• Nenhum resultado encontrado

Wiman’s type inequality for some double power series

N/A
N/A
Protected

Academic year: 2017

Share "Wiman’s type inequality for some double power series"

Copied!
8
0
0

Texto

(1)

УДК 517.55

A. O. Kuryliak, L. O. Shapovalovska, O. B. Skaskiv

WIMAN’S TYPE INEQUALITY FOR SOME DOUBLE POWER SERIES

A. O. Kuryliak, L. O. Shapovalovska, O. B. Skaskiv.Wiman’s type inequality for some double power series, Mat. Stud.39(2013), 134–141.

In this paper we prove some analogue of Wiman’s inequality for analytic functionsf(z1, z2) in the domainT={zC2:|z1|<1, |z2|<+∞}. The obtained inequality is sharp.

А. О. Куриляк, Л. О. Шаповаловска, О. Б. Скаскив. Неравенство типа Вимана для некоторых двойных степенных рядов // Мат. Студiї. – 2013. – Т.39, №2. – C.134–141.

Доказывается аналог неравенства Вимана для функцийf(z1, z2),аналитических в об-ластиT={zC2: |z1|<1, |z2|<+∞}. Полученное неравенство точное.

1. Introduction. Let f be analytic function in the disc {z: |z| < R}, 0 < R +,

represented by the power series

f(z) = +∞

X

n=0

anzn. (1)

Forr (0, R)we denote Mf(r) = max{|f(z)|: |z|=r}, µf(r) = max{|an|rn: n ≥0}.

It is well known ([1, p. 9], [2, p. 28]) that for each nonconstant entire function f(z) and every ε >0 there exists a setE(ε, f)[1,+)such that Wiman’s inequality

Mf(r)≤µf(r)(lnµf(r))1/2+ε

holds for all r [1,+)\E(ε, f), where the set E(ε, f) has finite logarithmic measure, i.e.

R

E(ε,f)

dr

r <+∞.

Let R = 1, i.e. f(z) be an analytic function in the unit disc D={z: |z| <1}. For such

a functionf(z)and everyδ >0there exists a setEf(δ)⊂(0,1)of finite logarithmic measure

on(0,1), i.e.

Z

Ef(δ) dr

1r <+∞,

such that for all r(0,1)\Ef(δ)the inequality

Mf(r)≤

µf(r)

(1r)1+δ ln

1/2+δ µf(r)

1r

holds ([3]). Similar inequality for analytic function in the unit disc one can find in [4].

2010Mathematics Subject Classification:30B20, 30D20.

Keywords:maximum modulus; maximal term; double power series; Wiman’s type inequality.

c

(2)

Also in [3] it is noted that for the function g(z) = P+∞

n=1exp{nε}zn, ε∈(0,1) we have

lim

r→1−0

Mg(r) µg(r)

1−r ln

1/2µg(r)

1−r

≥C > 0.

Some analogues of Wiman’s inequality for entire functions of several complex variables one can find in [5]–[11].

The aim of this paper is to prove some analogues of Wiman’s inequality for analytic functions represented by the series

f(z) =f(z1, z2) = +∞

X

n+m=0

anmz1nz2m (2)

with the domain of convergence T={z C2: |z

1|<1, z2 ∈C}.

ByA2we denote the class of analytic functions of form (2) with the domain of convergence

T and

∂z2f(z1, z2)6≡0in

T.

2. Wiman’s type inequality for analytic functions in T.Forr = (r1, r2)T:=[0,1)×

[0,+) and function f ∈ A2 we denote

△r={(t1, t2)∈T: t1 > r1, t2 > r2}, Mf(r) = max{|f(z)|: |z1| ≤r1,|z2| ≤r2},

µf(r) = max{|anm|rn1r2m: (n, m)∈Z2+}, Mf(r) =

+∞

X

n+m=0

|anm|r1nr2m.

Let Df(r) = (Dij)be a 2×2 matrix such that

Dij =ri

∂ ∂ri

rj

∂ ∂rj

lnMf(r)

=∂i∂jlnMf(r), ∂i =ri

∂ ∂ri

, i, j ∈ {1,2}.

The following statement can be proved by verbatim repetition of the proof of Theorem 3.1 from [5].

Theorem 1. Letf ∈ A2. There exists an absolute constantC

0 such that

Mf(r)C0µf(r)(det(Df(r) +I))1/2,

where I is the identity2×2 matrix.

We say that E T is set ofasymptotically finite logarithmic measure on T if there exists

r0 ∈T such that

νln(E∩ △r0):=

Z Z

E∩△r

0

dr1dr2 (1r1)r2

<+,

i.e. the set E∩ △r0 is a set of finite logarithmic measure on T.

Lemma 1. Letδ > 0 and let h: R2

+→ R+ be an increasing function on each variable such

that

+∞

Z

1 +∞

Z

1

du1du2

h(u1, u2)

(3)

Then there exists a set E T of asymptotically finite logarithmic measure such that for all

rT\E the inequalities

det(Df(r) +I)≤

1 1r1 ·

h ∂

∂r1

lnMf(r), r2 ∂ ∂r2

lnMf(r) + lnr2, (3)

∂ ∂r1

lnMf(r) 1

1r1 ·

hlnMf(r),lnr2, (4)

∂ ∂r2

lnMf(r) 1

r2(1r1)δ(lnMf(r))

1+δ (5)

hold.

Proof. LetE1 ⊂T be a set for which inequality (3) does not hold. Now we prove thatE1 is a set of asymptotically finite logarithmic measure. Sincerj∂rjlnMf(r) is increasing to +∞

forj ∈ {1,2} asr1 →1−0, r2 →+∞, there existsr0 ∈T such that r01 > 12, r 0

2 >1and for allr ∈ △r0 we have

rj

∂ ∂rj

lnMf(r) + lnrj >1.

Then

νln(E1∩ △r0) =

Z Z

E1∩△r0

dr1dr2 (1r1)r2 ≤

Z Z

E1∩△r0

det(Df(r) +I)(1−r1)dr1dr2

h ∂

∂r1 ln

Mf(r), r2

∂r2 ln

Mf(r) + lnr2(1r1)r2

Z Z

E1∩△r0

1

r1r2 ·

det(Df(r) +I)dr1dr2

hr1∂r∂1 ln

Mf(r) + lnr1, r2

∂r2 ln

Mf(r) + lnr2 .

Let U: T R2

+ be a mapping such that U = (u1(r), u2(r)) and uj(r) = rj∂rj lnMf(r) +

lnrj, j ∈ {1,2}, r= (r1, r2).Then for i, j ∈ {1,2} we obtain

∂ui

∂ri

= ∂

∂ri

ri

∂ ∂ri

lnMf(r) + lnri= 1 ri

∂i∂ilnMf(r) +

1

ri,

∂ui

∂rj

= ∂

∂rj

ri

∂ ∂ri

lnMf(r) + lnri

= 1

rj

∂i∂jlnMf(r), i6=j.

So, the Jacobian

J1:=

D(u1, u2)

D(r1, r2) =

∂u1

∂r1

∂u1

∂r2

∂u2

∂r1

∂u2

∂r2

= det(Df(r) +I)

1

r1r2

.

Therefore,

νln(E1∩ △r0)≤

Z Z

U(E1∩△r0)

du1du2

h(u1, u2) ≤ +∞

Z

1 +∞

Z

1

du1du2

h(u1, u2)

<+.

Suppose that E2 ⊂T is a set for which inequality (4) does not hold. Then we can choose

r0 T so that lnM

f(r0)>1 and r02 > e.

νln(E2∩ △r0) =

Z Z

E2∩△r0

dr1dr2 (1r1)r2 ≤

Z Z

E2∩△r0

∂ ∂r1 ln

Mf(r)·(1r1)dr1dr2

(4)

Consider the mapping V : T R2

+, where V = (v1(r), v2(r)) and v1 = lnMf(r), v2 = lnr2, r= (r1, r2). So,

J2:=D(v1, v2)

D(r1, r2) =

∂ ∂r1 ln

Mf(r)

∂r2 ln

Mf(r)

0 r12

= 1

r2·

∂ ∂r1

lnMf(r).

Therefore

νln(E2∩ △r0)≤

Z Z

E2∩△r0

∂ ∂r1 ln

Mf(r)dr1dr2

h(lnMf(r),lnr2)r2 = Z Z

V(E2∩△r0)

du1du2

h(u1, u2) ≤ +∞

Z

1 +∞

Z

1

du1du2

h(u1u2)

<+.

Let E3 ⊂T be a set for which inequality (5) does not hold. Then

νln(E3∩ △r0)≤

Z Z

E3∩△r0

∂ ∂r2 ln

Mf(r)r2dr1dr2

1 (1−r1)δ ln

1+δM

f(r)(1−r1)r2

.

Letr0be such thatlnMf(r0)>1.Define the mappingW: T →T,whereW = (w1(r), w2(r))

and w1 =r1, w2 = lnMf(r), r= (r1, r2). So,

J3:=D(w1, w2)

D(r1, r2) =

1 0

∂ ∂r1 ln

Mf(r)

∂r2 ln

Mf(r)

= ∂

∂r2

lnMf(r).

Therefore,

νln(E3∩ △r0)≤

Z Z

W(E3∩△r0)

du1du2 (1u1)1−δu1+2 δ

1

Z

0

du1 (1u1)1−δ ·

+∞

Z

1

du2

u1+2 δ <+∞.

It remains to remark that the set E = S3

j=1Ej is also a set of asymptotically finite logarithmic measure inT.

Theorem 2. Letf ∈ A2. For every δ >0 there exists a setE =E(δ, f)T of

asymptoti-cally finite logarithmic measure such that for all r T\E we obtain

Mf(r)≤

µf(r)

(1r1)1+δ ln

1+δµf(r)

1r1

·ln1/2+δr2. (6)

Proof. Let E′

and E0 be the exceptional sets from Theorem 1 and Lemma 1, respectively. Then for E =E′

∪E0 and h(r1, r2) = (r1r2)1+δ, δ∈(0,1), we get for all r∈T\E

Mf(r)C0µf(r)(det(Df(r) +I))1/2

≤C0µf(r)

1 1r1 ·

h ∂

∂r1

lnMf(r), r2 ∂ ∂r2

lnMf(r) + lnr2 !1/2

≤C0µf(r)

1 1r1

∂r1

lnMf(r)1+δr2 ∂ ∂r2

lnMf(r) + lnr21+δ !1/2

(5)

Hence by Lemma 1 there exists r0 T such that for all r∈ △

r0\E we get

Mf(r)C0µf(r) 1

(1r1)2

lnMf(r)·lnr2

(1+δ)2 1

(1r1)δ(lnMf(r))

1+δ+ lnr

2

1+δ !1/2

<

< µf(r)

(1r1)1+δln

(1+δ)2

Mf(r) ln1/2+2δr2. (7)

Using inequality (7) we obtain

lnMf(r)ln µf(r)

(1r1)1+δ + (1 +δ)

2ln lnM

f(r) +

1

2+ 2δ

ln lnr2 ≤

≤ln µ 1+δ f (r)

(1r1)1+δ

+ 8 ln lnMf(r).

Therefore,lnMf(r)2 lnµf(r)

1−r1.Finally for all r ∈ △r

0\E we have

Mf(r)≤Mf(r)≤

µf(r)

(1r1)1+δ 2 ln

µf(r)

1r1

!1+2δ+δ2

ln1/2+2δr2 <

< µf(r)

(1r1)1+δ1 ln

µf(r)

1r1

!1+δ1

ln1/2+δ1

r2,

where δ1 >2(δ+δ2).

3. Some examples. From Theorem 2 we conclude, that for every δ >0 the set

E =nr T: Mf(r)>

µf(r)

(1r1)1+δ ln

1+δµf(r)

1r1

ln1/2+δr2

o

has asymptotically finite logarithmic measure.

Remark that exponent 1 by 1−1r1 in inequality (6) cannot be replaced with a smaller

number. We suppose that one can replace this exponent withε(0,1).Consider the function

f(z) = f(z1, z2) =

γ(z2) 1z1

,

where γ(z2) is an entire function such thatlnµγ(r2)< r2,r2 →+∞. Then

Mf(r) =

Mγ(r2)

1r1

, µf(r) = µγ(r2).

Denote r′

(ε)(0,1) such that for all r1 > r′(ε) we have

1

(1r1)1−ε −ln

2 1 1r1

> e.

Thus,

B′

=nr[r′

(ε),1)×[e,+) : 1

(1r1)1−ε −

ln2 1 1r1

> r22o

⊂nr[r′(ε),1)×[e,+) : 1 1r1

> 1

(1r1)ε

ln 1 1r1

+r2

p

lnr2

o

(6)

⊂nr[r′(ε),1)×[e,+) : µγ(r2) 1r1

> µγ(r2)

(1r1)ε ln

µγ(r2)

1r1

p

lnr2

o

⊂nr[r′

(ε),1)×[e,+) : Mf(r1, r2)>

µf(r1, r2) (1r1)ε

lnµf(r1, r2) 1r1

p

lnr2

o

=B

Denote R = q(1r11)1−ε −ln

2 1

1−r1. Then for νln-measure of the set B is estimated as

follows

νln(B) =

Z Z

B

dr1dr2 (1r1)r2 ≥

Z Z

B′

dr1dr2 (1r1)r2 ≥

1

Z

r′(ε) R

Z

1

dr2

r2

! dr1 1r1 ≥

= 1 2

1

Z

r′(ε)

ln 1

(1r1)1−ε −

ln2 1 1r1

! dr1 1r1 ≥

1 2

1

Z

r′(ε)

dr1 1r1

= +.

We remark, that none of the exponents 1in (6) can be replaced with a smaller number. Let us consider the function

f(z1, z2) = +∞

X

n=0

zn

1

n! +∞

X

m=1

emεz2m =ϕ(z1)·ψ(z2), ε∈(0,1).

Remark that for this function there exists r0 ∈T such that for someδ >0 we have

n

r ∈ △r0: Mf(r)>

µf(r)

(1r1)1+δ

ln1+δµf(r) 1r1

ln1/2+δr2

o

⊂nr ∈ △r0: Mf(r)>

µf(r)

(1r1)1+δln

1+2δµf(r)

1r1

o .

For the analytic functionϕ(z1)there exist constantsC′

1(ε)∈(0,1)and r1 ∈(r10,1)such that for all r1 ≥r10 we get

C1′(ε)µϕ(r1) 1r1 ≤

Mϕ(r1)

p

lnMϕ(r1) ≤

1

C′

1(ε)

µϕ(r1)

1r1

. (8)

It follows from inequality (8), that for r1 ≥ r01 and some constant C1(ε) < C

1(ε) we obtain

Mϕ(r1)≥C1(ε)

µϕ(r1) 1r1

ln1/2µϕ(r1) 1r1

, (9)

and for the entire function ψ(z2) we obtain for every ε >0 and r2 ∈(r02,+∞)

Mψ(r2)≥(

ε)µψ(r2)ln

1 2 µ

ψ(r2). (10)

So, Mf(r1, r2) = Mϕ(r1)Mψ(r2)and for r ∈(r10; 1)×(r02,+∞) we get

Mf(r)≥(

ε)C1(ε)µf(r) 1r1

lnµϕ(r1) 1r1 ·

lnµψ(r2)

!12

(7)

Consider the positive increasing functionsg1(r1) = ln(µϕ(r1)/(1−r1))andg2(r2) = lnµψ(r2).

We define

A =nr T: g1(r1)·g2(r2)> 1

18(g1(r1) +g2(r2)) 2o

⊃nrT: 1 2 <

g1(r1)

g2(r2)

<2o=E∗.

Then, for rA we get

g1(r1)g2(r2)≥

g2 2(r2)

2 = 1

18(g2(r2) + 2g2(r2)) 2

181 (g1(r1) +g2(r2))2.

Moreover, there exists the inverse functiong−1

2 : R+ →(r0,1), which is also increasing. For r1 ∈(r10,1)we define r

1 and r

2 such that

r1∗ =g

1

2

g

1(r1) 2

, r2∗ =g

1

2 (2g1(r1)).

Therefore, from inequality (11) we have for all rE∗

Mf(r)≥

(√2πε)C1(ε) 18

µf(r)

1r1

lnµϕ(r1) 1r1

+ lnµψ(r2)

!

= (

ε)C1(ε) 18

µf(r)

1r1

ln µf(r) 1r1

.

It remains to prove that set E∗

is a set of infinite asymptotically logarithmic measure.

µ(E∗

) =

Z Z

r0 1

∩E∗

dr1dr2 (1r1)r2

= 1 Z r1 0 r∗ 2 Z r∗ 1

dr1dr2 (1r1)r2

= = 1 Z r1 0

(lnr∗

2 −lnr

1)

dr1 1r1

= 1

Z

r1 0

lng−1

2 (2g1(r1))−lng2−1

g1(r1)

2

!

dr1 1r1

.

Since lim

r→+∞

Mψ(r)

µψ(r) ln1/2µψ(r) = √

2π and g2(r) = lnµψ(r), we get

rln(√2π+ε) 1

2lng2(r)< g2(r)< r−ln(

ε) 1

2lng2(r), r→+∞. (12)

From (12) we have

g−1

2 (r)> r, (13)

g2(r)> rln(√2π+ε)1

2lng2(r)> r−ln(

2π+ε) 1 2lnr >

2 3r,

g2−1(r)< 3

2r, r→+∞. (14)

Using (13) and (14) we finally obtain

νln(E

∗ ) 1 Z r1 0

ln(2g1(r1))−ln

1

2· 3 2g1(r1)

!

dr1 1r1

= 1 Z r1 0 ln8 3 · dr1 1r1

(8)

REFERENCES

1. Polya G., Szeg¨o G. Aufgaben und Lehrs¨atze aus der Analysis, V.2. – Berlin, Springer, 1925.

2. Goldberg A.A., Levin B.Ja., Ostrovsky I.V., Entire and meromorphic functions. – Results of scientific and technical. modern. probl. mat. fundam. guide. VINITI, 1990, V.85, P. 5–186.

3. Suleymanov N.М.Wiman-Valiron’s type inequalities for power series with bounded radii of convergence and its sharpness// DAN SSSR. – 1980. – V.253, №4. – P. 822–824. (in Russian)

4. K˝ovari T.On the maximum modulus and maximal term of functions analytic in the unit disc// J. London Math. Soc. – 1966. – V.41. – P. 129–137.

5. Gopala Krishna J., Nagaraja Rao I.H. Generalised inverse and probability techniques and some fundamental growth theorems inCk

// J. Indian Math. Soc. – 1977. – V.41. – P. 203–219.

6. Fenton P. C.Wiman–Valiron theory in two variables// Trans. Amer. Math. Soc. – 1995. – V.347, №11. – P. 4403–4412.

7. Schumitzky A. Wiman-Valiron theory for functions of several complex variables. – Ph. D. Thesis: Cornel. Univ., 1965.

8. Kuryliak A.O., Skaskiv O.B.Wiman’s type inequalities without exceptional sets for random entire func-tions of several variables// Mat. Stud. – 2012. – V.38, №1. – P. 35–50.

9. Skaskiv O.B., Zrum O.V. Wiman’s type inequality for entire functions of two complex variables with rapidly oscilic coefficient// Mat. metods and fys.-mekh. polya. – 2005. – V.48, №4. – P. 78–87. (in Ukrainian)

10. Skaskiv O.B., Zrum O.V. On inprovement of Fenton’s inequality for entire functions of two complex variables// Math. Bull. Shevchenko Sci. Soc. – 2006. – V.3. – P. 56–68. (in Ukrainian)

11. Zrum O.V., Skaskiv O.B. On Wiman’s inequality for random entire functions of two variables// Mat. Stud. – 2005. – V.23, №2. – P. 149–160. (in Ukrainian)

Ivan Franko National University of Lviv kurylyak88@gmail.com

shap.ludmila@gmail.com matstud@franko.lviv.ua

Referências

Documentos relacionados

Capítulo 2 – Espécies de Imunidade Tributárias No presente capítulo, estudaremos as principais espécies de imunidades tributárias prevista na Constituição Federal, de acordo

Que os responsáveis socialistas do Pico não tenham lucidez política suficiente para não fazer das visitas estatutárias, um momento de campanha ousada, ainda poderíamos esperar,

forma de onda original sob análise ou com seus valores normalizados, a localização no tempo da ocorrência registrada tempo do instante inicial e final, com a conseqüente duração

para os Departamentos confirmarem às Coordenapões os pedidos de disciplinas para 2002.2 para abertura do Sistema de Conírole Acadêmico para digitação de notas e fieqllencia da

É o método mais antigo de manutenção empregado nas indústrias. Segundo a NBR 5462 /1994 da ABNT é “a manutenção efetuada após a ocorrência de uma pane, destinada a colocar

Neste contexto, fez-se necessário a implantação de pontos de referência externa e interna à obra com o emprego de receptores GNSS (método de

No ato da inscrição o candidato deverá: I – cadastrar um e-mail e uma senha que são indispensáveis para acessar o sistema de inscrição e acompanhar a

Por sua vez, com os resultados das análises físico-químicas e microbiológicas, essas águas poderiam ser aproveitadas para diversos usos, tais como: lavagem de banheiros,