2+b=y2

=a(x2−x1) = y2−y1 =⇒a=

y2−y1

x2−x1

❙✉❜st✐t✉✐♥❞♦a ♥❛ ♣r✐♠❡✐r❛ ❡q✉❛çã♦ t❡♠♦s✱

y2−y1

x2−x1

x1 +b =y1 =⇒b=

x2y1−x1y2

x2−x1

❆ss✐♠ ♣r♦✈♦✉✲s❡ q✉❡ ❞❛❞♦s A = (x1, y1) ❡ B = (x2, y2) ❛r❜✐tr❛r✐❛♠❡♥t❡ ❝♦♠

x1 6= x2 ❡①✐st❡ ✉♠❛✱ ❡ s♦♠❡♥t❡ ✉♠❛✱ ❡q✉❛çã♦ y = ax+b✱ t❛❧ q✉❡ y1 = ax1 +b ❡ y2 =

ax2+b✳

❖❜s❡r✈❛çã♦✿ ❊♠ ❛❧❣✉♠❛s ❧✐t❡r❛t✉r❛s✱ ❛ ❡q✉❛çã♦ y = ax +b é t❛♠❜é♠ ❝❤❛♠❛❞❛ ❞❡ ❡q✉❛çã♦ r❡❞✉③✐❞❛ ❞❛ r❡t❛✳

❉❡✜♥✐çã♦ ✷✳✶✳✷ ✭❊q✉❛çã♦ ♣❛r❛♠étr✐❝❛ ❞❛ r❡t❛✮✳ ❆ ❡q✉❛çã♦ ❞❛ r❡t❛ s❡❥❛ ❡❧❛ r❡❞✉③✐❞❛ ♦✉ ❣❡r❛❧✱ r❡❧❛❝✐♦♥❛ ❡♥tr❡ s✐ ❛s ❝♦♦r❞❡♥❛❞❛s (x, y) ❞❡ ✉♠ ♣♦♥t♦ ❣❡♥ér✐❝♦ ❞❛ r❡t❛✳ ❊♥tr❡✲

(17)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✶✺

❚❡♠♦s q✉❡✱ ♣♦r s❡♠❡❧❤❛♥ç❛ ❞❡ tr✐â♥❣✉❧♦s✱ ♣♦❞❡♠♦s ❡s❝r❡✈❡r ❛ s❡❣✉✐♥t❡ r❡❧❛çã♦✿

xa ca =

yb db

■❣✉❛❧❛♥❞♦ ❝❛❞❛ ♠❡♠❜r♦ ❛t ❡ ✐s♦❧❛♥❞♦ x❡ y✱ t❡♠♦s✿

xa

ca =t=⇒x=a+ (c−a)t yb

db =t=⇒y =b+ (d−b)t

❆s ❡q✉❛çõ❡sx =a+ (ca)t ❡y =b+ (db)t sã♦ ❝❤❛♠❛❞❛s ❡q✉❛çõ❡s ♣❛r❛♠étr✐❝❛s ❞❛ r❡t❛✳

❆s ❡q✉❛çõ❡s q✉❡ ❞ã♦ ❛s ❝♦♦r❞❡♥❛❞❛s (x, y) ❞❡ ✉♠ ♣♦♥t♦ q✉❛❧q✉❡r ❞❛ r❡t❛ ❡♠

❢✉♥çã♦ ❞❡ ✉♠❛ t❡r❝❡✐r❛ ✈❛r✐á✈❡❧ t✿

x=f1(t)❡ y=f1(t)

sã♦ ❝❤❛♠❛❞❛s ❡q✉❛çõ❡s ♣❛r❛♠étr✐❝❛s ❞❛s r❡t❛✳

❊①❡♠♣❧♦ ✷✳✶✳ ❈♦♥s✐❞❡r❡ ♦s ♣♦♥t♦sA= (3,5)❡B = (1,3)✳ ❉❡t❡r♠✐♥❡ ❛ ❡q✉❛çã♦ r❡❞✉③✐❞❛

❡ ❛ ❡q✉❛çã♦ ♣❛r❛♠étr✐❝❛ ❞❛ r❡t❛ q✉❡ ♣❛ss❛ ♣♦r ❡ss❡s ♣♦♥t♦s✳ ❘❡s♦❧✉çã♦✳

■✮ ❉❡t❡r♠✐♥❛♥❞♦ ❛ ❡q✉❛çã♦ r❡❞✉③✐❞❛✿ a = 5−3

31 = 1

❙✉❜st✐t✉✐♥❞♦ a ❡ t♦♠❛♥❞♦ ♦ ♣♦♥t♦ A= (3,5)✱ t❡♠♦s 5 = 1.3 +b=b= 2

❆ss✐♠ ❛ ❡q✉❛çã♦ r❡❞✉③✐❞❛ ❞❛ r❡t❛ q✉❡ ♣❛ss❛ ♣♦r A ❡ B é y=x+ 2✳

(18)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✶✻

x= 2 + (13)t=x= 22t

y = 5 + (35)t=y= 52t

✷✳✷ ❊①♣❧♦r❛♥❞♦ ❝♦♥❝❡✐t♦s ❞❡ ➪❧❣❡❜r❛ ▲✐♥❡❛r

❉❡✜♥✐çã♦ ✷✳✷✳✶ ✭❊q✉❛çõ❡s ▲✐♥❡❛r❡s✮✳ ❯♠❛ ❡q✉❛çã♦ ❧✐♥❡❛r ❞❡ n ✈❛r✐á✈❡✐s ♥♦ ❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s r❡❛✐s é ✉♠❛ ❡q✉❛çã♦ ❞♦ t✐♣♦

a1x1+a2x2+· · ·+anxn=bn

❡♠ q✉❡ x1, x2,· · · , xn sã♦ ✈❛r✐á✈❡✐s✱ a1, a2,· · · , an sã♦ ♦s ❝♦❡✜❝✐❡♥t❡s ❞❛ ❡q✉❛çã♦ ❡ b ❛ ❝♦♥st❛♥t❡ ❞❛ ❡q✉❛çã♦✳ ❆❧❣✉♥s ❛✉t♦r❡s t❛♠❜é♠ ❝❤❛♠❛♠ b ❞❡ t❡r♠♦ ✐♥❞❡♣❡♥❞❡♥t❡ ❞❛ ❡q✉❛çã♦✳

❖❜s❡r✈❛çã♦✿ ●❡r❛❧♠❡♥t❡ ❡♠ ❡q✉❛çõ❡s ❝♦♠ ❛té três ✈❛r✐á✈❡✐s é ❝♦♠✉♠ ✉t✐❧✐③❛r♠♦s ❛s ❧❡tr❛sx✱ y ❡ z ♣❛r❛ r❡♣r❡s❡♥t❛r♠♦s ❡ss❛s ✈❛r✐á✈❡✐s✳

❊①❡♠♣❧♦ ✷✳✷✳

✐✮ 2x1+ 3x2−5x3 = 5

✐✐✮ 2x1−x2−x3 = 0

✐✐✐✮ 0x0y0z = 0

❆❜❛✐①♦ t❡♠♦s ❡①❡♠♣❧♦s ❞❡ ❡q✉❛çõ❡s ♥ã♦ ❧✐♥❡❛r❡s✿

✐✮ 2x+xy= 5

✐✐✮ 5x2+ 4x= 8

✐✐✐✮ 2√x8 = 9

(19)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✶✼

s❡q✉ê♥❝✐❛ ♦✉ ê♥✉♣❧❛ ❞❡ ♥ú♠❡r♦s r❡❛✐s(k1, k2, k3,· · · , kn) é s♦❧✉çã♦ ❞❛ ❡q✉❛çã♦ s❡

a1k1+a2k2+· · ·+ankn=b

❢♦r ✉♠❛ s❡♥t❡♥ç❛ ✈❡r❞❛❞❡✐r❛✳

❊①❡♠♣❧♦ ✷✳✸✳ ❉❛❞❛ ❛ ❡q✉❛çã♦ ❧✐♥❡❛r2x1+ 3x2−x3+ 4x4 = 3✱ ✈❡r✐✜q✉❡ s❡ ❛s s❡q✉ê♥❝✐❛s

❛❜❛✐①♦ sã♦ s♦❧✉çõ❡s ❞❛ ❡q✉❛çã♦✳

✐✮ ✭✶✱ ✹✱ ✸✱ ✕ ✷✮

❘❡s♦❧✉çã♦✳ ❆ s❡q✉ê♥❝✐❛ ❛❜❛✐①♦ é s♦❧✉çã♦✱ ♣♦✐s 2.(1) + 3.(4)(3) + 4.(2) = 3 é

✉♠❛ s❡♥t❡♥ç❛ ✈❡r❞❛❞❡✐r❛✳

✐✐✮ (2,1,3,4)

❘❡s♦❧✉çã♦✳ ❆ s❡q✉ê♥❝✐❛ ❛❝✐♠❛ ♥ã♦ é s♦❧✉çã♦✱ ♣♦✐s 2.(2) + 3.(1)(3) + 4.(4) = 3

♥ã♦ é ✉♠❛ s❡♥t❡♥ç❛ ✈❡r❞❛❞❡✐r❛✳

❉❡✜♥✐çã♦ ✷✳✷✳✸ ✭❙✐st❡♠❛ ▲✐♥❡❛r✮✳ ❉❡♥♦♠✐♥❛♠♦s ❞❡ s✐st❡♠❛ ❧✐♥❡❛r ❝♦♠m ❡q✉❛çõ❡s ❡n ✐♥❝ó❣♥✐t❛s ✉♠ ❝♦♥❥✉♥t♦ ❞❡m (m1)❡q✉❛çõ❡s ❧✐♥❡❛r❡s✱ ♥❛s ✐♥❝ó❣♥✐t❛s x1, x2, x3,· · · , xn ♦ s✐st❡♠❛ q✉❡ ❡stá r❡♣r❡s❡♥t❛❞♦ ❛❜❛✐①♦✿

S : 

         

         

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1

a21x1 + a22x2 + a23x3 + · · · + a2nxn = b2

a31x1 + a32x2 + a33x3 + · · · + a3nxn = b3

✳✳✳ ✳✳✳ ✳✳✳ ✳✳✳ ✳✳✳ ✳✳✳

am1x1 + am2x2 + am3x3 + · · · + amnxn = bm

(20)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✶✽ S:                     

a11k1 + a12k2 + a13k3 + · · · + a1nkn = b1

a21k1 + a22k2 + a23k3 + · · · + a2nkn = b2

a31k1 + a32k2 + a33k3 + · · · + a3nkn = b3

✳✳✳ ✳✳✳ ✳✳✳ ✳✳✳ ✳✳✳ ✳✳✳

am1k1 + am2k2 + am3k3 + · · · + amnkn = bm

❊①❡♠♣❧♦ ✷✳✹✳ ❱❡r✐✜q✉❡ s❡ ♦s ❝♦♥❥✉♥t♦s ❛❜❛✐①♦ sã♦ s♦❧✉çã♦ ❞♦ s✐st❡♠❛

S :         

2x+ 4y+z = 10

x+y+z =1

3xy+z =3

✐✮ (1,2,4)é s♦❧✉çã♦✱ ♣♦✐s

2·(1) + 4·(3)4 = 10 ✭s❡♥t❡♥ç❛ ✈❡r❞❛❞❡✐r❛✮ 1 + 24 =1 ✭s❡♥t❡♥ç❛ ✈❡r❞❛❞❡✐r❛✮ 3·(1)24 =3 ✭s❡♥t❡♥ç❛ ✈❡r❞❛❞❡✐r❛✮

✐✮ (5,5,0)♥ã♦ é s♦❧✉çã♦✱ ♣♦✐s

2·(5) + 4·(5) + 0 = 10 ✭s❡♥t❡♥ç❛ ✈❡r❞❛❞❡✐r❛✮ −5 + 5 + 0 =1 ✭s❡♥t❡♥ç❛ ❢❛❧s❛✮ 3·(5)5 + 0 =3 ✭s❡♥t❡♥ç❛ ❢❛❧s❛✮

❆ss✐♠✱ ✉♠ s✐st❡♠❛ ❧✐♥❡❛r ❞❡m ❡q✉❛çõ❡s ❡n✐♥❝ó❣♥✐t❛s é ❞✐t♦ ♣♦ssí✈❡❧ ✭❝♦♠♣❛✲ tí✈❡❧✮ ❡ ❞❡t❡r♠✐♥❛❞♦ q✉❛♥❞♦ ♣♦ss✉✐ ✉♠❛ ú♥✐❝❛ s♦❧✉çã♦❀ P♦ssí✈❡❧ ❡ ✐♥❞❡t❡r♠✐♥❛❞♦ q✉❛♥❞♦ ♣♦ss✉✐ ♣❡❧♦ ♠❡♥♦s ❞✉❛s s♦❧✉çõ❡s❀ ■♠♣♦ssí✈❡❧ ✭✐♥❝♦♠♣❛tí✈❡❧✮ q✉❛♥❞♦ ♥ã♦ ♣♦ss✉✐ s♦❧✉çã♦✳

✷✳✷✳✶ ❙✐st❡♠❛s ▲✐♥❡❛r❡s ❡ ▼❛tr✐③❡s

(21)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✶✾        

a11 a12 · · · a1n

a21 a22 · · · a2n ✳✳✳ ✳✳✳ ✳✳✳ ✳✳✳ am1 am2 · · · amn

        ·         x1 x2 ✳✳✳ xm         =         b1 b2 ✳✳✳ bm        

♦✉A·X =B ♦♥❞❡

A=        

a11 a12 · · · a1n

a21 a22 · · · a2n ✳✳✳ ✳✳✳ ✳✳✳ ✳✳✳ am1 am2 · · · amn

       

♠❛tr✐③ ❞♦s ❝♦❡✜❝✐❡♥t❡s✱

X =         x1 x2 ✳✳✳ xm        

♠❛tr✐③ ❞❛s ✐♥❝ó❣♥✐t❛s ❡

B =         b1 b2 ✳✳✳ bm        

❛ ♠❛tr✐③ ❞♦s t❡r♠♦s ✐♥❞❡♣❡♥❞❡♥t❡s✳

❍á t❛♠❜é♠ ♦✉tr❛ ♠❛♥❡✐r❛ q✉❡ ♣♦❞❡♠♦s ❛ss♦❝✐❛r ♦ s✐st❡♠❛ ❛ ✉♠❛ ♠❛tr✐③✱ ❝♦♠♦

✈❡♠♦s ❛❜❛✐①♦✿

      

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

✳✳✳ ✳✳✳ ✳✳✳ ✳✳✳ ✳✳✳ am1 am2 · · · amn bm

       

(22)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✷✵

❊①❡♠♣❧♦ ✷✳✺✳ ❉❛❞♦ ♦ s✐st❡♠❛ ❛❜❛✐①♦ ❡s❝r❡✈❛✲♦ ♥❛ ❢♦r♠❛ ♠❛tr✐❝✐❛❧✳

        

x+ 4y+z = 10

x+y+z = 4

3xy+z = 2

❘❡s♦❧✉çã♦✳ ▼✉❧t✐♣❧✐❝❛çã♦ ❞❡ ▼❛tr✐③❡s

▼❛tr✐③ ❢♦r♠❛❞❛ ♣❡❧♦s ❝♦❡✜❝✐❡♥t❡s✿

   

1 4 1

1 1 1

3 1 1 

   

▼❛tr✐③ ❢♦r♠❛❞❛ ♣❡❧❛s ✐♥❝ó❣♥✐t❛s✿

     x y z     

▼❛tr✐③ ❢♦r♠❛❞❛ ♣❡❧♦s t❡r♠♦s ✐♥❞❡♣❡♥❞❡♥t❡s✿

     10 4 2      ▲♦❣♦✱ t❡r❡♠♦s✿     

1 4 1

1 1 1

3 1 1      ·      x y z           10 4 2     

▼❛tr✐③ ❛♠♣❧✐❛❞❛ ❞♦ s✐st❡♠❛

   

1 4 1 10

1 1 1 4

3 1 1 2     

✷✳✸ ❱❊❚❖❘

P❛r❛ ♥♦ss♦ ❡st✉❞♦ ❞❡ ✈❡t♦r ❝♦♥s✐❞❡r❛r❡♠♦sRn ❝♦♠♦ ✉♠ ❡s♣❛ç♦ ✈❡t♦r✐❛❧ r❡❛❧✳

(23)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✷✶

r❡♣r❡s❡♥t❛ ❛ ✐✲és✐♠❛ ❝♦♦r❞❡♥❛❞❛ ❞♦ ✈❡t♦r✳

❙❡♥❞♦ ♦s ❡❧❡♠❡♥t♦s ❞❡Rn✈❡t♦r❡s✱ ❛ s♦♠❛ ❞❡ ❞♦✐s ✈❡t♦r❡s−→v = (x1, x2,· · · , xn) ❡−→w = (y1, y2,· · · , yn) é ❞❛❞❛ ♣♦r

v +→−w = (x1, x2,· · · , xn) + (y1, y2,· · · , yn) = (x1+y1, x2+y2,· · · , xn+yn)

❡ ❛ ♠✉❧t✐♣❧✐❝❛çã♦ ❞♦ ✈❡t♦r−→v = (x1, x2,· · · , xn)♣❡❧♦ ✉♠ ♥ú♠❡r♦ r❡❛❧ α✱ ❝❤❛♠❛❞♦ ❡s❝❛❧❛r✱ é ❞❡✜♥✐❞❛ ♣♦r

α−→v =α(x1, x2,· · · , xn) = (αx1, αx2,· · · , αxn)

❊①❡♠♣❧♦ ✷✳✻✳ ❙❡♥❞♦ −→v = (1,2,4) ❡ −→w = (2,4,2) ✈❡t♦r❡s ❞♦ R3 α = 2 ✉♠ ♥ú♠❡r♦

r❡❛❧✱ ❝❛❧❝✉❧❡✿

❛✮ −→v +−→w

❜✮ α−→w ❘❡s♦❧✉çã♦✳

❛✮ −→v +−→w = (1 + 2,2 + 4,4 + 2) = (3,6,6)

❜✮ α−→w = 2(2,4,2) = (4,8,4)

✷✳✸✳✶ ❱❡t♦r❡s ♥♦

R

2

❈♦♥s✐❞❡r❛♥❞♦ ✐♥✐❝✐❛❧♠❡♥t❡✱ q✉❡ R2 r❡♣r❡s❡♥t❛ ♦ ❝♦♥❥✉♥t♦ ❞❡ t♦❞♦s ♦s ♣♦♥t♦s

(24)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✷✷

❉❡✜♥✐çã♦ ✷✳✸✳✶✳ ❙❡❥❛♠A(a1, a2)❡B(b1, b2)♣♦♥t♦s ❞♦ ♣❧❛♥♦ ❝❛rt❡s✐❛♥♦ ❡−→v = (x, y)✉♠

✈❡t♦r ❞❡ R2✳ ❉✐③✲s❡ q✉❡ ♦ s❡❣♠❡♥t♦ ♦r✐❡♥t❛❞♦ −→AB r❡♣r❡s❡♥t❛ ♦ ✈❡t♦r −→v s❡

x=b1−a1

y=b2−a2

✷✳✸✳✷ ❱❡t♦r❡s ♥♦

R

3

❖ ♠❡s♠♦ ❛❝♦♥t❡❝❡ ♣❛r❛ ♦R3✳ ❈♦♥s✐❞❡r❛♥❞♦ R3 ❝♦♠♦ ♦ ❝♦♥❥✉♥t♦ ❞❡ t♦❞♦s ♦s

♣♦♥t♦s ❞♦ ❡s♣❛ç♦✱ ✐st♦ é✱ ❝♦♥❥✉♥t♦ ❞❡ ♣♦♥t♦s ❞♦ s✐st❡♠❛ ❞❡ ❡✐①♦s ♠✉t✉❛♠❡♥t❡ ♣❡r♣❡♥❞✐✲ ❝✉❧❛r❡s✱ Ox✱ Oy✱ ❡ Oz✱ ❝♦♠ ❛ ♠❡s♠❛ ♦r✐❣❡♠ ❡♠ O✱ ❞❡✜♥✐♠♦s ❝♦♠♦ s❡❣♠❡♥t♦ ♦r✐❡♥t❛❞♦

−→

P Q✱ ♦ ❝♦♥❥✉♥t♦ ❞❡ t♦❞♦s ♦s ♣♦♥t♦s q✉❡ ❡stã♦ ♥♦ s❡❣♠❡♥t♦ P Q ❞❡ ❡①tr❡♠♦s P ❡ Q✱ ❝♦♠ ♣♦♥t♦ ✐♥✐❝✐❛❧ ❡♠P ♣♦♥t♦ ✜♥❛❧ ❡♠ Q✳

❉❡✜♥✐çã♦ ✷✳✸✳✷✳ ❙❡❥❛♠ A(a1, a2, a3) ❡ B(b1, b2, b3)♣♦♥t♦s ❞♦ ❡s♣❛ç♦ ❡ −→v = (x, y, z)✉♠

✈❡t♦r ❞❡ R3✳ ❉✐③✲s❡ q✉❡ ♦ s❡❣♠❡♥t♦ ♦r✐❡♥t❛❞♦ −→AB r❡♣r❡s❡♥t❛ ♦ ✈❡t♦r −→v s❡

   

   

x=b1−a1

y=b2−a2

z =b3−a3

❉❡✜♥✐çã♦ ✷✳✸✳✸ ✭❈♦♠❜✐♥❛çã♦ ▲✐♥❡❛r✮✳ ❙❡❥❛♠Rn♦ ❡s♣❛ç♦ ✈❡t♦r✐❛❧ r❡❛❧✱−→v 1,→−v 2,· · · ,−→vn ✈❡t♦r❡s ♣❡rt❡♥❝❡♥t❡s ❛Rn✳ ❉✐③✲s❡ q✉❡ ♦ ✈❡t♦r−→v é ✉♠❛ ❝♦♠❜✐♥❛çã♦ ❧✐♥❡❛r ❞❡−→v1,−→v2,· · · , −

vn s❡ ❡①✐st✐r❡♠ ❡s❝❛❧❛r❡sa1, a2,· · · , an ♣❡rt❡♥❝❡♥t❡s ❛ R✱ t❛❧ q✉❡

v =a1−→v1 +a2−→v2 +· · ·+an−→vn

(25)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✷✸

❉❡✜♥✐çã♦ ✷✳✸✳✹ ✭❉❡♣❡♥❞ê♥❝✐❛ ❡ ■♥❞❡♣❡♥❞ê♥❝✐❛ ❧✐♥❡❛r✮✳ ❙❡❥❛♠ Rn ♦ ❡s♣❛ç♦ ✈❡t♦r✐❛❧ r❡❛❧

❡−→v 1,−→v 2,· · · ,−→v n✈❡t♦r❡s ♣❡rt❡♥❝❡♥t❡s ❛Rn✳ ❉✐③❡♠♦s q✉❡ ♦ ❝♦♥❥✉♥t♦{−→v 1,−→v 2,· · · ,−→vn} é ❧✐♥❡❛r♠❡♥t❡ ❞❡♣❡♥❞❡♥t❡(LD)✱ ♦✉ q✉❡ ♦s ✈❡t♦r❡s−→v 1,−→v 2,· · ·,−→vn sã♦LD✱ s❡ ❛ ❡q✉❛çã♦

a1−→v1+a2−→v2· · ·+ai−→v i+· · ·+an−→v n= 0

❛❞♠✐t✐r s♦❧✉çã♦ ♥ã♦✲tr✐✈✐❛❧✱ ♦✉ s❡❥❛✱ ❛❧❣✉♠ai 6= 0✳ ❈❛s♦ ❝♦♥trár✐♦✱ ✐st♦ é✱a1 =a2 =· · ·=

an= 0 ♦ ❝♦♥❥✉♥t♦ {−→v1,−→v2,· · · ,−→v n} s❡rá ❝❤❛♠❛❞♦ ❧✐♥❡❛r♠❡♥t❡ ✐♥❞❡♣❡♥❞❡♥t❡ (LI)✳

❚❡♦r❡♠❛ ✷✳✸✳✶✳ ❖ ❝♦♥❥✉♥t♦ ❞❡ ✈❡t♦r❡s é ▲■ s❡✱ ❡ s♦♠❡♥t❡ s❡ ♥❡♥❤✉♠ ❞❡❧❡s ❢♦r ✉♠❛ ❝♦♠❜✐♥❛çã♦ ❧✐♥❡❛r ❞♦s ♦✉tr♦s✳

❉❡♠♦♥str❛çã♦✿ ❆ ❞❡♠♦♥str❛çã♦ s❡rá ❢❡✐t❛ ❡♠ ❞✉❛s ♣❛rt❡s✳ ✶❛ P❛rt❡

❙❡❥❛ {−→v 1,−→v 2,· · · ,−→vn} ♦ ❝♦♥❥✉♥t♦ ❞❡ ✈❡t♦r❡s✳ ❙✉♣♦♥❤❛♠♦s q✉❡ ❛❧❣✉♠ −→v i✱ ❝♦♠ 1 ≤ in✱ ❞❡ss❡ ❝♦♥❥✉♥t♦{−→v 1,−→v 2,· · ·,−→vn}s❡❥❛ ❝♦♠❜✐♥❛çã♦ ❧✐♥❡❛r ❞♦s ❞❡♠❛✐s✱ ❧♦❣♦ ❡①✐st❡♠ ❡s❝❛❧❛r❡sa1,· · · , ai−1, ai+1,· · · , an t❛✐s q✉❡

vi =a1−→v1+a2−→v2+· · ·+ai−1−→vi−1+ai+1−→vi+1+· · ·+an−→v n

r❡❛rr❛♥❥❛♥❞♦ ❡st❛ ❡q✉❛çã♦ t❡♠♦s

a1−→v1+a2−→v2+· · ·+ai−1−→v i−1+ (−1)−→vi+ai+1−→vi+1+· · ·+an−→v n= 0

(26)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✷✹

❙✉♣♦♥❤❛♠♦s q✉❡−→v1,−→v2,· · · ,−→v n sã♦LD✱ t❡♠♦s ❡♥tã♦

a1−→v 1+a2−→v 2+· · ·+ai−→vi +· · ·+an−→vn = 0, ❝♦♠1≤i≤n❡ai 6= 0 ⇒

⇒ −ai−→v i =a1−→v1 +a2→−v2 +· · ·+ai−1−→vi−1+ai+1−→v i+1+· · ·+an−→v n⇒

⇒ −→vi =1

ai

(a1−→v 1+a2→−v 2+· · ·+ai−1−→vi−1+ai+1−→v i+1+· · ·+an−→v n)

❆❜s✉r❞♦✱ ♣♦✐s ♥❡♥❤✉♠ −→v i ♣♦❞❡ s❡r ❡s❝r✐t♦ ❝♦♠♦ ❝♦♠❜✐♥❛çã♦ ❧✐♥❡❛r ❞♦s ❞❡♠❛✐s✳

❉❡✜♥✐çã♦ ✷✳✸✳✺ ✭Pr♦❞✉t♦ ❡s❝❛❧❛r✮✳ ❉❛❞♦s ♦s ✈❡t♦r❡s −→v = (x1, x2,· · · , xn) ❡ −→u =

(y1, y2,· · · , yn) ♦ ♣r♦❞✉t♦ ❡s❝❛❧❛r ♦✉ ♣r♦❞✉t♦ ✐♥t❡r♥♦ s❡rá ❞❛❞♦ ♣♦r✿

v · −u = (x1y1+x2y2+· · ·+xnyn)

❙❡❥❛−→v = (x1, x2,· · · , xn)✉♠ ✈❡t♦r ❡♠ Rn✱ t❡♠♦s q✉❡✿

v · −v 0.

❉❡ ❢❛t♦✱

v · −v = (x1x1+x2x2+· · ·+xnxn) = x2 1 +x

2

2+· · ·+x 2

n ≥0

❉❡✜♥✐çã♦ ✷✳✸✳✻ ✭◆♦r♠❛ ❞❡ ✉♠ ✈❡t♦r✮✳ ❙❡♥❞♦−→v = (x1, x2,· · · , xn)❛ ♥♦r♠❛ ♦✉ ❝♦♠♣r✐✲ ♠❡♥t♦ ❞❡−→v✱ r❡♣r❡s❡♥t❛❞♦ ♣♦rk −→v k ♣♦❞❡ s❡r ❝❛❧❝✉❧❛❞❛ ♣♦r✿

k −→v k= (−→v · −→v)1/2 = q

x2

1+x22+· · ·+x2n

❉❡✜♥✐çã♦ ✷✳✸✳✼ ✭P❡r♣❡♥❞✐❝✉❧❛r✐❞❛❞❡ ❡♥tr❡ ❞♦✐s ✈❡t♦r❡s✮✳ ❉❛❞♦ ✉♠ ✈❡t♦r−→v ❡ ♦✉tr♦ ✈❡t♦r

u s❡ ❡ss❡s ❞♦✐s ✈❡t♦r❡s ❢♦r❡♠ ♦rt♦❣♦♥❛✐s ♦✉ ♣❡r♣❡♥❞✐❝✉❧❛r❡s ♦ ♣r♦❞✉t♦ ❡s❝❛❧❛r ❡♥tr❡ ❡ss❡s

❞♦✐s ✈❡t♦r❡s s❡rá ③❡r♦✱ ♦✉ s❡❥❛✱

(27)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✷✺

❚❡♦r❡♠❛ ✷✳✸✳✷ ✭❞❡ P✐tá❣♦r❛s ❛tr❛✈és ❞❡ ✈❡t♦r❡s✮✳ ❉❛❞♦sA✱ B ❡ C três ♣♦♥t♦s ❞♦ Rn✱ ❡ ❝♦♥s✐❞❡r❛♥❞♦ ♦s ✈❡t♦r❡s−→a =BC✱−→b =CA❡−→c =BA✳ ❙✉♣♦♥❤❛♠♦s q✉❡ ♦s ✈❡t♦r❡s

b c s❡❥❛♠ ♦rt♦❣♦♥❛✐s✱ ❛ss✐♠−→b

· −→c = 0 ❚❡♠♦s q✉❡ −→a =BC =BA(CA) = −

c −→b✳ ❆ss✐♠

k −→a k2=−→a · −→a = (−→c −→b)·(−→c −→b ) =−→c · −→c 2→−b · −→c +−→b ·−→b

▲♦❣♦

k −→a k2=k−→b k2 +k −→c k2

❆ ♣r♦♣♦s✐çã♦ q✉❡ s❡rá ❞❡♠♦♥str❛❞❛ ❛ s❡❣✉✐r é ❝♦♥s❡q✉ê♥❝✐❛ ❞♦ ❚❡♦r❡♠❛ ❞❡ P✐tá❣♦r❛s✳

Pr♦♣♦s✐çã♦ ✷✳✸✳✸✳ ❙❡❥❛ A✱ B ❞♦✐s ♣♦♥t♦s ❞♦ Rn ❡ s❡❥❛ Ω ♦ ❝♦♥❥✉♥t♦✱ ❝♦♥t❡♥❞♦ A✱ ❞❡ t♦❞♦s ♦s ♣♦♥t♦s C ❞❡ Rn t❛✐s q✉❡ CA s❡❥❛ ♦rt♦❣♦♥❛❧ ❛ BA✳ ◆❡st❛ ❝♦♥❞✐çõ❡s✱ ♣❛r❛ t♦❞♦ C ❡♠ Ω ✱

kBAk≤kB C k

♦✉ s❡❥❛✱ ♣❛r❛ t♦❞♦ C ❡♠ Ω✱ ❛ ❞✐stâ♥❝✐❛ ❞❡ B ❛ A é ♠❡♥♦r ♦✉ ✐❣✉❛❧ à ❞✐stâ♥❝✐❛ ❞❡ B ❛ C✳

❉❡♠♦♥str❛çã♦✿ ❖❜s❡r✈❡♠♦s q✉❡ ♣❡❧♦ t❡♦r❡♠❛ ❞❡ P✐tá❣♦r❛s t❡♠♦s✱

kB Ck2=kBAk2 +kCAk2 .

❈♦♠♦kCAk2

≥0✱ r❡s✉❧t❛kBC k2

≥kBAk2 ❡✱ ♣♦rt❛♥t♦✱

kBAk≤kB C k

(28)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✷✻

✈á❧✐❞♦ q✉❡

|−→v · −→u| ≤k −→v k · k −→u k

❉❡♠♦♥str❛çã♦✿ ❙❡−→u ♦✉−→v é ♦ ✈❡t♦r ♥✉❧♦✱ ❡♥tã♦ ❛ ❞❡♠♦♥str❛çã♦ s❡ r❡❞✉③ ❛ ✈❡r✐✜❝❛r ❛ ✐❣✉❛❧❞❛❞❡✱ ③❡r♦ ✐❣✉❛❧ ❛ ③❡r♦✳

❙✉♣♦♥❤❛−→u ❡ −→v ✈❡t♦r❡s ♥ã♦ ♥✉❧♦s✳ P❛r❛ q✉❛❧q✉❡r t Rt❡♠♦s q✉❡

(t−→u +−→v)·(t−→u +−→v )0

❖✉ s❡❥❛✱ ♣❛r❛ q✉❛❧q✉❡r tR

− →u · −u t2

+ 2−→u · −→v t+−→v · −→v 0 ✭✷✳✶✮

❚♦♠❛♥❞♦ p(t) = −→u · −→u t2+ 2−→u · −→v t+−→v · −→v , t R✳ P♦r ✷✳✶✱ p é ✉♠❛ ❢✉♥çã♦ ♣♦❧✐♥♦✲ ♠✐❛❧ ♥ã♦ ♥❡❣❛t✐✈❛ ❡ ❝♦♠♦ ♦ ❝♦❡✜❝✐❡♥t❡ ❞♦ t❡r♠♦ q✉❛❞rát✐❝♦ é ♥ã♦ ♥❡❣❛t✐✈♦✱ s❡❣✉❡ q✉❡ ♦ ❞✐s❝r✐♠✐♥❛♥t❡∆ ❞❡p(t) é ✉♠ ♥ú♠❡r♦ r❡❛❧ ♥ã♦ ♣♦s✐t✐✈♦✳ P♦r t❛♥t♦✱

∆ = 4(−→u · −→v)2

−4(−→u · −→u)(−→v · −→v ) = 4(−→u · −→v )2

−4k −→u k2k −→v k20

❙❡❣✉❡|−→v · −→u|2

≤k −→v k2

· k −→u k2✳ P♦rt❛♥t♦

|−→v · −→u| ≤k −→v k · k −→u k

✷✳✹ ❊①♣❧♦r❛♥❞♦ ❝♦♥❝❡✐t♦s ❞❡ ❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧

❉❡✜♥✐çã♦ ✷✳✹✳✶ ✭❉❡r✐✈❛❞❛s ♣❛r❝✐❛✐s✮✳ ❙❡❥❛ f ✉♠❛ ❢✉♥çã♦ ❞❡ ❞✉❛s ✈❛r✐á✈❡✐s✱ x ❡ y✳ ❆ ❞❡r✐✈❛❞❛ ♣❛r❝✐❛❧ ❞❡ f ❡♠ r❡❧❛çã♦ ❛ x é ❛q✉❡❧❛ ❢✉♥çã♦✱ ❞❡♥♦t❛❞❛ ♣♦r ∂f

∂x✱ t❛❧ q✉❡ s❡✉s ✈❛❧♦r❡s ❢✉♥❝✐♦♥❛✐s ❡♠ q✉❛❧q✉❡r ♣♦♥t♦(x, y✮ ♥♦ ❞♦♠í♥✐♦ ❞❡ f s❡❥❛♠ ❞❛❞♦s ♣♦r

∂f

∂x = lim∆x→0

f(x+ ∆x, y)f(x, y) ∆x

s❡ ♦ ❧✐♠✐t❡ ❡①✐st✐r✳

(29)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✷✼

f ❡♠ r❡❧❛çã♦ ❛ y é ❛q✉❡❧❛ ❢✉♥çã♦✱ ❞❡♥♦t❛❞❛ ♣♦r ∂f

∂y✱ t❛❧ q✉❡ s❡✉s ✈❛❧♦r❡s ❢✉♥❝✐♦♥❛✐s ❡♠ q✉❛❧q✉❡r ♣♦♥t♦(x, y) ♥♦ ❞♦♠í♥✐♦ ❞❡ f s❡❥❛♠ ❞❛❞♦s ♣♦r

∂f

∂y = lim∆y→0

f(x, y+ ∆y)f(x, y) ∆y

s❡ ❡ss❡ ❧✐♠✐t❡ ❡①✐st✐r✳

❆ ❞❡✜♥✐çã♦ ❛❝✐♠❛ s❡ ❧✐♠✐t❛ ❛s ❢✉♥çõ❡s ❞❡ ❞✉❛s ✈❛r✐á✈❡✐s✳ ❊♥tr❡t❛♥t♦✱ r❡s❛❧t❛✲ ♠♦s q✉❡ ♣♦❞❡ s❡r ❛♣❧✐❝❛❞❛ ❛ ❢✉♥çõ❡s ❞❡n ✈❛r✐á✈❡✐s✱ ♠❡❞✐❛♥t❡ ✉♠❛ ❞❡✜♥✐çã♦ ♠❛✐s ❢♦r♠❛❧✳

◆♦ ❝á❧❝✉❧♦ ❞❛ ❞❡r✐✈❛❞❛ ❞❡ ✉♠❛ ❢✉♥çã♦ ❞❡ ❞✉❛s ✈❛r✐á✈❡✐s ❝♦♠ ✈❛❧♦r❡s r❡❛✐s✱ ♥❛ t❡♥t❛t✐✈❛ ❞❡ ❡✈✐t❛r ❣r❛♥❞❡s ❝á❧❝✉❧♦s✱ r❡❞✉③✲s❡ ❛ ❞❡r✐✈❛❞❛ ❛♦ ❝❛s♦ ✉♥✐❞✐♠❡♥s✐♦♥❛❧✱ ❝♦♥s✐❞❡r❛ ❛ ❢✉♥çã♦ ❞❡ ❞✉❛s ✈❛r✐á✈❡✐s ❝♦♠♦ ✉♠❛ ❢✉♥çã♦ ❞❡ ✉♠❛ ✈❛r✐á✈❡❧ ❞❡ ❝❛❞❛ ✈❡③✱ ♠❛♥t❡♥❞♦ ✜①❛s ❛s ❞❡♠❛✐s✱ ♦✉ s❡❥❛✱ s❡rã♦ ❝♦♥s✐❞❡r❛❞❛s ❝♦♥st❛♥t❡s✳

❊①❡♠♣❧♦ ✷✳✼✳ ❈❛❧❝✉❧❡ ❛s ❞❡r✐✈❛❞❛s ♣❛r❝✐❛✐s ❞❡

f(x, y) = (8xyy4)2

+ 6y2x

❘❡s♦❧✉çã♦✳ ❈❛❧❝✉❧❡♠♦s ∂f

∂x ❝♦♥s✐❞❡r❛♥❞♦x❝♦♠♦ ✈❛r✐á✈❡❧ ❡y❝♦♠♦ ✉♠❛ ❝♦♥st❛♥t❡✱ ❛ss✐♠ t❡♠♦s✿

∂f

∂x = 2(8xy−y

4)8y+ 6y2

= 16y(8xyy4) + 6y2

❈❛❧❝✉❧❛♥❞♦ ❛❣♦r❛✱ ∂f

∂y ❝♦♥s✐❞❡r❛♥❞♦y❝♦♠♦ ✈❛r✐á✈❡❧ ❡x❝♦♠♦ ✉♠❛ ❝♦♥st❛♥t❡✱ ❛ss✐♠ t❡♠♦s✿ ∂f

∂y = 2(8xy−y

4

)(8x4y3) + 12yx

❉❡✜♥✐çã♦ ✷✳✹✳✷✳ ❙❡❥❛f(x, y)✉♠❛ ❢✉♥çã♦ ❛ ✈❛❧♦r❡s r❡❛✐s ❡ s❡❥❛(x0, y0)A ∈Df✳ ❉✐③❡♠♦s q✉❡(x0, y0)é ♣♦♥t♦ ❞❡ ♠í♥✐♠♦ ❞❡f ❡♠ A s❡✱ ♣❛r❛ t♦❞♦ (x, y)❡♠ A✱

f(x0, y0)≤f(x, y)

(30)

❈❆P❮❚❯▲❖ ✷✳ P❘❊▲■▼■◆❆❘❊❙ ✷✽

q✉❡(x0, y0)é ♣♦♥t♦ ❞❡ ♠á①✐♠♦ ❞❡f ❡♠ A s❡✱ ♣❛r❛ t♦❞♦ (x, y) ❡♠ A✱

f(x0, y0)≥f(x, y)

❉❡✜♥✐çã♦ ✷✳✹✳✸✳ ❙❡❥❛ f(x, y) ❞❡ ❝❧❛ss❡C2✳ ❆ ❢✉♥çã♦ H ❞❛❞❛ ♣♦r

H(x, y) =

∂2f

∂x2(x, y)

∂2f

∂x∂y(x, y) ∂2f

∂x∂y(x, y) ∂2f ∂y2(x, y)

❉❡♥♦♠✐♥❛✲s❡ ❤❡ss✐❛♥♦ ❞❡f✳ ❖❜s❡r✈❡ q✉❡

H(x, y) = ∂ 2f

∂x2(x, y)

∂2f

∂y2(x, y)−

∂2f

∂x∂y(x, y)

2

❚❡♦r❡♠❛ ✷✳✹✳✶✳ ❙❡❥❛f(x, y✮ ❞❡ ❝❧❛ss❡C2

(x0, y0)um ponto interior de Df✳ ❙✉♣♦♥❤❛✲ ♠♦s q✉❡ (x0, y0) s❡❥❛ ♣♦♥t♦ ❝rít✐❝♦ ❞❡ f✳ ❊♥tã♦

■✮ ❙❡ ∂2f

∂x2(x0, y0)>0 ❡ H(x0, y0)>0✱ ❡♥tã♦ (x0, y0) s❡rá ♣♦♥t♦ ❞❡ ♠í♥✐♠♦ ❧♦❝❛❧ ❞❡ f✳

■■✮ ❙❡ ∂2f

∂x2(x0, y0)<0 ❡ H(x0, y0)>0✱ ❡♥tã♦ (x0, y0) s❡rá ♣♦♥t♦ ❞❡ ♠á①✐♠♦ ❧♦❝❛❧ ❞❡ f✳

(31)

❈❛♣ít✉❧♦ ✸

❖ ▼➱❚❖❉❖ ❉❖❙ ▼❮◆■▼❖❙

◗❯❆❉❘❆❉❖❙

❚❡♥t❛r ♠♦❞❡❧❛r ❛tr❛✈és ❞❡ ✉♠❛ ❝✉r✈❛ ✉♠ ❢❡♥ô♠❡♥♦ ♥❛t✉r❛❧ ♦✉ ♠❡s♠♦ ❡①♣❡r✐✲ ♠❡♥t❛❧✱ ❞❡ ♠♦❞♦ q✉❡ ♣♦ss❛ ❞❡s❝r❡✈ê✲❧♦ ❛tr❛✈és ❞❡ ✉♠❛ r❡❧❛çã♦ ❡♥tr❡ ❞✉❛s ✈❛r✐á✈❡✐s✱ ❛✐♥❞❛ é ✉♠ ❣r❛♥❞❡ ❞❡s❛✜♦ ❡♥❢r❡♥t❛❞♦ ♣❡❧❛ ❝✐ê♥❝✐❛✱ ♣r✐♥❝✐♣❛❧♠❡♥t❡ q✉❛♥❞♦ ♥ã♦ ❤á ✉♠❛ ❞✐str✐✲ ❜✉✐çã♦ r❡❣✉❧❛r ❞❡ s❡✉s ❞❛❞♦s ❡♠ ❛♥á❧✐s❡s✳ ▼❛s✱ ❙✐❧✈❛ ●✳✭✷✵✶✵✱ ♣✳ ✹✮ ❬✾❪ ❡st❛❜❡❧❡❝❡ q✉❡ ✏❖ ❛❥✉st❡ ❞❡ ❞❛❞♦s ❡①♣❡r✐♠❡♥t❛✐s✱ ✐st♦ é✱ ❛ ❜✉s❝❛ ❞❡ ✉♠❛ ❢✉♥çã♦ q✉❡ ♠❡❧❤♦r ❞❡s❝r❡✈❛ ✉♠ ❝♦♥❥✉♥t♦ ❞❡ ❞❛❞♦s✱ é ❢❡rr❛♠❡♥t❛ ✐♠♣r❡s❝✐♥❞í✈❡❧ ♥♦ ♣r♦❝❡ss♦ ❞❡ ♠♦❞❡❧❛❣❡♠ ❞❡ ✉♠ ❢❡♥ô✲ ♠❡♥♦✱ ❡s♣❡❝✐❛❧♠❡♥t❡ q✉❛♥❞♦ s❡ ❛❞♠✐t❡ q✉❡ ❡❧❡ s❡❥❛ ❞❡s❝r✐t♦✱ ♠❡s♠♦ q✉❡ ♣❛r❝✐❛❧♠❡♥t❡✱ ♣♦r ❞❡t❡r♠✐♥❛❞♦ ♠♦❞❡❧♦ ♠❛t❡♠át✐❝♦✑✳

❙❡ ❞♦ ❢❡♥ô♠❡♥♦ ❡♠ ❡st✉❞♦ ♣✉❞❡r ❞❡❞✉③✐r ✉♠❛ ❝✉r✈❛ q✉❡ ♠❡❧❤♦r s❡ ❛❥✉st❡ ❛♦s ❞❛❞♦s ❝♦❧❤✐❞♦s✱ é ♣r♦✈á✈❡❧ q✉❡ ❡ss❛ ❝✉r✈❛ ♥ã♦ ❛❜r❛♥❥❛ t♦❞♦s ♦s ❞❛❞♦s✱ ♦❝♦rr❡♥❞♦ ✐st♦ ❤❛✈❡rá ✉♠❛ ❞✐❢❡r❡♥ç❛ ❡♥tr❡ ♦s ❞❛❞♦s ❝♦❧❤✐❞♦s ❡ ♦s ❞❛❞♦s ❞❛ ❝✉r✈❛✳ ❖ ▼ét♦❞♦ ❞♦s ▼í♥✐♠♦s ◗✉❛❞r❛❞♦s ❝♦♥s✐st❡ ❡♠ ♠✐♥✐♠✐③❛r ❡ss❛s ❞✐❢❡r❡♥ç❛s ❞❡ ♠♦❞♦ ❛ ❛♣r♦①✐♠❛r ♦ ♠á①✐♠♦ ♣♦ssí✈❡❧ ❡ss❛ ❝✉r✈❛ ❞♦s ♣♦♥t♦s✱ ♦✉ s❡❥❛✱ ❡st❛ té❝♥✐❝❛ t❡♠ ♣♦r ♦❜❥❡t✐✈♦ ❞❡t❡r♠✐♥❛r ❛ ❝✉r✈❛ q✉❡ ♠❛✐s s❡ ❛❥✉st❛ ❛ ✉♠ ❝♦♥❥✉♥t♦ ❞❡ ♣♦♥t♦s✳ ❆❜❛✐①♦ s❡rá ❞❛❞❛ ✉♠❛ ❛❜♦r❞❛❣❡♠ ❣❡♦♠étr✐❝❛ ❡ ✐♥t✉✐t✐✈❛ ❞♦ ♠ét♦❞♦✳

(32)

❈❆P❮❚❯▲❖ ✸✳ ❖ ▼➱❚❖❉❖ ❉❖❙ ▼❮◆■▼❖❙ ◗❯❆❉❘❆❉❖❙ ✸✵

✸✳✶ Pr✐♥❝✐♣✐♦ ❞♦ ♠ét♦❞♦ ❞♦s ▼í♥✐♠♦s ◗✉❛❞r❛❞♦s

◆❛ ✜❣✉r❛ ❛❜❛✐①♦ ❡stã♦ r❡♣r❡s❡♥t❛❞♦s ✉♠❛ ❝✉r✈❛ C ❡ ✉♠ ❝♦♥❥✉♥t♦ ❞❡ ♣♦♥t♦s

{(x1, y1), (x2, y2),· · · ,(xn, yn)} ❢♦r❛ ❞❡❧❛✳ ❆♦ ❧♦♥❣♦ ❞❡ss❛ ❝✉r✈❛✱ ♣❛r❛ ❝❛❞❛ ✈❛❧♦r ❞❡ xi✱ ❤❛✈❡rá ✉♠yi✳ ❍❛✈❡rá ❛✐♥❞❛ ✉♠❛ ❞✐❢❡r❡♥ç❛ ❡♥tr❡ ♦yi ❡ ♦ ✈❛❧♦r ❝♦rr❡s♣♦♥❞❡♥t❡ ♥❛ ❝✉r✈❛✱ ♦✉ s❡❥❛✱ yi✳ ❚❛❧ ❞✐❢❡r❡♥ç❛ s❡rá ❝❤❛♠❛❞❛ ❞❡ di✳ ❆ss✐♠ ♣❛r❛ ❝❛❞❛ xi✱ t❡♠♦s di = yi −yi✳ ❊ss❛s ❞✐❢❡r❡♥ç❛s ♣♦❞❡♠ s❡r ❝❤❛♠❛❞❛s ❞❡ ❞❡s✈✐♦s✱ ❊rr♦s ♦✉ r❡sí❞✉♦s✳ ❆❧é♠ ❞✐ss♦✱ ♣♦❞❡♠ s❡r ♣♦s✐t✐✈❛s✱ s❡ ♦ ♣♦♥t♦ ❡st✐✈❡r ❛❜❛✐①♦ ❞❛ ❝✉r✈❛✱ ♥❡❣❛t✐✈❛ s❡ ❡st✐✈❡r ❛❝✐♠❛ ❞❛ ❝✉r✈❛ ♦✉ ③❡r♦ s❡ ♦ ♣♦♥t♦ ❡st✐✈❡r s♦❜r❡ ❛ ❝✉r✈❛✳ ❆ss✐♠✱ ♣❛r❛ ❡✈✐t❛r ❞✐st♦rçõ❡s ♥♦s ❝á❧❝✉❧♦s✱ ✉s❛✲s❡ ♦ q✉❛❞r❛❞♦ ❞❡ss❛s ❞✐❢❡r❡♥ç❛s✱ t❛❧✈❡③ ♣♦r ✐ss♦ ♦ ♥♦♠❡ ✏▼í♥✐♠♦s ◗✉❛❞r❛❞♦s✑✳ ❖❜s❡r✈❡♠♦s ♦ ❣rá✜❝♦ ❛ s❡❣✉✐r✳

❯♠❛ ♠❡❞✐❞❛ q✉❡ ♥♦s ❞❛rá ✉♠❛ ❛♣r♦①✐♠❛çã♦ ♣r❡❝✐s❛ ❞♦s ♣♦♥t♦s ❛ ❝✉r✈❛ é ♣r♦♣♦r❝✐♦♥❛❞❛ ♣❡❧♦ ✈❛❧♦r D = d2

1+d 2 2+d

2

3 +· · ·+d 2

n✳ ◗✉❛♥t♦ ♠❡♥♦r ❢♦r ❡ss❡ ✈❛❧♦r✱

♠❛✐s ♣ró①✐♠♦ ♦s ♣♦♥t♦ ❡st❛rã♦ ❞❛ ❝✉r✈❛✳ ❆ss✐♠ ♣♦❞❡♠♦s ❞❡✜♥✐r✿

❉❡✜♥✐çã♦ ✸✳✶✳✶✳ ❉❡ t♦❞❛s ❛s ❝✉r✈❛s q✉❡ s❡ ❛❥✉st❡♠ ❛ ✉♠ ❝♦♥❥✉♥t♦ ❞❡ ♣♦♥t♦s✱ ❛ q✉❡ t❡♠ ❛ ♣r♦♣r✐❡❞❛❞❡ ❞❡ ❛♣r❡s❡♥t❛r ♦ ♠❡♥♦r ✈❛❧♦r

D=d2

1+d 2 2+d

2

3+· · ·+d 2

n

(33)

❈❆P❮❚❯▲❖ ✸✳ ❖ ▼➱❚❖❉❖ ❉❖❙ ▼❮◆■▼❖❙ ◗❯❆❉❘❆❉❖❙ ✸✶

❊ss❛ ❞❡✜♥✐çã♦ ♥♦s ❞✐③ q✉❡✱ s❡ ❛ s♦♠❛ ❞♦s q✉❛❞r❛❞♦s ❞❛s ❞✐❢❡r❡♥ç❛s ❡♥tr❡ ♦s ♣♦♥t♦s ❞❛ ❝✉r✈❛ ❡ ♦s ♣♦♥t♦s ❞♦ ❡①♣❡r✐♠❡♥t♦ ❡♠ q✉❡stã♦ ❢♦r ❛ ♠❡♥♦r ♣♦ssí✈❡❧ ❡♥tã♦ ❡ss❛ ❝✉r✈❛ é ❛ q✉❡ ♠❡❧❤♦r s❡ ❛❥✉st❛ ❛ ❡ss❡ ❝♦♥❥✉♥t♦ ❞❡ ♣♦♥t♦s✳

✸✳✷ ❙♦❧✉çã♦ ▲❙◗ ❞❡ ✉♠ s✐st❡♠❛ ▲✐♥❡❛r ❝♦♠ ❞✉❛s ✐♥✲

❝ó❣♥✐t❛s ❡ ♥ ❡q✉❛çõ❡s

❉❡✜♥✐çã♦ ✸✳✷✳✶ ✭❙♦❧✉çã♦ ▲❙◗✮✳ ❙❡❥❛S ♦ s✐st❡♠❛ ❧✐♥❡❛r ❛❜❛✐①♦ ❝♦♠ ❞✉❛s ✐♥❝ó❣♥✐t❛s

S :               

a11x + a12y = b1

a21x + a22y = b2

✳✳✳ ✳✳✳ ✳✳✳

an1x + an2y = bn

❉✐③❡♠♦s q✉❡(x0, y0)é ✉♠❛ s♦❧✉çã♦LSQ❞❡Ss❡(x, y) = (x0, y0)t♦r♥❛r ♠í♥✐♠❛ ❛ ❞✐stâ♥❝✐❛

❞❡

− →b =

        b1 b2 ✳✳✳ bn        

❛ −→v =        

a11x + a12y

a21x + a22y

✳✳✳ ✳✳✳ an1x + an2y

       

❚❡♦r❡♠❛ ✸✳✷✳✶✳ ❙❡❥❛ ❙ ♦ s✐st❡♠❛ ❧✐♥❡❛r ❛❜❛✐①♦ ❝♦♠ ❞✉❛s ✐♥❝ó❣♥✐t❛s

S :               

a11x + a12y = b1

a21x + a22y = b2

✳✳✳ ✳✳✳ ✳✳✳

an1x + an2y = bn

♦♥❞❡−→v1 =

        a11 a21 ✳✳✳ an1

       

,−→v2 =

        a12 a21 ✳✳✳ an2

       

❡−→b =         b1 b2 ✳✳✳ bn        

(34)

❈❆P❮❚❯▲❖ ✸✳ ❖ ▼➱❚❖❉❖ ❉❖❙ ▼❮◆■▼❖❙ ◗❯❆❉❘❆❉❖❙ ✸✷ ①✐❧✐❛r ❛❜❛✐①♦✿ AS :    − →v

1 · −→v1x+→−v1 · −→v2y =

− →

b · −→v1

− →v

1 · −→v2x+→−v2 · −→v2y =

− →

b · −→v2

❉❡♠♦♥str❛çã♦ ✈✐❛ á❧❣❡❜r❛✳ ❈♦♥s✐❞❡r❡♠♦s ❞♦✐s ✈❡t♦r❡s −→v1 ❡ −→v2 ❧✐♥❡❛r♠❡♥t❡ ✐♥❞❡♣❡♥✲ ❞❡♥t❡s✱ ♣♦✐s s❡ ❢♦ss❡♠ ❧✐♥❡❛r♠❡♥t❡ ❞❡♣❡♥❞❡♥t❡s t❡rí❛♠♦s ✉♠ s✐st❡♠❛ ❞❡n❡q✉❛çõ❡s ❡ ❝♦♠ ✉♠❛ ✈❛r✐á✈❡❧✱ q✉❡ é ✐rr❡❧❡✈❛♥t❡ ♣❛r❛ ♦ tr❛❜❛❧❤♦✳ ◗✉❡r❡♠♦s ❞❡t❡r♠✐♥❛r ✉♠ ✈❡t♦r −→v0 t❛❧

q✉❡ ❛ ❞✐stâ♥❝✐❛ ❡♥tr❡−→v0 ❡ −→b ✱ s❡❥❛ ♠í♥✐♠❛✱ ♦✉ s❡❥❛✱ −→b − −→v0 ♣❡r♣❡♥❞✐❝✉❧❛r ❛♦ ♣❧❛♥♦✿

❚♦♠❛♥❞♦−→v0 ♣❡rt❡♥❝❡♥t❡ ❛♦ ♣❧❛♥♦✱ ❧♦❣♦ ♣♦❞❡ s❡r ❡s❝r✐t♦ ❞❛ s❡❣✉✐♥t❡ ❢♦r♠❛✿

− →v 0 =        

a11x0 + a12y0

a21x0 + a22y0

✳✳✳ ✳✳✳

an1x0 + an2y0

       

♦✉ −→v0 =x0→−v1 +y0−→v2

♣❛r❛ ❛❧❣✉♠x0 ❡ y0 r❡❛❧✳

❱❛♠♦s ❡s❝r❡✈❡r ♦ s✐st❡♠❛ ❙ ♥❛ ❢♦r♠❛ ✈❡t♦r✐❛❧✿

S :x−→v1 +y−→v2 =

− →

b

P❛r❛ q✉❡(−→b − −→v0)s❡❥❛ ♣❡r♣❡♥❞✐❝✉❧❛r ❛♦ ♣❧❛♥♦ ❢♦r♠❛❞♦ ♣❡❧♦s ✈❡t♦r❡s−→v1 ❡−→v2✱ ❞❡✈❡♠♦s t❡r

(−→b − −→v0)⊥ −→v1 ❡(

− →

(35)

❈❆P❮❚❯▲❖ ✸✳ ❖ ▼➱❚❖❉❖ ❉❖❙ ▼❮◆■▼❖❙ ◗❯❆❉❘❆❉❖❙ ✸✸

❧♦❣♦

(−→b − −→v0)· −→v1 = 0 ❡ (

− →

b − −→v0)· −→v2 = 0

❛ss✐♠ t❡♠♦s

(−→b − −→v0)· −→v1 = 0

(−→b − −→v0)· −→v2 = 0 ⇒

(−→b x0−→v1 −y0−→v2)· −→v1 = 0

(−→b x0−→v1 −y0−→v2)· −→v2 = 0 ⇒ ⇒    − →b

· −→v1 −x0−→v1 · −→v1 −y0−→v2 · −→v1 = 0 −

b

· −→v1 −x0−→v1 · −→v2 −y0−→v2 · −→v2 = 0 ⇒    − →b

· −→v1 −x0−→v1 · −→v1 −y0−→v2 · −→v1 = 0 −

b

· −→v1 −x0−→v1 · −→v2 −y0−→v2 · −→v2 = 0 ⇒

⇒ 

x0−→v1 · −→v1 +y0−→v2 · −→v1 =

− →

b · −→v1

x0−→v1 · −→v2 +y0−→v2 · −→v1 =

− →

b · −→v1

❘❡s♦❧✈❡♥❞♦ ♦ s✐st❡♠❛ ❡♥❝♦♥tr❛♠♦sx0❡y0❝♦♠♦ s♦❧✉çã♦ ❞♦ s✐st❡♠❛ ❛✉①✐❧✐❛r ❡ q✉❡ é s♦❧✉çã♦

LSQ❞♦ s✐st❡♠❛ S✳

❚❡♦r❡♠❛ ✸✳✷✳✶✳ ❙❡❥❛ ❙ ♦ s✐st❡♠❛ ❧✐♥❡❛r ❛❜❛✐①♦ ❝♦♠ ❞✉❛s ✐♥❝ó❣♥✐t❛s

S :               

a11x + a12y = b1

a21x + a22y = b2

✳✳✳ ✳✳✳ ✳✳✳

an1x + an2y = bn

♦♥❞❡−→v1 =

        a11 a21 ✳✳✳ an1

       

,−→v2 =

        a12 a21 ✳✳✳ an2

       

❡−→b =         b1 b2 ✳✳✳ bn        

❙✉❛ s♦❧✉çã♦ ✭♦✉ s♦❧✉çõ❡s✮ LSQ é ❛ s♦❧✉çã♦ ✭♦✉ sã♦ s♦❧✉çõ❡s✮ ❞♦ s✐st❡♠❛ ❛✉✲ ①✐❧✐❛r ❛❜❛✐①♦✿ AS :    − →v

1 · −→v1x+→−v1 · −→v2y =

− →

b · −→v1

− →v

1 · −→v2x+→−v2 · −→v2y =

− →

b · −→v2

❉❡♠♦♥str❛çã♦ ✈✐❛ ❈á❧❝✉❧♦✳

(36)

❈❆P❮❚❯▲❖ ✸✳ ❖ ▼➱❚❖❉❖ ❉❖❙ ▼❮◆■▼❖❙ ◗❯❆❉❘❆❉❖❙ ✸✹

❧✐♥❡❛r ❞❡ −→v1 ❡−→v2✱ ❧♦❣♦ t❡♠♦s✿

v0 =x−→v1 +y−→v2 = (xa11+ya12, xa21+ya22,· · · , xa1n+ya2n)

❚♦♠❛♥❞♦D(x, y) ❝♦♠♦ ♦ q✉❛❞r❛❞♦ ❞❛ ❞✐stâ♥❝✐❛ ❞❡ −→b ❛−→v0✱ t❡♠♦s

k −→v0 −

− →

b k2

=D(x, y) = (xa11+ya12−b1) 2

+· · ·+ (xa1n+ya2n−bn)

2

D(x, y) = n

XXX

i=i

(xa1i+ya2i−bi)

2

P❡❧♦ t❡♦r❡♠❛ ✷✳✹✳✶✱ ❞❡♠♦♥str❛✲s❡ q✉❡ ❛ ❢✉♥çã♦ D(x, y) ♣♦ss✉✐ ♠í♥✐♠♦ ❧♦❝❛❧✱

❧♦❣♦ ❛♣r❡s❡♥t❛ ∂D ∂x = 0 ❡

∂D ∂y = 0✳

❉❡r✐✈❛♥❞♦ D ❡♠ ❢✉♥çã♦ ❞❡ x ❡ ✐❣✉❛❧❛♥❞♦ ❛ 0✱ t❡♠♦s✿

∂D

∂x = 0⇒ ∂D

∂x = n

X

i=1

2(xa1i+ya2i−bi)·a1i ⇒ n

X

i=1

2(xa1i+ya2i−bi)·a1i = 0 ⇒

n

X

i=1

(xa1i+ya2i−bi)·a1i = 0 ⇒ n

X

i=1

(37)

❈❆P❮❚❯▲❖ ✸✳ ❖ ▼➱❚❖❉❖ ❉❖❙ ▼❮◆■▼❖❙ ◗❯❆❉❘❆❉❖❙ ✸✺

⇒x n

X

i=1

a1ia1i+y n

X

i=1

a2ia1i− n

X

i=1

bia1i = 0⇒

⇒x−→v1 · −→v1 +y−→v1 · −→v2 −−→b · −→v1 = 0⇒x−→v1 · −→v1 +y−→v1 · −→v2 =−→b · −→v1 = 0

❉❡r✐✈❛♥❞♦ D ❡♠ ❢✉♥çã♦ ❞❡ y✱ t❡♠♦s✿

∂D

∂y = 0⇒ ∂D

∂y = n

X

i=1

2(xa1i+ya2i−bi)·a2i ⇒ n

X

i=1

2(xa1i+ya2i−bi)·a2i = 0 ⇒

n

X

i=1

(xa1i+ya2i−bi)·a2i = 0 ⇒ n

X

i=1

(xa1ia2i+ya2ia2i−bia2i) = 0

⇒x n

X

i=1

a1ia2i+y n

X

i=1

a2ia2i− n

X

i=1

bia2i = 0⇒

⇒x−→v1 · −→v2 +y−→v2 · −→v2 −−→b · −→v2 = 0⇒x−→v1 · −→v2 +y−→v2 · −→v2 =−→b · −→v2 = 0

❆ss✐♠ ✜❝❛♠♦s ❝♦♠ ♦ s✐st❡♠❛ ❛✉①✐❧✐❛r✿

SA:

x−→v1 · −→v1 +y−→v1 · −→v2 =

− →

b · −→v1 = 0

x−→v1 · −→v2 +y−→v2 · −→v2 =

− →

b · −→v2 = 0

Referências

Documentos relacionados

a) Doenças pré-existentes ao período de viagem (vigência do seguro) e quaisquer de suas conseqüências, incluindo convalescenças e afecções em tratamentos ainda

O valor da reputação dos pseudônimos é igual a 0,8 devido aos fal- sos positivos do mecanismo auxiliar, que acabam por fazer com que a reputação mesmo dos usuários que enviam

Por meio deste estudo, investigou-se como os valores dos gestores se articulam com o pensamento estratégico em termos de inovação e sustentabilidade, expresso no PDI, uma vez que

É o conjunto de fundamentos básicos que diferencia o futebol dos demais esportes, cuja peculiaridade esta, principalmente, no uso dos pés e pernas para executar as ações básicas

Um modelo de avaliação, baseado na ISO 12207, é o definido na ISO 15504; Neste último, os processos são agrupados em cinco grandes categorias de O SPICE estabelece um

As Empresas deverão estar dotadas de refeitórios nos padrões exigidos pela legislação em vigor, com fornecimento de alimentação ao trabalhador, conforme preceituam

“Já recepcionamos candidaturas por parte dos agricultores das três ilhas abrangidas por esta medida, ou seja, São Miguel, Terceira e Graciosa, que correspondem a 15% do total

No quinto capítulo são apresentados os resultados obtidos após aplicação da manipulação com o Sistema de Informação Geográfica e do método de controle estatístico com