• Nenhum resultado encontrado

GustavoMataJuly30th TopicsontheIgusa-Todorovfunctions

N/A
N/A
Protected

Academic year: 2022

Share "GustavoMataJuly30th TopicsontheIgusa-Todorovfunctions"

Copied!
162
0
0

Texto

(1)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Topics on the Igusa-Todorov functions

Gustavo Mata

July 30th

(2)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

One of the most important conjectures in the Representation Theory of Artin Algebras is the finitistic dimension conjecture.

It states that the supremum of the projective dimensions for the f.

g. modules with finite projective dimension over an Artin algebra is finite.

In an attempt to prove the finitistic dimension conjecture, Igusa and Todorov defined two functions from the finitely generated modules over an Artin algebra to the natural numbers, which generalizes the notion of projective dimension.

Nowadays, these functions are known as the Igusa-Todorov functions.

(3)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

One of the most important conjectures in the Representation Theory of Artin Algebras is the finitistic dimension conjecture.

It states that the supremum of the projective dimensions for the f.

g. modules with finite projective dimension over an Artin algebra is finite.

In an attempt to prove the finitistic dimension conjecture, Igusa and Todorov defined two functions from the finitely generated modules over an Artin algebra to the natural numbers, which generalizes the notion of projective dimension.

Nowadays, these functions are known as the Igusa-Todorov functions.

(4)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

One of the most important conjectures in the Representation Theory of Artin Algebras is the finitistic dimension conjecture.

It states that the supremum of the projective dimensions for the f.

g. modules with finite projective dimension over an Artin algebra is finite.

In an attempt to prove the finitistic dimension conjecture, Igusa and Todorov defined two functions from the finitely generated modules over an Artin algebra to the natural numbers, which generalizes the notion of projective dimension.

Nowadays, these functions are known as the Igusa-Todorov functions.

(5)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

One of the most important conjectures in the Representation Theory of Artin Algebras is the finitistic dimension conjecture.

It states that the supremum of the projective dimensions for the f.

g. modules with finite projective dimension over an Artin algebra is finite.

In an attempt to prove the finitistic dimension conjecture, Igusa and Todorov defined two functions from the finitely generated modules over an Artin algebra to the natural numbers, which generalizes the notion of projective dimension.

Nowadays, these functions are known as the Igusa-Todorov functions.

(6)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We fix the following notation A is an Artin algebra.

J⊂Ais the Jacobson ideal ofA.

ModAand modAare the right A-modules and the finitely generated rightA-modules, respectively.

S(A),P(A) andI(A) are the simple, projective and injective A-modules, respectively.

indAare the indescomposableA-modules.

Given M ∈modAwe denote by:

pd(M)its projective dimension.

id(M)its injective dimension.

Ω(M)its syzygy.

findim(A) is the finitistic dimension ofA.

gldim(A)is the global dimension of A.

repdim(A) is the representation dimension ofA.

(7)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We fix the following notation A is an Artin algebra.

J⊂Ais the Jacobson ideal ofA.

ModAand modAare the right A-modules and the finitely generated rightA-modules, respectively.

S(A),P(A) andI(A) are the simple, projective and injective A-modules, respectively.

indAare the indescomposableA-modules.

Given M ∈modAwe denote by:

pd(M)its projective dimension.

id(M)its injective dimension.

Ω(M)its syzygy.

findim(A) is the finitistic dimension ofA.

gldim(A)is the global dimension of A.

repdim(A) is the representation dimension ofA.

(8)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We fix the following notation A is an Artin algebra.

J⊂Ais the Jacobson ideal ofA.

ModAand modAare the right A-modules and the finitely generated rightA-modules, respectively.

S(A),P(A) andI(A) are the simple, projective and injective A-modules, respectively.

indAare the indescomposableA-modules.

Given M ∈modAwe denote by:

pd(M)its projective dimension.

id(M)its injective dimension.

Ω(M)its syzygy.

findim(A) is the finitistic dimension ofA.

gldim(A)is the global dimension of A.

repdim(A) is the representation dimension ofA.

(9)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We fix the following notation A is an Artin algebra.

J⊂Ais the Jacobson ideal ofA.

ModAand modAare the right A-modules and the finitely generated rightA-modules, respectively.

S(A),P(A) andI(A) are the simple, projective and injective A-modules, respectively.

indAare the indescomposableA-modules.

Given M ∈modAwe denote by:

pd(M)its projective dimension.

id(M)its injective dimension.

Ω(M)its syzygy.

findim(A) is the finitistic dimension ofA.

gldim(A)is the global dimension of A.

repdim(A) is the representation dimension ofA.

(10)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We fix the following notation A is an Artin algebra.

J⊂Ais the Jacobson ideal ofA.

ModAand modAare the right A-modules and the finitely generated rightA-modules, respectively.

S(A),P(A) andI(A) are the simple, projective and injective A-modules, respectively.

indAare the indescomposableA-modules.

Given M ∈modAwe denote by:

pd(M)its projective dimension.

id(M)its injective dimension.

Ω(M)its syzygy.

findim(A) is the finitistic dimension ofA.

gldim(A)is the global dimension of A.

repdim(A) is the representation dimension ofA.

(11)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We fix the following notation A is an Artin algebra.

J⊂Ais the Jacobson ideal ofA.

ModAand modAare the right A-modules and the finitely generated rightA-modules, respectively.

S(A),P(A) andI(A) are the simple, projective and injective A-modules, respectively.

indAare the indescomposableA-modules.

Given M ∈modAwe denote by:

pd(M)its projective dimension.

id(M)its injective dimension.

Ω(M)its syzygy.

findim(A) is the finitistic dimension ofA.

gldim(A)is the global dimension of A.

repdim(A) is the representation dimension ofA.

(12)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We fix the following notation A is an Artin algebra.

J⊂Ais the Jacobson ideal ofA.

ModAand modAare the right A-modules and the finitely generated rightA-modules, respectively.

S(A),P(A) andI(A) are the simple, projective and injective A-modules, respectively.

indAare the indescomposableA-modules.

Given M ∈modAwe denote by:

pd(M)its projective dimension.

id(M)its injective dimension.

Ω(M)its syzygy.

findim(A) is the finitistic dimension ofA.

gldim(A)is the global dimension of A.

repdim(A) is the representation dimension ofA.

(13)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We fix the following notation A is an Artin algebra.

J⊂Ais the Jacobson ideal ofA.

ModAand modAare the right A-modules and the finitely generated rightA-modules, respectively.

S(A),P(A) andI(A) are the simple, projective and injective A-modules, respectively.

indAare the indescomposableA-modules.

Given M ∈modAwe denote by:

pd(M)its projective dimension.

id(M)its injective dimension.

Ω(M)its syzygy.

findim(A) is the finitistic dimension ofA.

gldim(A)is the global dimension of A.

repdim(A) is the representation dimension ofA.

(14)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We fix the following notation A is an Artin algebra.

J⊂Ais the Jacobson ideal ofA.

ModAand modAare the right A-modules and the finitely generated rightA-modules, respectively.

S(A),P(A) andI(A) are the simple, projective and injective A-modules, respectively.

indAare the indescomposableA-modules.

Given M ∈modAwe denote by:

pd(M)its projective dimension.

id(M)its injective dimension.

Ω(M)its syzygy.

findim(A) is the finitistic dimension ofA.

gldim(A)is the global dimension of A.

repdim(A) is the representation dimension ofA.

(15)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We fix the following notation A is an Artin algebra.

J⊂Ais the Jacobson ideal ofA.

ModAand modAare the right A-modules and the finitely generated rightA-modules, respectively.

S(A),P(A) andI(A) are the simple, projective and injective A-modules, respectively.

indAare the indescomposableA-modules.

Given M ∈modAwe denote by:

pd(M)its projective dimension.

id(M)its injective dimension.

Ω(M)its syzygy.

findim(A) is the finitistic dimension ofA.

gldim(A)is the global dimension of A.

repdim(A) is the representation dimension ofA.

(16)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We fix the following notation A is an Artin algebra.

J⊂Ais the Jacobson ideal ofA.

ModAand modAare the right A-modules and the finitely generated rightA-modules, respectively.

S(A),P(A) andI(A) are the simple, projective and injective A-modules, respectively.

indAare the indescomposableA-modules.

Given M ∈modAwe denote by:

pd(M)its projective dimension.

id(M)its injective dimension.

Ω(M)its syzygy.

findim(A) is the finitistic dimension ofA.

gldim(A)is the global dimension of A.

repdim(A) is the representation dimension ofA.

(17)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We fix the following notation A is an Artin algebra.

J⊂Ais the Jacobson ideal ofA.

ModAand modAare the right A-modules and the finitely generated rightA-modules, respectively.

S(A),P(A) andI(A) are the simple, projective and injective A-modules, respectively.

indAare the indescomposableA-modules.

Given M ∈modAwe denote by:

pd(M)its projective dimension.

id(M)its injective dimension.

Ω(M)its syzygy.

findim(A) is the finitistic dimension ofA.

gldim(A)is the global dimension of A.

repdim(A) is the representation dimension ofA.

(18)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We fix the following notation A is an Artin algebra.

J⊂Ais the Jacobson ideal ofA.

ModAand modAare the right A-modules and the finitely generated rightA-modules, respectively.

S(A),P(A) andI(A) are the simple, projective and injective A-modules, respectively.

indAare the indescomposableA-modules.

Given M ∈modAwe denote by:

pd(M)its projective dimension.

id(M)its injective dimension.

Ω(M)its syzygy.

findim(A) is the finitistic dimension ofA.

gldim(A)is the global dimension of A.

repdim(A) is the representation dimension ofA.

(19)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

The following version of Fitting Lemma is used to define the Igusa-Todorov functions:

Lemma (Fitting Lemma)

Let R be a noetherian ring. Consider M ∈ModR and

f ∈EndR(M).Then,∀X ⊂M, such that X ∈modR there is a non-negative integer

ηf(X) = min{k ∈N:f|fm(X):fm(X)→= fm+1(X),∀m≥k}.

(20)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

The following version of Fitting Lemma is used to define the Igusa-Todorov functions:

Lemma (Fitting Lemma)

Let R be a noetherian ring. Consider M ∈ModR and

f ∈EndR(M).Then,∀X ⊂M, such that X ∈modR there is a non-negative integer

ηf(X) = min{k ∈N:f|fm(X):fm(X)→= fm+1(X),∀m≥k}.

(21)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

The following version of Fitting Lemma is used to define the Igusa-Todorov functions:

Lemma (Fitting Lemma)

Let R be a noetherian ring. Consider M ∈ModR and

f ∈EndR(M).Then, ∀X ⊂M, such that X ∈modR there is a non-negative integer

ηf(X) = min{k ∈N:f|fm(X):fm(X)→= fm+1(X),∀m≥k}.

(22)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Definition

Let K0(A)be the abelian group generated by all symbols [M], with M ∈modA, modulo the relations

1 [M]−[M1]−[M2] if M∼=M1⊕M2,

2 [P]for each projective module P.

Let ¯Ω :K0(A)→K0(A) be the group endomorphism induced by Ω.

That is

Ω([M¯ ]) = [Ω(M)].

IfM ∈modA, then haddMi denotes the subgroup of K0(A) generated by the classes of indecomposable (non projective) summands ofM.

(23)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Definition

Let K0(A)be the abelian group generated by all symbols [M], with M ∈modA, modulo the relations

1 [M]−[M1]−[M2] if M∼=M1⊕M2,

2 [P]for each projective module P.

Let ¯Ω :K0(A)→K0(A) be the group endomorphism induced by Ω.

That is

Ω([M¯ ]) = [Ω(M)].

IfM ∈modA, then haddMi denotes the subgroup of K0(A) generated by the classes of indecomposable (non projective) summands ofM.

(24)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Definition

Let K0(A)be the abelian group generated by all symbols [M], with M ∈modA, modulo the relations

1 [M]−[M1]−[M2] if M∼=M1⊕M2,

2 [P]for each projective module P.

Let ¯Ω :K0(A)→K0(A) be the group endomorphism induced by Ω.

That is

Ω([M¯ ]) = [Ω(M)].

IfM ∈modA, then haddMi denotes the subgroup of K0(A) generated by the classes of indecomposable (non projective) summands ofM.

(25)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

remark Observe that

for a finitely generated subgroup G ⊂K0(A), the map Ω¯|G :G →Ω(G¯ ) is an isomorphism if and only if rk(G) =rk( ¯Ω(G))

In general Ω(haddMi)¯ 6=haddΩ(M)i.

Given a finitely generated subgroupG of K0(A), we defineη¯(G) as in the Fitting Lemma.

(26)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

remark Observe that

for a finitely generated subgroup G ⊂K0(A), the map Ω¯|G :G →Ω(G¯ ) is an isomorphism if and only if rk(G) =rk( ¯Ω(G))

In general Ω(haddMi)¯ 6=haddΩ(M)i.

Given a finitely generated subgroupG of K0(A), we defineη¯(G) as in the Fitting Lemma.

(27)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

remark Observe that

for a finitely generated subgroup G ⊂K0(A), the map Ω¯|G :G →Ω(G¯ ) is an isomorphism if and only if rk(G) =rk( ¯Ω(G))

In general Ω(haddMi)¯ 6=haddΩ(M)i.

Given a finitely generated subgroupG of K0(A), we defineη¯(G) as in the Fitting Lemma.

(28)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

remark Observe that

for a finitely generated subgroup G ⊂K0(A), the map Ω¯|G :G →Ω(G¯ ) is an isomorphism if and only if rk(G) =rk( ¯Ω(G))

In general Ω(haddMi)¯ 6=haddΩ(M)i.

Given a finitely generated subgroupG of K0(A), we defineη¯(G) as in the Fitting Lemma.

(29)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Definition (Igusa, Todorov)

The Igusa-Todorov functionφA of M ∈modA is defined as φ(M) =η¯(haddMi).

Definition (Igusa, Todorov)

The Igusa-Todorov functionψA of M ∈modA is defined as ψ(M) =φ(M) +sup{pd(N) :N/Ωφ(M)(M) andpd(N)<∞}.

(30)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Definition (Igusa, Todorov)

The Igusa-Todorov functionφA of M ∈modA is defined as φ(M) =η¯(haddMi).

Definition (Igusa, Todorov)

The Igusa-Todorov functionψA of M ∈modA is defined as ψ(M) =φ(M) +sup{pd(N) :N/Ωφ(M)(M) andpd(N)<∞}.

(31)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Proposition (Igusa, Todorov) Given M, N ∈modA.

Ifpd(M)<∞, then φ(M) =ψ(M) =pd(M).

If M ∈indA andpd(M) =∞, then φ(M) =ψ(M) = 0.

φ(M)≤φ(M ⊕N) andψ(M)≤ψ(M⊕N).

φ(Mk) =φ(M) andψ(Mk) =ψ(M)if k ∈Z+.

Proposition (Huard, Lanzilotta, Mendoza) If M ∈modA, then

φ(M)≤φ(Ω(M)) + 1and ψ(M)≤ψ(Ω(M)) + 1.

(32)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Proposition (Igusa, Todorov) Given M, N ∈modA.

Ifpd(M)<∞, then φ(M) =ψ(M) =pd(M).

If M ∈indA andpd(M) =∞, then φ(M) =ψ(M) = 0.

φ(M)≤φ(M ⊕N) andψ(M)≤ψ(M⊕N).

φ(Mk) =φ(M) andψ(Mk) =ψ(M)if k ∈Z+.

Proposition (Huard, Lanzilotta, Mendoza) If M ∈modA, then

φ(M)≤φ(Ω(M)) + 1and ψ(M)≤ψ(Ω(M)) + 1.

(33)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Proposition (Igusa, Todorov) Given M, N ∈modA.

Ifpd(M)<∞, then φ(M) =ψ(M) =pd(M).

If M ∈indA andpd(M) =∞, then φ(M) =ψ(M) = 0.

φ(M)≤φ(M ⊕N) andψ(M)≤ψ(M⊕N).

φ(Mk) =φ(M) andψ(Mk) =ψ(M)if k ∈Z+.

Proposition (Huard, Lanzilotta, Mendoza) If M ∈modA, then

φ(M)≤φ(Ω(M)) + 1and ψ(M)≤ψ(Ω(M)) + 1.

(34)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Proposition (Igusa, Todorov) Given M, N ∈modA.

Ifpd(M)<∞, then φ(M) =ψ(M) =pd(M).

If M ∈indA andpd(M) =∞, then φ(M) =ψ(M) = 0.

φ(M)≤φ(M ⊕N) andψ(M)≤ψ(M⊕N).

φ(Mk) =φ(M) andψ(Mk) =ψ(M)if k ∈Z+.

Proposition (Huard, Lanzilotta, Mendoza) If M ∈modA, then

φ(M)≤φ(Ω(M)) + 1and ψ(M)≤ψ(Ω(M)) + 1.

(35)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Proposition (Igusa, Todorov) Given M, N ∈modA.

Ifpd(M)<∞, then φ(M) =ψ(M) =pd(M).

If M ∈indA andpd(M) =∞, then φ(M) =ψ(M) = 0.

φ(M)≤φ(M ⊕N) andψ(M)≤ψ(M⊕N).

φ(Mk) =φ(M) andψ(Mk) =ψ(M)if k ∈Z+.

Proposition (Huard, Lanzilotta, Mendoza) If M ∈modA, then

φ(M)≤φ(Ω(M)) + 1and ψ(M)≤ψ(Ω(M)) + 1.

(36)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Proposition (Igusa, Todorov) Given M, N ∈modA.

Ifpd(M)<∞, then φ(M) =ψ(M) =pd(M).

If M ∈indA andpd(M) =∞, then φ(M) =ψ(M) = 0.

φ(M)≤φ(M ⊕N) andψ(M)≤ψ(M⊕N).

φ(Mk) =φ(M) andψ(Mk) =ψ(M)if k ∈Z+.

Proposition (Huard, Lanzilotta, Mendoza) If M ∈modA, then

φ(M)≤φ(Ω(M)) + 1and ψ(M)≤ψ(Ω(M)) + 1.

(37)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebraA= kJQ2, with Q as follows 1 //2 //3 //. . . //nyy

IfS(A) ={S1, . . . ,Sn}, we have:

Ω(Si) =

Si+1 ifi = 1, . . . ,n−1, Sn ifi =n.

Let us computeφ(S1⊕Sn).

hadd(S1⊕S2)i ∼=Z⊕Z,

Ω(hadd(S¯ 1⊕S2)i)∼=hadd(S2⊕Sn)i ∼=Z⊕Z, ...

Ω¯n−2(hadd(S1⊕S2)i)∼=hadd(Sn−1⊕Sn)i ∼=Z⊕Z Ω¯n−1(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z

Ω¯n−1+k(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z,∀ k ≥0.

Henceφ(S1⊕Sn) =n−1.

(38)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebraA= kJQ2, with Q as follows 1 //2 //3 //. . . //nyy

IfS(A) ={S1, . . . ,Sn}, we have:

Ω(Si) =

Si+1 ifi = 1, . . . ,n−1, Sn ifi =n.

Let us computeφ(S1⊕Sn).

hadd(S1⊕S2)i ∼=Z⊕Z,

Ω(hadd(S¯ 1⊕S2)i)∼=hadd(S2⊕Sn)i ∼=Z⊕Z, ...

Ω¯n−2(hadd(S1⊕S2)i)∼=hadd(Sn−1⊕Sn)i ∼=Z⊕Z Ω¯n−1(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z

Ω¯n−1+k(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z,∀ k ≥0.

Henceφ(S1⊕Sn) =n−1.

(39)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebraA= kJQ2, with Q as follows 1 //2 //3 //. . . //nyy

IfS(A) ={S1, . . . ,Sn}, we have:

Ω(Si) =

Si+1 ifi = 1, . . . ,n−1, Sn ifi =n.

Let us computeφ(S1⊕Sn).

hadd(S1⊕S2)i ∼=Z⊕Z,

Ω(hadd(S¯ 1⊕S2)i)∼=hadd(S2⊕Sn)i ∼=Z⊕Z, ...

Ω¯n−2(hadd(S1⊕S2)i)∼=hadd(Sn−1⊕Sn)i ∼=Z⊕Z Ω¯n−1(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z

Ω¯n−1+k(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z,∀ k ≥0.

Henceφ(S1⊕Sn) =n−1.

(40)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebraA= kJQ2, with Q as follows 1 //2 //3 //. . . //nyy

IfS(A) ={S1, . . . ,Sn}, we have:

Ω(Si) =

Si+1 ifi = 1, . . . ,n−1, Sn ifi =n.

Let us computeφ(S1⊕Sn).

hadd(S1⊕S2)i ∼=Z⊕Z,

Ω(hadd(S¯ 1⊕S2)i)∼=hadd(S2⊕Sn)i ∼=Z⊕Z, ...

Ω¯n−2(hadd(S1⊕S2)i)∼=hadd(Sn−1⊕Sn)i ∼=Z⊕Z Ω¯n−1(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z

Ω¯n−1+k(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z,∀ k ≥0.

Henceφ(S1⊕Sn) =n−1.

(41)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebraA= kJQ2, with Q as follows 1 //2 //3 //. . . //nyy

IfS(A) ={S1, . . . ,Sn}, we have:

Ω(Si) =

Si+1 ifi = 1, . . . ,n−1, Sn ifi =n.

Let us computeφ(S1⊕Sn).

hadd(S1⊕S2)i ∼=Z⊕Z,

Ω(hadd(S¯ 1⊕S2)i)∼=hadd(S2⊕Sn)i ∼=Z⊕Z, ...

Ω¯n−2(hadd(S1⊕S2)i)∼=hadd(Sn−1⊕Sn)i ∼=Z⊕Z Ω¯n−1(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z

Ω¯n−1+k(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z,∀ k ≥0.

Henceφ(S1⊕Sn) =n−1.

(42)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebraA= kJQ2, with Q as follows 1 //2 //3 //. . . //nyy

IfS(A) ={S1, . . . ,Sn}, we have:

Ω(Si) =

Si+1 ifi = 1, . . . ,n−1, Sn ifi =n.

Let us computeφ(S1⊕Sn).

hadd(S1⊕S2)i ∼=Z⊕Z,

Ω(hadd(S¯ 1⊕S2)i)∼=hadd(S2⊕Sn)i ∼=Z⊕Z, ...

Ω¯n−2(hadd(S1⊕S2)i)∼=hadd(Sn−1⊕Sn)i ∼=Z⊕Z Ω¯n−1(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z

Ω¯n−1+k(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z,∀ k ≥0.

Henceφ(S1⊕Sn) =n−1.

(43)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebraA= kJQ2, with Q as follows 1 //2 //3 //. . . //nyy

IfS(A) ={S1, . . . ,Sn}, we have:

Ω(Si) =

Si+1 ifi = 1, . . . ,n−1, Sn ifi =n.

Let us computeφ(S1⊕Sn).

hadd(S1⊕S2)i ∼=Z⊕Z,

Ω(hadd(S¯ 1⊕S2)i)∼=hadd(S2⊕Sn)i ∼=Z⊕Z, ...

Ω¯n−2(hadd(S1⊕S2)i)∼=hadd(Sn−1⊕Sn)i ∼=Z⊕Z Ω¯n−1(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z

Ω¯n−1+k(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z,∀ k ≥0.

Henceφ(S1⊕Sn) =n−1.

(44)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebraA= kJQ2, with Q as follows 1 //2 //3 //. . . //nyy

IfS(A) ={S1, . . . ,Sn}, we have:

Ω(Si) =

Si+1 ifi = 1, . . . ,n−1, Sn ifi =n.

Let us computeφ(S1⊕Sn).

hadd(S1⊕S2)i ∼=Z⊕Z,

Ω(hadd(S¯ 1⊕S2)i)∼=hadd(S2⊕Sn)i ∼=Z⊕Z, ...

Ω¯n−2(hadd(S1⊕S2)i)∼=hadd(Sn−1⊕Sn)i ∼=Z⊕Z Ω¯n−1(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z

Ω¯n−1+k(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z,∀ k ≥0.

Henceφ(S1⊕Sn) =n−1.

(45)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebraA= kJQ2, with Q as follows 1 //2 //3 //. . . //nyy

IfS(A) ={S1, . . . ,Sn}, we have:

Ω(Si) =

Si+1 ifi = 1, . . . ,n−1, Sn ifi =n.

Let us computeφ(S1⊕Sn).

hadd(S1⊕S2)i ∼=Z⊕Z,

Ω(hadd(S¯ 1⊕S2)i)∼=hadd(S2⊕Sn)i ∼=Z⊕Z, ...

Ω¯n−2(hadd(S1⊕S2)i)∼=hadd(Sn−1⊕Sn)i ∼=Z⊕Z Ω¯n−1(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z

Ω¯n−1+k(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z,∀ k ≥0.

Henceφ(S1⊕Sn) =n−1.

(46)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebraA= kJQ2, with Q as follows 1 //2 //3 //. . . //nyy

IfS(A) ={S1, . . . ,Sn}, we have:

Ω(Si) =

Si+1 ifi = 1, . . . ,n−1, Sn ifi =n.

Let us computeφ(S1⊕Sn).

hadd(S1⊕S2)i ∼=Z⊕Z,

Ω(hadd(S¯ 1⊕S2)i)∼=hadd(S2⊕Sn)i ∼=Z⊕Z, ...

Ω¯n−2(hadd(S1⊕S2)i)∼=hadd(Sn−1⊕Sn)i ∼=Z⊕Z Ω¯n−1(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z

Ω¯n−1+k(hadd(S1⊕S2)i)∼=hadd(Sn⊕Sn)i ∼=Z,∀ k ≥0.

Henceφ(S1⊕Sn) =n−1.

(47)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Definition

Let A be an Artin algebra, andC a full subcategory ofmodA. We define

φdim(C) =sup{φ(M) :M ∈ObC}, and ψdim(C) =sup{ψ(M) :M ∈ObC}.

In particular, we denote by φdim(A) =φdim(modA), ψdim(A) =ψdim(modA)

(48)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Definition

Let A be an Artin algebra, andC a full subcategory ofmodA. We define

φdim(C) =sup{φ(M) :M ∈ObC},and ψdim(C) =sup{ψ(M) :M ∈ObC}.

In particular, we denote by φdim(A) =φdim(modA), ψdim(A) =ψdim(modA)

(49)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Definition

Let A be an Artin algebra, andC a full subcategory ofmodA. We define

φdim(C) =sup{φ(M) :M ∈ObC}, and ψdim(C) =sup{ψ(M) :M ∈ObC}.

In particular, we denote by φdim(A) =φdim(modA), ψdim(A) =ψdim(modA)

(50)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Definition

Let A be an Artin algebra, andC a full subcategory ofmodA. We define

φdim(C) =sup{φ(M) :M ∈ObC}, and ψdim(C) =sup{ψ(M) :M ∈ObC}.

In particular, we denote by φdim(A) =φdim(modA), ψdim(A) =ψdim(modA)

(51)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

Definition

Let A be an Artin algebra, andC a full subcategory ofmodA. We define

φdim(C) =sup{φ(M) :M ∈ObC}, and ψdim(C) =sup{ψ(M) :M ∈ObC}.

In particular, we denote by φdim(A) =φdim(modA), ψdim(A) =ψdim(modA)

(52)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

The following inequalities hold for an Artin algebraA findim(A)≤φdim(A)≤ψdim(A)≤gldim(A)

ψdim(A)≤2.φdim(A).

Observe that an algebra with finiteφ-dimension verifies the finitistic dimension conjecture. This motivates the following question. Question: does every algebra have finiteφ-dimension?

(53)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

The following inequalities hold for an Artin algebraA findim(A)≤φdim(A)≤ψdim(A)≤gldim(A)

ψdim(A)≤2.φdim(A).

Observe that an algebra with finiteφ-dimension verifies the finitistic dimension conjecture. This motivates the following question. Question: does every algebra have finiteφ-dimension?

(54)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

The following inequalities hold for an Artin algebraA findim(A)≤φdim(A)≤ψdim(A)≤gldim(A)

ψdim(A)≤2.φdim(A).

Observe that an algebra with finiteφ-dimension verifies the finitistic dimension conjecture. This motivates the following question. Question: does every algebra have finiteφ-dimension?

(55)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

The following inequalities hold for an Artin algebraA findim(A)≤φdim(A)≤ψdim(A)≤gldim(A)

ψdim(A)≤2.φdim(A).

Observe that an algebra with finiteφ-dimension verifies the finitistic dimension conjecture. This motivates the following question. Question: does every algebra have finite φ-dimension?

(56)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

The following inequalities hold for an Artin algebraA findim(A)≤φdim(A)≤ψdim(A)≤gldim(A)

ψdim(A)≤2.φdim(A).

Observe that an algebra with finiteφ-dimension verifies the finitistic dimension conjecture. This motivates the following question. Question: does every algebra have finiteφ-dimension?

(57)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

LetAbe an Artin algebra. We say that Ais of Ωn-finite

representation typeif Ωn(modA) is of finite representation type.

Examples of algebras of Ω1-finite representation type are:

Special biserial algebras,

Radical square zero algebras (A= kJQ2), and Truncated path algebras (A= kJQk for k ≥2).

Monomial algebras are of Ω2-finite representation type, but in general not of Ω1-finite representation type.

(58)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

LetAbe an Artin algebra. We say that Ais of Ωn-finite

representation typeif Ωn(modA) is of finite representation type.

Examples of algebras of Ω1-finite representation type are:

Special biserial algebras,

Radical square zero algebras (A= kJQ2), and Truncated path algebras (A= kJQk for k ≥2).

Monomial algebras are of Ω2-finite representation type, but in general not of Ω1-finite representation type.

(59)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

LetAbe an Artin algebra. We say that Ais of Ωn-finite

representation typeif Ωn(modA) is of finite representation type.

Examples of algebras of Ω1-finite representation type are:

Special biserial algebras,

Radical square zero algebras (A= kJQ2), and Truncated path algebras (A= kJQk for k ≥2).

Monomial algebras are of Ω2-finite representation type, but in general not of Ω1-finite representation type.

(60)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

LetAbe an Artin algebra. We say that Ais of Ωn-finite

representation typeif Ωn(modA) is of finite representation type.

Examples of algebras of Ω1-finite representation type are:

Special biserial algebras,

Radical square zero algebras (A= kJQ2), and Truncated path algebras (A= kJQk for k ≥2).

Monomial algebras are of Ω2-finite representation type, but in general not of Ω1-finite representation type.

(61)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

LetAbe an Artin algebra. We say that Ais of Ωn-finite

representation typeif Ωn(modA) is of finite representation type.

Examples of algebras of Ω1-finite representation type are:

Special biserial algebras,

Radical square zero algebras (A= kJQ2), and Truncated path algebras (A= kJQk for k ≥2).

Monomial algebras are of Ω2-finite representation type, but in general not of Ω1-finite representation type.

(62)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

LetAbe an Artin algebra. We say that Ais of Ωn-finite

representation typeif Ωn(modA) is of finite representation type.

Examples of algebras of Ω1-finite representation type are:

Special biserial algebras,

Radical square zero algebras (A= kJQ2), and Truncated path algebras (A= kJQk for k ≥2).

Monomial algebras are of Ω2-finite representation type, but in general not of Ω1-finite representation type.

(63)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

ConsiderA= kQJ2. If M ∈modA, then Ω(M) is a semisimple A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A= kJQ2, thenφdim(A)≤φ(⊕S∈S(A)S) + 1≤ |Q0|.

The previous result can be generalizated to truncated path algebras as follows.

Theorem (Barrios, Mata, Rama)

If A= kJQk, thenφdim(A)≤fk(n) where

fk(m) =





0 if m= 0,

2 m−1k

+ 1 if m≡1 (mod k), 2 m−2k

+ 2 if m≡2 (mod k), 2m−2

k

+ 1 otherwise.

(64)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

ConsiderA= kQJ2. If M ∈modA, then Ω(M) is a semisimple A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A= kJQ2, thenφdim(A)≤φ(⊕S∈S(A)S) + 1≤ |Q0|.

The previous result can be generalizated to truncated path algebras as follows.

Theorem (Barrios, Mata, Rama)

If A= kJQk, thenφdim(A)≤fk(n) where

fk(m) =





0 if m= 0,

2 m−1k

+ 1 if m≡1 (mod k), 2 m−2k

+ 2 if m≡2 (mod k), 2m−2

k

+ 1 otherwise.

(65)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

ConsiderA= kQJ2. If M ∈modA, then Ω(M) is a semisimple A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A= kJQ2, thenφdim(A)≤φ(⊕S∈S(A)S) + 1≤ |Q0|.

The previous result can be generalizated to truncated path algebras as follows.

Theorem (Barrios, Mata, Rama)

If A= kJQk, thenφdim(A)≤fk(n) where

fk(m) =





0 if m= 0,

2 m−1k

+ 1 if m≡1 (mod k), 2 m−2k

+ 2 if m≡2 (mod k), 2m−2

k

+ 1 otherwise.

(66)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

ConsiderA= kQJ2. If M ∈modA, then Ω(M) is a semisimple A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A= kJQ2, thenφdim(A)≤φ(⊕S∈S(A)S) + 1≤ |Q0|.

The previous result can be generalizated to truncated path algebras as follows.

Theorem (Barrios, Mata, Rama)

If A= kJQk, thenφdim(A)≤fk(n) where

fk(m) =





0 if m= 0,

2 m−1k

+ 1 if m≡1 (mod k), 2 m−2k

+ 2 if m≡2 (mod k), 2m−2

k

+ 1 otherwise.

(67)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

ConsiderA= kQJ2. If M ∈modA, then Ω(M) is a semisimple A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A= kJQ2, thenφdim(A)≤φ(⊕S∈S(A)S) + 1≤ |Q0|.

The previous result can be generalizated to truncated path algebras as follows.

Theorem (Barrios, Mata, Rama)

If A= kJQk, thenφdim(A)≤fk(n) where

fk(m) =





0 if m= 0,

2 m−1k

+ 1 if m≡1 (mod k), 2 m−2k

+ 2 if m≡2 (mod k), 2m−2

k

+ 1 otherwise.

(68)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

ConsiderA= kQJ2. If M ∈modA, then Ω(M) is a semisimple A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A= kJQ2, thenφdim(A)≤φ(⊕S∈S(A)S) + 1≤ |Q0|.

The previous result can be generalizated to truncated path algebras as follows.

Theorem (Barrios, Mata, Rama)

If A= kJQk, thenφdim(A)≤fk(n) where

fk(m) =





0 if m= 0,

2 m−1k

+ 1 if m≡1 (mod k), 2 m−2k

+ 2 if m≡2 (mod k), 2m−2

k

+ 1 otherwise.

(69)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

ConsiderA= kQJ2. If M ∈modA, then Ω(M) is a semisimple A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A= kJQ2, thenφdim(A)≤φ(⊕S∈S(A)S) + 1≤ |Q0|.

The previous result can be generalizated to truncated path algebras as follows.

Theorem (Barrios, Mata, Rama)

If A= kJQk, thenφdim(A)≤fk(n) where

fk(m) =





0 if m= 0,

2 m−1k

+ 1 if m≡1 (mod k), 2 m−2k

+ 2 if m≡2 (mod k), 2m−2

k

+ 1 otherwise.

(70)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

ConsiderA= kQJ2. If M ∈modA, then Ω(M) is a semisimple A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A= kJQ2, thenφdim(A)≤φ(⊕S∈S(A)S) + 1≤ |Q0|.

The previous result can be generalizated to truncated path algebras as follows.

Theorem (Barrios, Mata, Rama)

If A= kJQk, thenφdim(A)≤fk(n) where

fk(m) =





0 if m= 0,

2 m−1k

+ 1 if m≡1 (mod k), 2 m−2k

+ 2 if m≡2 (mod k), 2m−2

k

+ 1 otherwise.

(71)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

IfAis a monomial algebra, then Ω2(M) is a direct sum of right ideals (Huisgen-Zimmermann). Hence:

Theorem (Lanzilotta, Mata)

If A=kQ/I is a monomial algebra, then φdim(A)≤dimkA− |Q0|+ 2.

More in general.

Theorem (Lanzilotta, Mata)

If A is an Artin algebra ofΩn-finite representation type, then φdim(A)<∞ andψdim(A)<∞.

(72)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

IfAis a monomial algebra, then Ω2(M) is a direct sum of right ideals (Huisgen-Zimmermann). Hence:

Theorem (Lanzilotta, Mata)

If A=kQ/I is a monomial algebra, then φdim(A)≤dimkA− |Q0|+ 2.

More in general.

Theorem (Lanzilotta, Mata)

If A is an Artin algebra ofΩn-finite representation type, then φdim(A)<∞ andψdim(A)<∞.

(73)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

IfAis a monomial algebra, then Ω2(M) is a direct sum of right ideals (Huisgen-Zimmermann). Hence:

Theorem (Lanzilotta, Mata)

If A=kQ/I is a monomial algebra, then φdim(A)≤dimkA− |Q0|+ 2.

More in general.

Theorem (Lanzilotta, Mata)

If A is an Artin algebra ofΩn-finite representation type, then φdim(A)<∞ andψdim(A)<∞.

(74)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finite representation type. We recall that:

an algebra A is selfinjective ifP(A) =I(A).

an algebra A ism-Gorenstein ifid(A) =id(Aop) =m.

The following is a very nice characterization of selfinjective algebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements are equivalent

A is selfinjective, φdim(A) = 0, ψdim(A) = 0.

(75)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finite representation type. We recall that:

an algebra A is selfinjective ifP(A) =I(A).

an algebra A ism-Gorenstein ifid(A) =id(Aop) =m.

The following is a very nice characterization of selfinjective algebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements are equivalent

A is selfinjective, φdim(A) = 0, ψdim(A) = 0.

(76)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finite representation type. We recall that:

an algebra A is selfinjective ifP(A) =I(A).

an algebra A ism-Gorenstein ifid(A) =id(Aop) =m.

The following is a very nice characterization of selfinjective algebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements are equivalent

A is selfinjective, φdim(A) = 0, ψdim(A) = 0.

(77)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finite representation type. We recall that:

an algebra A is selfinjective ifP(A) =I(A).

an algebra A ism-Gorenstein ifid(A) =id(Aop) =m.

The following is a very nice characterization of selfinjective algebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements are equivalent

A is selfinjective, φdim(A) = 0, ψdim(A) = 0.

(78)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finite representation type. We recall that:

an algebra A is selfinjective ifP(A) =I(A).

an algebra A ism-Gorenstein ifid(A) =id(Aop) =m.

The following is a very nice characterization of selfinjective algebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements are equivalent

A is selfinjective, φdim(A) = 0, ψdim(A) = 0.

(79)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finite representation type. We recall that:

an algebra A is selfinjective ifP(A) =I(A).

an algebra A ism-Gorenstein ifid(A) =id(Aop) =m.

The following is a very nice characterization of selfinjective algebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements are equivalent

A is selfinjective, φdim(A) = 0, ψdim(A) = 0.

(80)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finite representation type. We recall that:

an algebra A is selfinjective ifP(A) =I(A).

an algebra A ism-Gorenstein ifid(A) =id(Aop) =m.

The following is a very nice characterization of selfinjective algebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements are equivalent

A is selfinjective, φdim(A) = 0, ψdim(A) = 0.

(81)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finite representation type. We recall that:

an algebra A is selfinjective ifP(A) =I(A).

an algebra A ism-Gorenstein ifid(A) =id(Aop) =m.

The following is a very nice characterization of selfinjective algebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements are equivalent

A is selfinjective, φdim(A) = 0, ψdim(A) = 0.

(82)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We defineA={M ∈modA: Exti(M,A) = 0, ∀i ≥1}.

Theorem (Lanzilotta, Mata)

For any Artin algebra A, the Igusa-Todorov functions vanish over

A, that is,

φdim(A) =ψdim(A) = 0.

(83)

Igusa-Todorov functions φ-dimension andψ-dimension Finitistic dimension conjecture

We defineA={M ∈modA: Exti(M,A) = 0, ∀i ≥1}.

Theorem (Lanzilotta, Mata)

For any Artin algebra A, the Igusa-Todorov functions vanish over

A, that is,

φdim(A) =ψdim(A) = 0.

Referências

Documentos relacionados

A produção de filmes a base de colágeno bovino, ágar-ágar e agarose mostrou ser satisfatória, no entanto, a adição de ágar-ágar favoreceu a formação

Assim, a dignidade humana deve ser especialmente utilizada na defesa de direitos das pessoas inseridas em setores sociais mais vulneráveis, a exemplo dos transexuais, ou da- queles

No Brasil, o agronegócio obteve crescimento expressivo durante a segunda metade do século XX, mais especificamente nas décadas de 1980 e 1990. Este fato contribuiu para

Entretanto, mais importante do que a compreensão dos mecanismos que determinam a associação entre os pólipos e a neoplasia de endométrio, é o entendimento de que em

The Rifian groundwaters are inhabited by a relatively rich stygobiontic fauna including a number of taxa related to the ancient Mesozoic history of the Rifian

O paciente evoluiu no pós-operatório imediato com progressão de doença em topografia do tumor primário (figura1), sendo encaminhado ao Oncobeda em janeiro de 2017

Formado por três destacados músicos de jazz portugueses e de diferentes gerações, nomeadamente o saxofonista Ricardo Toscano, o contrabaixista carlos barretto e o baterista