• Nenhum resultado encontrado

Usinagem Dos Metais - Machado e Da Silva - 2004

N/A
N/A
Protected

Academic year: 2021

Share "Usinagem Dos Metais - Machado e Da Silva - 2004"

Copied!
262
0
0

Texto

(1)

LABORATÓRIO DE ENSINO E PESQUISA EM USINAGEM

FACULDADE DE ENGENHARIA MECÂNICA

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

USINAGEM DOS METAIS

Prof. Álisson Rocha Machado, PhD.

Prof. Marcio Bacci da Silva, PhD.

(2)

Universidade Federal de Uberlândia Faculdade de Engenharia Mecânica

L

LEEPPUU--LLaabboorraattóórriiooddeeEEnnssiinnooeePPeessqquuiissaaeemmUUssiinnaaggeemm

Álisson Rocha Machado, PhD

Professor

Campus Santa Mônica, Bloco 1M - CEP 38408-100 - Uberlândia/MG, Brasil

Fone: (0**34) 3239 4148 Ramal: 217 Fax: (0**34) 3239 4206 E-mail: alissonm@mecanica.ufu.br

Márcio Bacci da Silva , PhD

Professor

Campus Santa Mônica, Bloco 1M - CEP 38408-100 - Uberlândia/MG, Brasil

Fone: (0**34) 3239 4148 Ramal: 239 Fax: (0**34) 3239 4206 E-mail: mbacci@mecanica.ufu.br

(3)

P R E F Á C I O

A idéia de realizar este trabalho surgiu após o meu retorno da Inglaterra em 1990, onde, durante os 4 anos anteriores, desenvolvi um programa de doutorado no Manufacturing Group da University of Warwick na cidade de Coventry, sob a orientação do prof. Dr. James Wallbank, mesmo pesquisador que veio mais tarde orientar também o prof. Marcio Bacci da Silva, com doutorado concluído em outubro de 1998. Assim que reassumi o posto de professor na Universidade Federal de Uberlândia, responsável pela disciplina de Usinagem na graduação em Engenharia Mecânica e uma outra similar na pós-graduação, senti muita dificuldade de continuar adotando o clássico livro “Fundamentos da Usinagem dos Metais” do saudoso prof. Dr. Dino Ferraresi, que até então era o insubstituível livro texto da disciplina. Esta obra continua sendo uma das mais valiosas referencias sobre o assunto de usinagem convencional na língua Portuguesa. Entretanto, ele foi elaborado no final da década de 60 e editado no início da década seguinte pela Editora Edgard Blücher Ltda. Mais de 30 anos, portanto, já se passaram, e neste período, novas técnicas e métodos de investigação foram desenvolvidos e importantes contribuições científicas foram publicadas. Os principais conceitos apresentados na obra do Prof. Ferraresi não mudaram, mas muito se aprendeu neste período e estes conceitos foram enriquecidos e, possivelmente, tornaram-se mais compreensíveis. Além disto, tópicos como materiais de ferramentas e fluidos de corte tiveram e vem tendo avanços tecnológicos consideráveis nos últimos anos o que exige constante atualização. Aproveitando parte de uma grande revisão bibliográfica que havia feito na Inglaterra no final da década de 80 e tendo como base conceitual os trabalhos do Dr. Trent, orientador de doutorado do prof. Wallbank e autor do livro “Metal Cutting”, editado pela Butterworths – Londres, já na sua terceira edição de 1991, considerado por mim a “Bíblia” dos profissionais da usinagem, resolvi então produzir algumas notas de aulas que, juntamente com as contribuições do Prof. Marcio Bacci da Silva se tornaram mais tarde este modesto trabalho. Desde o original de 1993, várias correções foram feitas. Na realidade, a cada nova impressão, corrigimos erros de ortografia e tentamos melhorar a redação. Nesta edição, a grande mudança está no capítulo 10 - Materiais para Ferramentas de Corte. O texto foi totalmente substituído, apresentando uma abordagem mais completa sobre o assunto, que na opinião dos autores, é a parte que mais se desenvolve com o avanço tecnológico.

Devo citar que experiências práticas obtidas com profissionais da área substituiram muitas horas de estudo e consulta, que contribuíram sobremaneira pela fidelidade de informações apresentadas. Entre eles, destaca-se o dinamismo e a perspicácia dos Engos Antônio Maria de Souza Júnior da Fiat Automóveis S/A; Achille Sotírios de Liambos Júnior da Shell do Brasil S/A e Francisco Carlos Marcondes e João Carocela, da Sandvik do Brasil S/A, Prof. Marcus Antonio Viana Duarte (UFU), Prof. Gilmar Guimarães (UFU), Prof. Alexandre Mendes Abrão (UFMG) e Prof. Anselmo Eduardo Diniz (Unicamp).

Agradeço muito a contribuição do técnico do LEPU – Laboratório de Ensino e Pesquisa em Usinagem da Universidade Federal de Uberlândia, Reginaldo Ferreira de Souza, responsável pela elaboração prática de todas pesquisas ali desenvolvidas que contribuíram para o enriquecimento de formação de idéias.

Trabalho importante, também, tiveram a Srta. Maria das Graças Daud, na primeira edição deste texto e os técnicos desenhistas Márcio Mellazo e Júlio C.R. Ferreira na reprodução em AutoCAD de grande parte das figuras apresentadas.

Finalmente, mas nunca menos importante foram as contribuições dos meus alunos e ex-alunos de graduação e pós-graduação. Todos, sem restrições, têm uma parcela de responsabilidade por este trabalho. Não poderia deixar, entretanto, de citar alguns nomes, pois eles foram responsáveis diretos por parcelas de diferentes conteúdos e informações aqui contidas. São eles Wisley Falco Sales, Marcelo Ferreira Motta, Jalon de Morais Vieira, Anderson Clayton Alves de Melo, Estevam Marcos de Souza, Júlio Romero Santos Fernandes, Eurípedes Barsanulpho Luz Júnior e Marcelo Fonseca Barbosa. Este último ainda foi responsável pelo árduo trabalho de editoração e diagramação desta apostila, tarefa executada com perfeição.

(4)

U S I N A G E M D O S M E T A I S

SUMÁRIO

1. INTRODUÇÃO ... 1

2. GRANDEZAS FÍSICAS NO PROCESSO DE CORTE ... 7

3. NOMENCLATURA E GEOMETRIA DAS FERRAMENTAS DE CORTE ... 16

4. FORMAÇÃO DO CAVACO ... 38

5. CONTROLE DE CAVACO ... 49

6. A INTERFACE CAVACO - FERRAMENTA ... 58

7. FORÇA, PRESSÃO ESPECÍFICA E POTÊNCIA DE USINAGEM ... 79

8. TENSÕES E DEFORMAÇÕES EM USINAGEM ... 90

9. TEMPERATURA DE CORTE ... 95

10. MATERIAIS PARA FERRAMENTAS DE CORTE... 108

11. DESGASTE E MECANISMOS DE DESGASTE DAS FERRAMENTAS DE CORTE ... 165

12. VIDA DA FERRAMENTA E FATORES QUE A INFLUENCIAM ... 206

13. FLUIDOS DE CORTE ... 211

14. INTEGRIDADE SUPERFICIAL ... 222

15. ENSAIOS DE USINABILIDADE ... 234

16. CONDIÇÕES ECONÔMICAS DE CORTE ... 240

(5)

C A P Í T U L O 1

INTRODUÇÃO

“Usinagem” é um processo de fabricação. Mas o que é fabricação e qual a

sua importância? A maioria dos livros especializados da área define: Fabricar é transformar matérias primas em produtos acabados, por vários processos, seguindo planos bem organizados em todos os aspectos. A importância da fabricação pode ser melhor entendida ao observarmos que todos os objetos culturais, ao nosso redor, têm formas e dimensões diferentes, com raríssimas exceções. Além disso, todo objeto é feito de um ou mais materiais e é transformado em produto acabado por uma larga variedade de processos. Portanto, não é nenhuma surpresa que nos países industrializados a fabricação compreende um terço do produto interno bruto [1] (valor de todos os produtos e serviços produzidos). A fabricação é utilizada desde o início da civilização, com a produção de vários artigos de madeira, pedra, cerâmica, barro e metal. Houve muito desenvolvimento com o passar dos anos, e nos dias atuais uma grande quantidade de materiais e processos estão disponíveis, para fabricar produtos que variam desde um simples componente, como uma esfera de aço, até produtos altamente sofisticados, como computadores, automóveis e aeronaves supersônicas.

Para se ter uma idéia do número de fatores que devem ser considerados num processo de fabricação Kalpakjian [1] usou o exemplo da produção de um simples artigo: o clipe. Primeiro ele deve ser projetado para atender o requisito funcional que é segurar folhas de papéis juntas. Para tanto, ele deve exercer uma força suficiente para evitar o deslizamento de uma folha sobre a outra. Eles são, geralmente, feitos de arame de aço, embora hoje se encontra no mercado clipe de plástico. O comprimento do arame requerido para sua fabricação é cortado e então dobrado várias vezes, para dar a forma final própria. Por sua vez, o arame é feito por um processo de trefilação a frio. Neste processo a seção transversal de uma haste longa é reduzida, ao passar por uma matriz de fieira, que também confere algumas propriedades mecânicas ao material, como resistência e dureza. A haste por sua vez, é obtida por processos como a trefilação e a extrusão de um lingote. Para evitar delongas, nenhuma informação quanto ao processo de obtenção deste lingote será abordada. A fabricação de um simples clipe envolve projeto, seleção de um material adequado e seleção de um método de fabricação para atender os requisitos de serviço do artigo. As seleções são feitas não somente com base em requisitos técnicos, mas também com base nas considerações econômicas, para minimizar os custos para que o produto possa ser competitivo no mercado.

O projetista de produtos ou engenheiro projetista, especifica formas e dimensões do produto, sua aparência, e o material a ser usado. Primeiro são feitos os protótipos do produto. Neste estágio, é possível fazer modificações, tanto no projeto original como no material selecionado, se análises técnicas e/ou econômicas assim indicarem. Um método de fabricação apropriado é então escolhido pelo engenheiro de fabricação. A Figura 1.1 mostra um diagrama do procedimento correto para se chegar à etapa de fabricação.

(6)

Fabricação

Desenho Avaliação Final Revisão do Projeto ão Avaliação Teste do Protótipo Modelos Físicos e Analíticos

Análise do Projeto Projeto do conceito

Conceito Original Necessidade do Produto

Especificação do Material; Seleção do Processo de Fabricação e de Equipamentos; Projeto e Construção de Ferramentas e Matrizes

Figura 1.1. Diagrama mostrando o procedimento requerido para o projeto de um produto, que são etapas que antecedem a fabricação.

A seleção do material requer conhecimentos dos requisitos funcionais e de serviço do produto, e dos materiais disponíveis para preencher estes requisitos. O tratamento deste assunto requer um passeio nas propriedades dos materiais e envolve também considerações de custo, aparência, acabamento superficial, resistência à corrosão etc., que foge do escopo prático deste curso, e portanto não serão aqui abordados. Uma vasta bibliografia [1 - 4] porém, está disponível sobre o assunto.

Nos processos de fabricação, geralmente, haverá mais de um método que poderá ser empregado para fabricar um componente. A seleção de um método particular sobre outros vai depender de um grande número de fatores. Além disto, o produto final, geralmente, é o resultado de muitos processos diferentes. Na seleção do processo, os seguintes fatores devem ser considerados [1]:

· Tipo do material e suas propriedades. · Propriedades finais desejadas.

· Tamanho, forma e complexidade do componente. · Tolerâncias e acabamento superficial requeridos. · Processo subsequente envolvido.

· Projeto e custo de ferramental; efeito do material na vida da ferramenta ou matriz. · Sucata gerada e seu valor.

· Disponibilidade do equipamento e experiências operacionais. · “Lead time” necessário para iniciar produção.

(7)

· Custo total de processamento.

O engenheiro responsável, portanto, tem que ter grande conhecimento dos processos e dos materiais envolvidos. Características específicas de cada processo podem ser encontradas em [1,2,5]. É evidente que a fabricação de um produto, seja ele um clipe, uma lâmpada, uma calculadora ou um automóvel, além de conhecimentos de projeto, materiais e processos, requer também grande interação entre os diversos setores dentro da empresa. E quanto mais complexo o produto, maior a necessidade de comunicação entre eles.

Um fato que não se pode deixar de registrar é a utilização de computadores nos dias atuais, em todas as etapas da manufatura. A automatização dos processos de fabricação nos leva hoje aos mais sofisticados “Sistemas Flexíveis de Manufatura” – FMS (Flexible Manufacturing System), CAD (Computer Aided Design – Projeto Assistido por Computador), CAM (Computer Aided Manufacturing – Fabricação assitida por Computador), CAE (Computer Aided Engineering – Engenharia Assistida por Computador), CAPP (Computer Aided Process Planning – Planejamento do Processo Assistido por Computador), CBS (Computer Business Systems – Sistemas de Negócios Computadorizados), CIM (Computer Integrated Manufacturing – Fabricação Integrada por Computador), entre outras, que são siglas bastante populares que têm como característica comum, o emprego do computador, eliminando falhas comuns do passado e aperfeiçoando e automatizando as várias etapas de um processo produtivo.

No meio deste processo existem as máquinas com comando numérico, NC (Numerical Control – Controle Numérico), CNC (Computer Numerical Control – Controle Numérico Computadorizado) e DNC (Direct Numerical Control – Controle Numéico Direto), que podem fazer parte de um sistema CAM. O emprego dessas máquinas revolucionou o processo produtivo, tendo impactos nos materiais de ferramentas, projetos de máquinas, mão de obra, qualidade do produto final e custos de fabricação. Entretanto, a discussão detalhada desses sistemas foge dos objetivos deste curso e aprofundamento do assunto é encontrado em [6].

A Figura 1.2 mostra a classificação dos processos de fabricação, destacando a USINAGEM.

Ao observar esta Figura uma definição simples de usinagem pode ser gerada:

“Processo de fabricação com remoção de cavaco”. Na realidade, ao consultar a

bibliografia, diferentes definições de usinagem serão encontradas. Uma bastante abrangente é a seguinte [7]: “Operação que ao conferir à peça a forma, ou as

dimensões ou o acabamento, ou ainda uma combinação qualquer destes três itens, produzem cavaco”. E por cavaco entende-se [7]: “Porção de material da

peça, retirada pela ferramenta, caracterizando-se por apresentar forma geométrica irregular”.

A usinagem é reconhecidamente o processo de fabricação mais popular do mundo, transformando em cavacos algo em torno de 10% de toda a produção de metais, e empregando dezenas de milhões de pessoas em todo o mundo [8].

(8)

Processos de Fabricação · SEM remoção de cavaco · Conformação · Outros · Fundição · Soldagem · Metalurgia do pó · Laminação · Extrusão · Trefilação · Forjamento · Estampagem · COM remoção de cavaco · USINAGEM · Não-Convencional · Jato d’água · Jato abrasivo · Fluxo abrasivo · Ultrasom · Eletroquímica · Eletroerosão · Feixe de elétrons · Laser · Plasma · Química · Fotoquímica etc... · Convencional · Torneamento · Fresamento · Furação · Aplainamento · Mandrilamento · Serramento · Brochamento · Roscamento · Retificação etc...

Figura 1.2. Classificação dos processos de fabricação.

Apesar desta popularidade, trata-se, ainda, de um processo bastante imprevisível e a definição paradoxal que se segue, relata com precisão toda a sistemática que envolve o mesmo: “É um processo, complexo e simples ao

mesmo tempo, onde se produzem peças, removendo-se excesso de material, na forma de cavacos”. É “complexo” devido às dificuldades em se determinar as

imprevisíveis condições ideais de corte. É “simples” porque, uma vez determinadas as condições ideais de corte, o cavaco se forma corretamente, dispensando qualquer tipo de ação especial do operador. As condições ideais de corte consistem de: (1) material e geometria adequada da ferramenta de corte; (2) velocidade de corte e avanço adequados para uma profundidade de corte pré-determinada; (3) fluido de corte adequado; tudo isto para ser usado em uma máquina-ferramenta pré-escolhida, para usinar um determinado material. Estas condições ideais de corte são aquelas capazes de produzir peças dentro de especificações de forma, tamanho e acabamento ao menor custo possível.

Usinagem tem ainda a peculiaridade de ser um processo essencialmente prático, envolvendo um número de variáveis bastante grande. Shaw [9] resume o problema da seguinte maneira “. É praticamente impossível PREVER a performance no corte dos metais. Entretanto, isto não quer dizer que estudos detalhados dos processos de usinagem não têm valor. Cada ponto fundamental que é detalhadamente estudado e propriamente interpretado contribui para o

(9)

ENTENDIMENTO do processo, e entendimento é o passo mais próximo da

capacidade de prever”.

A seguir, um exaustivo número de definições se faz necessário, nos capítulos: “Grandezas Físicas no Processo de Corte” e “Nomenclatura e Geometria das Ferramentas de Corte”, para compreensão dos capítulos subsequentes, que são: “Formação do Cavaco”, “A Interface Cavaco-Ferramenta”, “Força, Pressão Específica e Potência de Usinagem”, “Tensões e Deformações em Usinagem”, “Temperaturas de Corte”, “Materiais para Ferramentas de Corte”, “Desgaste e Mecanismos de Desgaste das Ferramentas de Corte”, “Vida da Ferramenta e Fatores que a Influenciam”, “Fluidos de Corte”, “Integridade Superficial”, “Ensaios de Usinabilidade”, “Condições Econômicas de Corte” e “Considerações ao Material da Peça”.

Sem dúvidas a abordagem de todos esses tópicos faz deste curso um dos mais completos sobre a usinagem dos materiais metálicos. As maneiras que serão tratadas esses tópicos têm como objetivo oferecer informações suficientes para que o engenheiro ou o técnico de usinagem possa compreender de maneira simples, complicadas teorias sobre o processo de usinagem. O entendimento de tópicos importantes, como: O Mecanismo de Formação do Cavaco, Geração de Calor e Distribuição de Temperatura, Forças de Usinagem e Desgaste das Ferramentas de Corte, coloca o técnico de Usinagem estimulado e seguro nas tomadas de decisões para melhoria do processo produtivo. Pelo menos, este é o maior objetivo deste curso.

REFERÊNCIAS BIBLIOGRÁFICAS

1. KALPAKJIAN, S. “Manufacturing Processo for Engineering Materials”. Addison-Wesley Publixhing Company, 1985, 839 pags, ISBN 0-201-11690-1.

2. DE CARMO, E.P.; BLACK, J.T. and KOHSER, R. “Materials and Process in Manufacturing”, Macmillan Pub. Com., New york, 7th edition, 1988, 1172 pages, ISBN 0-02-946140-5.

3. ASKELAND, D.R. “The Science and Engineering of Materials”, PWS Publishers, USA, 1984, 748 pages, ISBN 0-534-02957-4.

4. CHIAVERINE, V. “Aços e Ferros Fundidos”, ABM, São Paulo, 4a edição, 1979, 504 pags.

5. LINDBERG, R.A. “Processes and Materials of Manufacture”, Allyn and Bacon, USA, 4th edition, 1990, 864 pags, ISBN, 0-205-12031-8.

6. GROOVER, M.P. “Automation, Production Systems, and Computer Integrated Manufacturing”, Prentice Hall Int., Ed., USA, 1987, 808 pags, ISBN 0-13-054610-0.

7. FERRARESI, D. “Fundamentos da Usinagem dos Metais”, Editora Edgard Blücher Ltda, São Paulo, 1970, 751 pags.

8. TRENT, E.M. “Metal Cutting” 2nd Edition, Butterworths, ISBN 0-408-10856, 245 pags.

9. SHAW, M.C. “Metal Cutting Principles”, Oxford University Press, 1984, ISBN 0-19-859002-4, 594 pags.

(10)

C A P Í T U L O 2

GRANDEZAS FÍSICAS NO PROCESSO DE CORTE 2.1. INTRODUÇÃO

O princípio usado em toda máquina ferramenta para se obter a superfície desejada é providenciar um movimento relativo apropriado entre a peça e a ferramenta, escolhida adequadamente. Assim, para o estudo da usinagem é necessário a definição das grandezas físicas no processo de corte.

A norma ABNT NBR 6162/1989 — Movimentos e Relações Geométricas na Usinagem dos Metais – Terminologia [1], trata justamente destes conceitos. A seguir são apresentadas algumas definições básicas baseadas nesta Norma.

Os conceitos se referem a um ponto genérico da aresta cortante, dito “Ponto de Referência”. Nas ferramentas de barra este ponto é fixado na parte da aresta cortante próximo à ponta da ferramenta.

2.2. MOVIMENTOS

Os movimentos no processo de usinagem são movimentos relativos entre a peça e a aresta cortante. Se referem à peça considerada parada.

Devem se distinguir dois tipos de movimentos, os que causam diretamente a saída de cavaco e os movimentos que não tomam parte diretamente na retirada de cavaco.

Movimentos que causam diretamente a saída do cavaco

· Movimento de Corte: movimento entre a peça e a ferramenta, o qual sem o movimento de avanço origina somente uma única retirada de cavaco. · Movimento de Avanço: movimento entre a peça e a ferramenta, o qual

juntamente com o movimento de corte origina retirada contínua de cavaco. · Movimento Efetivo: movimento resultante dos movimentos de corte e

avanço, realizados ao mesmo tempo.

Movimentos que não tomam parte direta na formação do cavaco

· Movimento de Aproximação: movimento entre a peça e a ferramenta, com a qual a ferramenta, antes da usinagem, é aproximada à peça.

· Movimento de Ajuste: movimento entre a peça e a ferramenta para se determinar a espessura de material a ser retirada (ou a profundidade de corte).

· Movimento de Correção: movimento de correção entre a peça e a ferramenta para se compensar o desgaste da ferramenta, ou outra variação.

· Movimento de Recuo: movimento entre a aresta de corte e a peça, com o qual a ferramenta, após a usinagem, é afastada da peça.

(11)

2.3. DIREÇÕES DOS MOVIMENTOS

Deve-se distinguir as direções dos movimentos que causam diretamente a retirada de cavaco.

Direção de Corte: direção instantânea do movimento de corte. Direção de Avanço: direção instantânea do movimento de avanço. Direção Efetiva: direção instantânea do movimento efetivo de corte.

Definições análogas são válidas para os movimentos que não causam a retirada de cavaco diretamente.

As Figuras 2.1, 2.2 e 2.3 ilustram essas direções para o torneamento, furação e fresamento, respectivamente.

Figura 2.1. Direção dos movimentos de corte, de avanço e efetivo, no torneamento.

(12)

Figura 2.3. Direção dos movimentos de corte, de avanço e efetivo, no fresamento discordante.

2.4. PERCURSOS DA FERRAMENTA NA PEÇA

Percurso de Corte Lc: é o espaço percorrido pelo ponto de referência da aresta

cortante sobre a peça, segundo a direção de corte.

Percurso de Avanço Lf: é o espaço percorrido pelo ponto de referência da aresta

cortante sobre a peça, segundo a direção de avanço. Nos casos em que haja movimento de avanço principal e avanço lateral, devem-se distinguir as componentes do percurso de avanço.

Percurso Efetivo Le: é o espaço percorrido pelo ponto de referência da aresta

cortante sobre a peça, segundo a direção efetiva do corte. A Figura 2.4 ilustra os percursos da ferramenta na peça.

ae

Figura 2.4. Percurso de corte Lc, percurso de avanço Lf e percurso efetivo Le para

(13)

Definições análogas são válidas para os movimentos que não tomam parte diretamente na retirada de cavaco.

2.5. VELOCIDADES

Velocidade de Corte VC : é a velocidade instantânea do ponto de referência da

aresta cortante da ferramenta, segundo a direção e sentido de corte. Para processos com movimentos de rotação, a velocidade de corte é calculada pela equação 2.1.

VC =p f× ×n/ 1000 [m/min] (2.1)

onde,

f = diâmetro da peça ou da ferramenta em mm; n = número de rotações por minuto.

Velocidade de Avanço Vf: velocidade instantânea do ponto de referência da aresta

cortante da ferramenta, segundo a direção e sentido de avanço. É dada por:

Vf = × [mm/min] f n (2.2)

onde,

f = avanço em mm/volta;

n = número de rotações por minuto.

Velocidade Efetiva de Corte ve: velocidade instantânea do ponto de referência da

aresta cortante da ferramenta, segundo a direção e o sentido efetivo do corte. É calculada vetorialmente como se segue:

r r r

Ve =VC+Vf [m/min] (2.3)

Além destas podemos ter também as velocidades de aproximação, de ajuste, de correção e de recuo.

2.6. CONCEITOS AUXILIARES

Para melhor compreender os conceitos relacionados aos diferentes processos de usinagem são necessários alguns conceitos auxiliares.

Plano de Trabalho Pfe: é o plano que contém as direções de corte e de avanço,

passando pelo ponto de referência da aresta cortante. Neste plano se realizam os movimentos que tomam parte na retirada de cavaco, Figuras 2.5 e 2.6.

No plano de trabalho é interessante ainda definir os ângulos da direção de avanço e da direção efetiva de corte.

Ângulo da Direção de Avanço j: é o ângulo entre a direção de avanço e a direção

de corte. Nem sempre a direção de avanço é perpendicular à direção de corte, assim por exemplo no fresamento este ângulo varia durante o corte.

(14)

Ângulo da Direção Efetiva de Corte h: é o ângulo da direção efetiva de corte e a

direção de corte.

Figura 2.5. Plano de trabalho Pfe, ângulo da direção de avanço j e ângulo da

direção efetiva h no torneamento.

Figura 2.6. Plano de trabalho Pfe, ângulo da direção de avanço j e ângulo da

direção efetiva h no fresamento concordante (j > 90o).

Considerando a Figura 2.5, pode-se desenvolver a seguinte expressão:

tg v v v v v f f c c f h j j j j = + = + sen . cos sen cos / (2.4)

(15)

Nota-se que, como na maioria dos casos vf <<< vc, o ângulo h é desprezível

(nos processos de roscamento, h assume valores consideráveis pois o avanço é razoável).

Superfícies em Usinagem: são as superfícies geradas na peça pela ferramenta.

Devem-se distinguir a superfície em usinagem principal e a superfície em

usinagem secundária, onde a primeira é gerada pela aresta principal de corte e a

segunda pela aresta secundária de corte (Figura 2.7).

Figura 2.7. Superfície principal e secundária de usinagem.

2.7. GRANDEZAS DE CORTE

São as grandezas que devem ser ajustadas na máquina direta ou indiretamente.

Avanço f: é o percurso de avanço em cada volta (mm/volta) ou em cada curso da

ferramenta (mm/golpe).

No caso de ferramentas que possuem mais de um dente, como no caso do fresamento, distingue-se o avanço por dente fz, (Figura 2.8). O avanço por dente é

o percurso de avanço de cada dente, medido na direção do avanço da ferramenta, e corresponde à geração de duas superfícies em usinagem consecutivas. Vale a relação:

f = . f zz (2.5)

onde,

z = número de dentes.

O avanço por dente pode ainda ser decomposto no avanço de corte fc e

(16)

Figura 2.8. Avanço por dente fz, avanço de corte fc e avanço efetivo fe no

fresamento discordante.

Avanço de Corte fc: é a distância entre duas superfícies consecutivas em usinagem

medida na direção perpendicular à direção de corte no plano de trabalho.

fc =fz.senj (2.6)

Avanço Efetivo de Corte fe: é a distância entre duas superfícies consecutivas em

usinagem medida na direção perpendicular à direção efetiva de corte no plano de trabalho.

(

)

fe =fz.sen j-h (2.7)

Profundidade ou Largura de Usinagem (ou de corte) ap: é a profundidade ou

largura de penetração da ferramenta na peça, medida numa direção perpendicular ao plano de trabalho.

Penetração de Trabalho ae: é de importância predominante no fresamento e na

retificação. É a penetração da ferramenta em relação à peça, medida no plano de trabalho e numa direção perpendicular à direção de avanço, Figura 2.9.

Penetração de Avanço af: grandeza de penetração da ferramenta, medida no plano

de trabalho e na direção de avanço.

Figura 2.9. Largura de usinagem ap, penetração de trabalho ae e penetração de

(17)

2.8. GRANDEZAS RELATIVAS AO CAVACO

São grandezas derivadas das grandezas de corte, e são obtidas através de cálculos, Figura 2.10.

Figura 2.10. Grandezas relativas ao cavaco, para arestas de corte retilíneas.

Largura de Corte b: é a largura calculada da seção transversal de corte a ser

retirada, medida na superfície em usinagem principal, segundo a direção normal à direção de corte. Em ferramentas com aresta cortante retilínea e sem curvatura na ponta, tem-se:

b ap

r

=

sen c (2.8)

cr é o ângulo de posição da aresta principal de corte.

Largura Efetiva de Corte be: é a largura calculada da seção transversal efetiva de

corte a ser retirada, medida na superfície em usinagem principal, segundo a direção normal à direção efetiva de corte. Pela Figura 2.10, têm-se:

(18)

(

)

be =b. -sen .cos r

/

1 2 2 1 2

h c (2.9)

Espessura de Corte h: é a espessura calculada da seção transversal de corte a ser

retirada, medida normalmente à superfície em usinagem principal e segundo a direção perpendicular à direção de corte. Em ferramentas com aresta de corte retilíneas:

r c.senχ

f

h = (2.10)

Espessura Efetiva de Corte he: é a espessura calculada da seção transversal

efetiva de corte a ser retirada, medida normalmente à superfície em usinagem principal e segundo a direção perpendicular à direção efetiva de corte.

(

2

)

1/2 r 2 e η tg . χ sen 1 h h + = (2.11)

Seção Transversal Efetiva de Corte A: é a área calculada da seção transversal de

um cavaco a ser retirado, medida no plano normal à direção de corte.

Seção Transversal de Corte Ae: é a área calculada da seção transversal efetiva de

um cavaco a ser retirado, medida no plano normal à direção efetiva de corte. Na maioria dos casos:

A =a fp. c (2.12)

Ae =a fp. e (2.13)

Em ferramentas sem arredondamento na ponta da aresta cortante:

A= . b h (2.14)

Ae =b he. e (2.15)

Para maiores informações deve ser consultada a norma NBR 6162.

REFERÊNCIA BIBLIOGRÁFICA

1. ABNT, NBR 6162, “Movimentos e Relações Geométricas na Usinagem dos Metais -Terminologia”,1989.

(19)

C A P Í T U L O 3

NOMENCLATURA E GEOMETRIA DAS FERRAMENTAS DE CORTE 3.1. INTRODUÇÃO

A geometria da ferramenta de corte exerce influência, juntamente com outros fatores, na usinagem dos metais. É necessário, portanto, definir a ferramenta através dos ângulos da cunha cortante.

A norma brasileira que trata desse assunto é a norma da ABNT NBR 6163/80 – Conceitos da Técnica de Usinagem – Geometria da Cunha Cortante – Terminologia [1]. As definições apresentadas a seguir são baseadas nesta norma.

3.2. DEFINIÇÕES

As seguintes definições adotadas são necessárias para a determinação dos ângulos da cunha cortante de uma ferramenta de usinagem. As definições são melhores compreendidas através das Figuras 3.1 a 3.12.

Cunha de Corte: é a cunha formada pelas superfícies de saída e de folga da

ferramenta. Através do movimento relativo entre a peça e a ferramenta, formam-se os cavacos sobre a cunha de corte.

Superfície de Saída Ag: é a superfície da cunha de corte sobre a qual o cavaco se

desliza.

Superfície de Folga: é a superfície da cunha de corte, que determina a folga entre a

ferramenta e a superfície em usinagem. Distinguem-se a superfície principal de folga Aa e a superfície secundária de folga A’a.

Arestas de Corte: são as arestas da cunha de corte formada pelas superfícies de

saída e da folga. Deve-se distinguir a aresta principal de corte S e a aresta secundária de corte S’:

- Aresta Principal de Corte S: é a aresta de corte cuja cunha de corte, observada no plano de trabalho, e para um ângulo da direção de avanço j = 90o, indica a direção de avanço.

- Aresta Secundária de Corte S’: é a aresta de corte cuja cunha de corte,

observada no plano de trabalho, e para o ângulo da direção de avanço j = 90o, indica a direção contrária a direção de avanço.

Ponta de Corte: parte da cunha de corte onde se encontram as arestas principal e

secundária de corte.

Ponto de Corte Escolhido: ponto destinado à determinação das superfícies e

ângulos da cunha de corte, ou seja as definições se referem a um ponto da ferramenta, dito ponto de corte escolhido ou “Ponto de Referência”.

(20)

Figura 3.1. Cunha de Corte da Ferramenta.

Figura 3.2. Arestas de corte e superfícies da cunha de corte de uma ferramenta de torno.

(21)

Figura 3.4. Arestas de corte e superfícies da cunha de corte de uma broca helicoidal.

3.3. SISTEMAS DE REFERÊNCIA UTILIZADOS NA DETERMINAÇÃO DOS ÂNGULOS DA CUNHA CORTANTE.

Para a determinação dos ângulos na cunha de corte é necessário empregar um sistema de referência. Normalmente são empregados dois sistemas de referência, para um estudo racional dos ângulos da ferramenta e dos ângulos efetivos ou de trabalho:

- SISTEMA DE REFERÊNCIA DA FERRAMENTA - SISTEMA EFETIVO DE REFERÊNCIA

O sistema de referência da ferramenta é necessário para a determinação da geometria da cunha de corte da ferramenta, durante o projeto, execução e controle da mesma. O sistema efetivo de referência é necessário para a determinação da geometria da cunha de corte da ferramenta, durante o processo de usinagem. Além destes, outro sistema de referência poderá ser necessário para a determinação do posicionamento da ferramenta em relação à máquina.

(22)

No sistema de referência da ferramenta, os planos são identificados pela palavra ferramenta e recebem o símbolo P, com um índice para a sua diferenciação. No sistema de referência efetivo, os planos são identificados pela palavra efetivo e os mesmos símbolos do sistema de referência da ferramenta, além do índice e.

3.3.1. Planos do Sistema de Referência

As definições dadas a seguir correspondem às figuras 3.5 e 3.6.

Plano de Referência:

· Plano de Referência da Ferramenta - Pr: plano que passando pelo ponto

de corte escolhido, é perpendicular à direção admitida de corte. Esta é escolhida de maneira que o plano de referência da ferramenta seja o mais possível paralelo ou perpendicular à uma superfície ou eixo de ferramenta. · Plano de Referência Efetivo - Pre: plano que passando pelo ponto de

corte escolhido, é perpendicular à direção efetiva.

Nas ferramentas de torneamento e aplainamento, o plano de referência da ferramenta Pr é um plano paralelo ou perpendicular à superfície de apoio do cabo.

Nas ferramentas de fresamento ou furação, ele é um plano que contém o eixo de rotação das mesmas.

Plano de Corte:

· Plano de Corte Principal da Ferramenta - Ps: plano que passando pelo

ponto de corte escolhido, é tangente à aresta de corte e perpendicular ao plano de referência da ferramenta.

· Plano de Corte Secundário da Ferramenta – Ps': plano que passando pelo ponto de corte escolhido, é tangente à aresta secundária de corte e perpendicular ao plano de referência da ferramenta.

· Plano de Corte Efetivo - Pse: plano que passando pelo ponto de corte

escolhido, é tangente à aresta de corte e perpendicular ao plano de referência efetivo Pre.

Plano Ortogonal:

· Plano Ortogonal da Ferramenta - Po: plano que passando pelo ponto de

corte escolhido, é perpendicular aos planos de referência e de corte da ferramenta.

· Plano Ortogonal Efetivo - Poe: plano que passando pelo ponto de corte

escolhido, é perpendicular aos planos de referência e de corte efetivos. O plano ortogonal é conhecido na maioria das literaturas como PLANO DE MEDIDA.

Plano de Trabalho:

· Plano Admitido de Trabalho - Pf: plano que passando pelo ponto de corte

escolhido, é perpendicular ao plano de referência e paralelo à direção admitida de avanço. É escolhido de tal forma que fique o mais possível paralelo ou perpendicular à uma superfície ou eixo da ferramenta, respectivamente.

(23)

· Plano de Trabalho Efetivo - Pfe: plano que passando pelo ponto de corte

escolhido, contém as direções de corte e de avanço. Neste plano se realizam os movimentos responsáveis pela retirada de cavaco, como definido no Capítulo 2.

Plano Dorsal:

· Plano Dorsal da Ferramenta - Pp: plano que passando pelo ponto de

corte escolhido, é perpendicular aos planos de referência da ferramenta e admitido de trabalho.

· Plano Dorsal Efetivo - Ppe: plano que passando pelo ponto de corte

escolhido, é perpendicular aos planos de referência efetivo e de trabalho. Além destes planos são definidos ainda no sistema de referência da ferramenta:

· Plano Normal a Aresta de Corte Pn (ou PLANO EFETIVO NORMAL À ARESTA

DE CORTE Pne): plano que, passando pelo ponto de corte escolhido, é

perpendicular à aresta de corte S.

· Plano Ortogonal à Superfície de Saída Pg: plano que passando pelo ponto de

corte escolhido, é perpendicular à superfície de saída e ao plano de referência da ferramenta.

· Ângulo de Posição do Plano Ortogonal à Superfície de Saída dr: ângulo entre

o plano admitido de trabalho e plano ortogonal à superfície de saída, medido no plano de referência da ferramenta.

· Plano Ortogonal à Superfície de Folga Pb: plano que passando pelo ponto de

corte escolhido, é perpendicular à superfície de folga e ao plano de referência da ferramenta.

· Ângulo de Posição no Plano Ortogonal à Superfície de Folga qr: ângulo entre

o plano admitido de trabalho e o plano ortogonal à superfície de folga, medido no plano de referência da ferramenta.

(24)
(25)
(26)

Figura 3.7. Planos do Sistema de Referência da Ferramenta numa ferramenta de torneamento.

(27)

Figura 3.8. Planos do Sistema de Referência Efetivo numa ferramenta de torneamento.

(28)
(29)
(30)

Figura 3.11. Planos do Sistema de Referência da Ferramenta numa broca helicoidal.

(31)
(32)

3.3.2. Ângulos da Cunha Cortante

Os ângulos da cunha cortante destinam-se à determinação da posição e da forma da cunha de uma ferramenta.

Devem-se distinguir os ângulos do sistema de referência da ferramenta dos ângulos do sistema de referência efetivo. No primeiro, os ângulos são identificados com o acréscimo da palavra ferramenta e os símbolos representativos com o índice identificador do plano no qual são medidos, no segundo, é adicionada a palavra efetivo, e acrescenta-se ainda o índice “e” no símbolo.

Se o ângulo for referente à uma aresta secundária de corte, os símbolos recebem um apóstrofo (‘).

As definições apresentadas a seguir são mostradas nas figuras 3.13 a 3.18.

Ângulos Medidos no Plano de Referência

· Ângulo de Posição da Ferramenta cr: ângulo entre o plano de corte da

ferramenta Ps e o plano admitido de trabalho Pf, medido no plano de

referência da ferramenta. É sempre positivo e situa-se sempre fora da cunha cortante, de forma que o seu vértice indica a ponta de corte. Este ângulo indica a posição da aresta de corte.

· Ângulo de Posição Efetivo cre: ângulo entre o plano de corte efetivo Pse e

o plano de trabalho efetivo Pfe, medido no plano de referência efetivo Pre.

· Ângulo de Posição Secundário da Ferramenta cr: ângulo entre o plano

de corte secundário da ferramenta Ps e o plano admitido de trabalho Pf,

medido no plano de referência da ferramenta. É sempre positivo e situa-se sempre fora da cunha cortante, de forma que o seu vértice indica a ponta de corte. Este ângulo indica a posição da aresta secundária de corte. · Ângulo de Posição Secundário Efetivo cre: ângulo entre o plano de

corte secundário efetivo P’se e o plano de trabalho efetivo Pfe, medido no

plano de referência efetivo Pre.

· Ângulo de Ponta da Ferramenta er: ângulo entre os planos principal de

corte Ps e secundário de corte P’s medido no plano de referência da

ferramenta.

Vale portanto a seguinte relação: cr er cr

o

+ + | =180 (3.1)

Ângulos Medidos no Plano de Corte:

· Ângulo de Inclinação da Ferramenta ls: ângulo entre a aresta de corte e

o plano de referência da ferramenta Pr, medido no plano de corte da

ferramenta Ps.

· Ângulo de Inclinação Efetivo lse: ângulo entre a aresta de corte o plano

de referência efetivo Pre, medido no plano de corte efetivo Pse.

O ângulo de inclinação é sempre um ângulo agudo, cujo vértice indica a ponta de corte. Ele é positivo quando, observando-se a partir da ponta de corte, a aresta de corte encontra-se na região posterior em relação ao plano de referência, orientando-se para tanto segundo o sentido de corte.

(33)

Ângulos Medidos no Plano Ortogonal

· Ângulo de Saída da Ferramenta go: ângulo entre a superfície de saída Ag

e o plano de referência da ferramenta Pr, medido no plano ortogonal da

ferramenta Po.

· Ângulo de Saída Efetivo goe: ângulo entre a superfície de saída Ag e o

plano de referência efetivo Pre, medido no plano ortogonal efetivo Poe.

O ângulo de saída é sempre um ângulo agudo. Ele é positivo quando, a interseção entre a superfície de saída e o plano ortogonal encontra-se na região posterior em relação ao plano de referência, orientando-se para tanto segundo o sentido de corte.

· Ângulo de Cunha da Ferramenta bo: ângulo entre as superfícies de saída

Ag e de folga Aa, medido no plano ortogonal da ferramenta Po.

· Ângulo de Cunha Efetivo boe: ângulo entre as superfícies de saída Ag e

de folga Aa, medido no plano ortogonal efetivo Poe.

· Ângulo de Folga da Ferramenta ao: ângulo entre a superfície de folga Aa

e o plano de corte da ferramenta Ps, medido no plano ortogonal da

ferramenta Po.

· Ângulo de Folga Efetivo aoe: ângulo entre a superfície de folga Aa e o

plano de corte efetivo Pse, medido no plano efetivo ortogonal Poe.

Vale a seguinte relação:

ao +bo +go = 90 o (3.2)

Estes ângulos definidos anteriormente podem ser medidos também em outros planos. As definições apresentadas aqui são consideradas as mais importantes, para maiores informações deve-se consultar a norma NBR 6163.

(34)
(35)
(36)
(37)
(38)
(39)
(40)

3.4. FUNÇÕES E INFLUÊNCIA DOS ÂNGULOS DA CUNHA CORTANTE.

Ângulo de Folga (ao)

· Evitar atrito entre a peça e a superfície de folga da ferramenta.

· Se ao é pequeno, a cunha não penetra convenientemente no material, a

ferramenta perde o corte rapidamente, há grande geração de calor e prejudica o acabamento superficial.

· Se ao é grande, a cunha da ferramenta perde resistência, podendo soltar

pequenas lascas ou quebrar.

· ao depende principalmente de: resistência do material da ferramenta e da peça a

usinar. Geralmente 2o £ 14o.

Ângulo de Saída (go)

· Influi decisivamente na força e na potência necessária ao corte, no acabamento superficial e no calor gerado.

· Quanto maior go menor será o trabalho de dobramento do cavaco.

· go depende principalmente de:

· resistência do material da ferramenta e da peça a usinar. · quantidade do calor gerado pelo corte.

· velocidade de avanço (vf).

· go negativo é muito usado para corte de materiais de difícil usinabilidade e em

cortes interrompidos, com o inconveniente da necessidade de maior força e potências de usinagem e maior calor gerado na ferramenta.

· Geralmente -10o £ go £ 30o.

Ângulo de Inclinação (ls):

· Controlar a direção de saída do cavaco.

· Proteger a quina da ferramenta contra impactos. · Atenuar vibrações.

· Geralmente -4o £ ls £ 4o.

Ângulo de Posição (cr):

· Distribui as tensões de corte favoravelmente no início e no fim do corte.

· Aumenta o ângulo de ponta (er), aumentando a sua resistência e a capacidade de

dissipação de calor.

· Influi na direção de saída do cavaco.

· Produz uma força passiva na ferramenta, reduzindo vibrações. · Geralmente 30o £ cr £ 90o. Em perfilamento pode ser maior que 90o.

REFERÊNCIA BIBLIOGRÁFICA

1. ABNT NBR 6163, “Conceitos da Técnica de Usinagem - Geometria da Cunha Cortante – Terminologia”, 1980.

(41)

C A P Í T U L O 4

FORMAÇÃO DO CAVACO

Uma maneira de estudar a formação do cavaco durante a usinagem é fazer simplificações em relação ao processo de fabricação. Isto é feito no corte ortogonal [1,2]. É um procedimento universal e as considerações que se seguem caracterizam a operação.

4.1. O CORTE ORTOGONAL

No Corte Ortogonal a aresta cortante é reta, normal à direção de corte e normal também à direção de avanço, de maneira que a formação do cavaco pode ser considerada como um fenômeno bidimensional, o qual se realiza num plano normal à aresta cortante, ou seja, no Plano de Trabalho, Figura 4.1. Esta Figura ilustra alguns exemplos de usinagens que se aproximam do corte ortogonal no torneamento.

Figura 4.1. Exemplos de Corte Ortogonal [2].

Além das simplificações citadas, são feitas as seguintes considerações que permitem um tratamento matemático simplificado do corte ortogonal e que pode ser estendido para outras operações de usinagem [2]:

x o tipo de cavaco formado é contínuo, sem formação da aresta postiça de corte. x não existe contato entre a superfície de folga da ferramenta e a peça usinada. x a espessura de corte h (igual ao avanço) é pequena em relação à largura de corte

b.

x a aresta de corte é maior que a largura de corte b.

x a largura de corte b e a largura do cavaco b’ são idênticas.

Com todas estas simplificações e considerações o corte ortogonal costuma ser representado como mostra a Figura 4.2.

(42)

Figura 4.2. O Corte Ortogonal.

Este modelo é usado para estudadar o mecanismo de formação do cavaco, os fenômenos envolvidos e as forças atuantes no processo. Os resultados assim obtidos podem ser estendidos ao corte tridimensional, às vezes, com algumas ressalvas.

4.2. MECANISMO DA FORMAÇÃO DO CAVACO

O mecanismo de formação do cavaco pode ser explicado considerando o volume de metal representado pela seção “klmn”, da Figura 4.3, se movendo em direção à cunha cortante.

JR

Figura 4.3. Diagrama da cunha cortante [1].

A ação da ferramenta recalca o volume “klmn”. Neste ponto o metal começa a sofrer deformações elásticas. Com o prosseguimento do processo o limite de escoamento é vencido e o material passa a se deformar plasticamente.

(43)

Deformações plásticas continuam acontecendo até que as tensões não são mais suficientes para manter este regime. Assim fica definido uma zona de cisalhamento primária (Figura 4.4), que para facilitar o estudo ela é representada por apenas um plano, definido pela linha OD da Figura 4.3.

Após o material entrar no regime plástico, o avanço da ferramenta faz com que as tensões ultrapassem o limite de resistência do material, ainda dentro da zona de cisalhamento primária, promovendo a ruptura, que se inicia com a abertura de uma trinca no ponto “O” (Figura 4.3) e que pode se estender até o ponto “D”, segundo o plano definido pela linha OD . A extensão de propagação da trinca, que depende principalmente da ductilidade (ou fragilidade) do material da peça, vai determinar o tipo do cavaco, isto é, contínuo ou descontínuo.

Após passar pela região de cisalhamento primária, ao volume de material “klmn” só resta movimentar-se por sobre a superfície de saída da ferramenta e sair como um componente, ou lamela do cavaco. Entretanto, ao atravessar a zona de cisalhamento primária ele se deforma plasticamente para um novo formato “pqrs” (Figura 4.3). Poderá ser encontrado na literatura, o tratamento desta etapa de movimento por sobre a superfície de saída como sendo um sistema simples de atrito de Coulomb, sem maiores conseqüências para o processo. Isto não é correto. O cavaco, na maioria dos casos, ao atravessar a superfície de saída da ferramenta sofre ainda altíssimas deformações plásticas cisalhantes, numa pequena região junto à interface com a ferramenta, desenvolvendo ali altíssimas temperaturas, o que compromete a resistência das ferramentas. Esta região é definida como zona de cisalhamento secundária (plano definido pela linha OB da Figura 4.3) e pode ser vista na Figura 4.4.

(44)

O entendimento das condições dessa interface cavaco-ferramenta é de importância capital para a análise do processo de corte, e será tratado em separado no capítulo 6.

Ao imaginarmos que adjacente ao volume de material representado por “klmn” da Figura 4.3, existe outro volume de material similar, e subsequente a este, existe outro, e assim sucessivamente, verificamos que o mecanismo de formação do cavaco é um processo cíclico, com cada ciclo dividido em 4 (quatro) etapas, bem definidas (já discutidas anteriormente), a saber:

1. Recalque (deformação elástica) 2. Deformação plástica.

3. Ruptura.

4. Movimento sobre a superfície de saída da ferramenta.

Cada volume de material que passar por um ciclo, formará uma lamela de cavaco.

4.3. ÂNGULO DE CISALHAMENTO E GRAU DE RECALQUE

Durante um ciclo de formação do cavaco, definido no item anterior, a etapa de deformação plástica (etapa no2) acontece por um determinado período, o que define uma zona de cisalhamento primária (Figura 4.4). Foi observado também, que para simplificar o estudo, esta zona é representada por um plano (linha OD da Figura 4.3), denominado plano de cisalhamento primário. O ângulo I é definido como sendo o ângulo formado entre esse plano de cisalhamento primário e o plano de corte (Figura 4.3).

Verifica-se experimentalmente, que a espessura do cavaco, h’, é maior que a espessura do material a ser removido, h (espessura de corte), ver Figura 4.5a, e o comprimento de cavaco correspondente é por conseguinte, mais curto. Da mesma maneira a velocidade de saída do cavaco, vcav, é menor que a velocidade de corte,

vc (Figura 4.5b).

O grau de recalque, Rc, é definido pela relação:

cav c c v v h ' h R (4.1)

Considerando a Figura 4.5a, o ângulo de cisalhamento I pode ser determinado pela medição direta da espessura do cavaco, h’, assim:

tg

Rc

n

n

I cossenJ J (4.2)

ondeJn é o ângulo de saída normal, neste caso igual a Jo.

O valor do grau de recalque, Rc, e portanto do ângulo de cisalhamento, I, é

(45)

primária. Pequenos valores de I (altos valores de Rc) significaram grande

quantidade de deformação no plano de cisalhamento primário, e vice-versa.

VCAV

a) b)

Figura 4.5. a) Espessura de corte h, espessura do cavaco h’ e ângulo de cisalhamento I;

b) Triângulo de velocidades no corte ortogonal. Vc = velocidade de

corte; Vcav = velocidade de saída do cavaco; Vz = velocidade de

cisalhamento.

As condições da interface cavaco-ferramenta exercem papel importante no processo, influenciando diretamente o valor do ângulo I.

Nesta interface, está localizada a zona de cisalhamento secundária, que oferece resistência ao movimento do cavaco, onde uma grande quantidade de energia é consumida. Grande resistência ao movimento do cavaco gera baixos valores de I, e aumenta o comprimento da zona (plano) de cisalhamento primária [3]. I e Rc dependem, portanto, das condições da interface cavaco-ferramenta, e isto

é função do material da peça, material da ferramenta, condições de corte e do emprego ou não de fluido de corte.

O ângulo de cisalhamento I é difícil de ser medido, entretanto, pode ser determinado pela equação 4.2. A direção definida por este ângulo, representa a direção de cisalhamento máximo e pode portanto ser estimado. Vários pesquisadores fizeram tentativas de estimar o valor teórico deste ângulo, e duas delas são apresentadas abaixo.

Teoria de Ernest e Merchant [4]:

2I E J  ne arc cot ( )g k (4.3)

onde:

E = ângulo de atrito médio entre o cavaco e a ferramenta. k = constante do material da peça.

(46)

Teoria de Lee e Shaffer [5]:

I E J  ne S

4 (4.4)

4.4. TIPOS DE CAVACO

Durante a usinagem uma nova superfície é gerada na peça, ou pela formação de um cavaco contínuo, quando se usina materiais dúcteis, ou pela formação de um fluxo de elementos de cavacos quebrados em pedaços, quando se usina materiais frágeis. Existem várias vantagens de produzir cavacos curtos, como se verá no próximo capítulo. A quebra dos cavacos pode ocorrer naturalmente durante a sua formação, como no caso de usinagem de bronze e ferro fundido, ou sua quebra pode ser promovida ao se usar quebra-cavacos. Neste caso, provavelmente, apenas a forma do cavaco irá se alterar. Quanto ao tipo existem pelo menos três possibilidades: cavacos contínuos, descontínuos e segmentados. Entretanto, numa classificação mais detalhada, os tipos de cavacos são:

a. Cavaco contínuo

b. Cavaco parcialmente contínuo c. Cavaco descontínuo

d. Cavaco segmentado.

Para os três primeiros tipos (a, b e c), a classificação depende muito da ductilidade (ou fragilidade) do material da peça e das condições de corte. O último tipo (d) são cavacos produzidos geralmente na usinagem de materiais de baixa condutividade térmica, na presença de “cisalhamento termoplástico catastrófico (ou adiabático)” [6].

a. Cavacos Contínuos.

Serão formados na usinagem de materiais dúcteis, como aços de baixa liga, alumínio e cobre (ver Figura 4.6 a). O metal cisalha na zona de cisalhamento primário com grande quantidade de deformações (da ordem de 2 a 5 mm/mm), permanecendo em uma forma homogênea, sem se fragmentar. Apesar da forma de fita desses cavacos não apresentar, normalmente, nenhuma evidência de fratura ou trinca, uma nova superfície está sendo gerada na peça e isto tem que envolver fratura. Cook et al [7] explica a formação do cavaco contínuo da seguinte maneira: um campo de tensão de tração se desenvolve na ponta da ferramenta, como resultado da curvatura imposta pela cunha cortante, produzindo a trinca necessária para separar o material. Depois desse campo de tensão de tração, o material está sujeito a elevada tensão de compressão, e a propagação da trinca será interrompida ao chegar nesta região, garantindo a formação de cavaco contínuo.

A tensão normal no plano de cisalhamento primário será, portanto, uma importante variável para determinar se o cavaco será contínuo ou descontínuo, e ela é fortemente influenciada pelo ângulo de cisalhamento, I, e pelas condições da interface cavaco-ferramenta (zona de cisalhamento secundária).

(47)

A análise do problema, entretanto, deve levar em consideração dois importantes fatores: primeiro que deve existir uma tensão cisalhante no plano primário suficientemente elevada para garantir a abertura e propagação da trinca na aresta de corte da ferramenta; segundo que o nível da tensão de compressão que atua no plano de cisalhamento primário pode (ou não) interromper a propagação dessa trinca. A complexidade da análise se deve ao fato de que tanto o primeiro como o segundo fatores são dependentes das condições da interface cavaco-ferramenta, isto é, quem promove a tensão cisalhante no plano primário, necessária para a abertura da trinca, é a restrição que o cavaco tem ao se movimentar na superfície de saída da ferramenta, e quanto maior esta restrição, maior será essa tensão. É também esta mesma restrição que vai promover a tensão de compressão no mesmo plano primário, que poderá congelar a propagação da trinca, e quanto maior a restrição, maior será esta tensão.

Algumas variáveis podem atuar no sentido de favorecer a propagação da trinca, por diminuir a restrição ao movimento do cavaco no plano secundário e, por conseguinte, a tensão normal que tende a congelá-la e ao mesmo tempo reduzir a tensão cisalhante responsável pela abertura da trinca. Isto pode ser conseguindo, por exemplo, pela adição de elementos de livre-corte, como o chumbo, telúrio, selênio, enxofre (com manganês) etc., ao material da peça. Estas adições, além de reduzir as tensões normais de compressão no plano primário pelas suas ações lubrificantes, reduz a tensão cisalhante necessária para a abertura de trinca e fragiliza o material, facilitando ainda mais a propagação da mesma. A geometria da ferramenta, principalmente o ângulo de saída, a velocidade de corte, o avanço, a profundidade de corte, inclusões no material (quantidade, forma, tamanho e dureza) e a rigidez da ferramenta são também variáveis importantes no processo de formação do cavaco.

Os cavacos contínuos são indesejáveis pois eles podem causar muitos problemas, e se eles não quebram naturalmente, um quebra-cavaco deve ser usado para promover a sua fragmentação. O cavaco será então fragmentado, mas não da mesma maneira daqueles do tipo “c” abaixo.

Uma variação do tipo de cavaco contínuo, é o cavaco contínuo na presença da aresta-postiça-de-corte (APC) [8] (ver Figura 4.6b). Esse fenômeno será discutido com detalhes no capítulo 6, e é um fator importante que afeta o acabamento superficial e desgaste da ferramenta.

b. Cavacos parcialmente contínuos

É um tipo intermediário entre os cavacos contínuos e descontínuos, onde a trinca se propaga só até uma parte do plano de cisalhamento primário. É muitas vezes [2] denominado de cavaco de cisalhamento. Sugere-se [7] que dois fatores são importantes: (i) a energia elástica acumulada na ferramenta pode não ser suficiente para continuar a propagação da trinca. O cavaco perderá contato com a ferramenta, interrompendo assim, o crescimento (propagação) da trinca; (ii) a presença de grande tensão de compressão no plano de cisalhamento primário, um pouco além da ponta da ferramenta, que supressa a propagação da trinca.

(48)

c. Cavacos descontínuos.

Os cavacos descontínuos são mais comuns quando usinando materiais frágeis, como o bronze e os ferros fundidos cinzentos, que não são capazes de suportarem grandes quantidades de deformações sem fratura. Entretanto, baixas velocidades, ângulo de saída pequeno e grandes avanços podem também gerar cavacos descontínuos em certos materiais semi-dúcteis. Com o aumento da velocidade de corte o cavaco tende a se tornar mais contínuo, primeiro porque a geração de calor é maior e o material por conseguinte mais dúctil, segundo porque é mais difícil a penetração de “contaminantes” na interface cavaco-ferramenta ou plano de cisalhamento secundário (pois o tempo disponível diminui) para reduzir a tensão normal ao plano de cisalhamento primário que permitiria a propagação da trinca.

A Figura 4.6c mostra o cavaco descontínuo. A trinca, neste caso, se propaga por toda a extensão do plano de cisalhamento primário, promovendo a fragmentação do cavaco. A zona de cisalhamento secundária (interface cavaco-ferramenta) também tem influência no processo. Inicialmente, a componente de força tangencial à superfície de saída é menor do que a força necessária para promover o escorregamento do cavaco. Haverá então, o desenvolvimento de uma zona de material estática, e separação do cavaco ocorrerá com o aumento da relação força tangencial/força normal.

Figura 4.6. Tipos de cavacos: (a) cavaco contínuo; (b) cavaco contínuo com APC; ( c) cavaco descontínuo [8].

Estudando a formação de cavacos descontínuos, Palmer e Riad [9] filmaram o corte ortogonal de aços carbono, ligas de cobre, alumínio e titânio, a velocidades de corte muito baixas. Simultaneamente, as forças de corte e avanço foram monitoradas. Os autores variaram avanço, profundidade de corte e ângulo de saída da ferramenta. Além de observarem uma relação direta do comportamento das componentes de força de usinagem com a formação do cavaco, eles construíram curvas que identificam o tipo do cavaco com os parâmetros variados como ilustra a Figura 4.7 (usinagem do latão).

(49)

Figura 4.7. Tipo de cavaco em função da profundidade de corte e do ângulo de saída. x = cavacos contínuos; ' = cavacos parcialmente contínuos; o = cavacos descontínuos [9].

d. Cavacos segmentados.

Os cavacos segmentados são caracterizados por grandes deformações continuadas em estreitas bandas entre segmentos com muito pouca, ou quase nenhuma deformação no interior destes segmentos. É um processo totalmente diferente daquele verificado na formação do cavaco contínuo. Cook [10] e Shaw et alli [11] explicaram qualitativamente as características de segmentação dos cavacos. Em seus modelos, a taxa de diminuição na resistência do material, devido ao aumento local da temperatura (devido às deformações plásticas) iguala ou excede a taxa de aumento da resistência devido ao encruamento, no plano de cisalhamento primário. Isto é peculiar a certos materiais com pobres propriedades térmicas, como o titânio e suas ligas. O cisalhamento para formar o cavaco começa a ocorrer em um plano de cisalhamento primário particular, quando as tensões impostas pelo movimento da ferramenta contra a peça excedem o limite do escoamento do material. A energia associada com esta deformação é convertida em calor imediatamente, e devido as pobres propriedades térmicas do material, altas temperaturas são desenvolvidas, localmente. Isto vai provocar o amolecimento localizado do material e, portanto as deformações continuam na mesma faixa (plano) de material, ao invés de se mudarem para novo plano de material adjacente, à medida que o material se movimenta, como ocorre na formação dos cavacos contínuos [11, 12]. Com o prosseguimento da deformação, existe uma rotação no plano de cisalhamento, que começa a se afastar da ponta da ferramenta e se movimenta por sobre a superfície de saída. Esta rotação vai prosseguindo até que o aumento de força devido a esta rotação excede a força necessária para deformar plasticamente material mais frio, em outro plano mais favorável. Este processo já foi referido como “cisalhamento termoplástico catastrófico” [6] ou “cisalhamento adiabático” [13] e resulta num processo cíclico de produção de cavacos na forma de uma serra dentada (ver Figura 4.8).

(50)

Figura 4.8. Cavaco segmentado [14].

É verificado experimentalmente que muitos materiais podem sofrer cisalhamento termoplástico catastrófico, dependendo da temperatura desenvolvida durante a usinagem (velocidade de corte) e de suas propriedades térmicas. Recht [6] apresentou o critério para um material sofrer cisalhamento termoplástico catastrófico (efeito do amolecimento devido ao aumento de temperatura superar o efeito de encruamento) e a velocidade de corte acima do qual ele ocorre foi denominada de “velocidade de corte crítica”. Para o Inconel 718 esta velocidade é de 61 m/min e para o aço AISI 4340 a velocidade crítica encontrada foi de 275 m/min [15,16].

4.5. FORMAS DE CAVACOS

Quanto à forma, os cavacos são classificados como: - cavaco em fita.

- cavaco helicoidal. - cavaco espiral.

- cavaco em lascas ou pedaços.

Entretanto, a norma ISO [17] faz uma classificação mais detalhada da forma dos cavacos, de acordo com a Figura 4.9.

fragmentado

Referências

Documentos relacionados