• Nenhum resultado encontrado

VIDA DA FERRAMENTA E MECANISMOS DE DESGASTE NO TORNEAMENTO DO INCONEL 718 COM APLICAÇÃO DO GRAFITE COMO LUBRIFICANTE SÓLIDO

N/A
N/A
Protected

Academic year: 2021

Share "VIDA DA FERRAMENTA E MECANISMOS DE DESGASTE NO TORNEAMENTO DO INCONEL 718 COM APLICAÇÃO DO GRAFITE COMO LUBRIFICANTE SÓLIDO"

Copied!
9
0
0

Texto

(1)

VIDA DA FERRAMENTA E MECANISMOS DE DESGASTE NO

TORNEAMENTO DO INCONEL 718 COM APLICAÇÃO DO GRAFITE

COMO LUBRIFICANTE SÓLIDO

Armando Marques, amarques@ifes.edu.br1

Cleudes Guimarães, profcleudes@yahoo.com.br1

Marcelo do Nascimento Sousa, mnascimento28@yahoo.com.br1

Narala Suresh Kumar Reddy, nskreddy@hyderabad.bits-pilani.ac.in2

Osmar Custódio de Moura Filho, osmar_cmf@hotmail.com1

Álisson Rocha Machado, alissonm@mecanica.ufu.br1

1Universidade Federal de Uberlândia - UFU, Faculdade de Engenharia Mecânica - FEMEC, Av. João Naves de Ávila,

2121, Uberlândia – MG, 38.408-100, Brasil.

2BITS-Pilani Hyderabad Campus, Hyderabad, INDIA, Jawahar Nagar, Shameerpet Mandal, Hyderabad, 500078,

Telangana State, India.

Resumo: As ligas de níquel apresentam alta resistência mecânica que se mantém em elevadas temperaturas, e por isso são consideradas superligas. Por outro lado, esta característica representa um grande problema quando elas são usinadas, pois promove elevada geração de calor na zona de fluxo, implicando no desenvolvimento de altas taxas de desgaste da ferramenta de corte. A fim de reduzir os problemas causados pelas altas temperaturas geradas na zona de corte, a aplicação de fluido de corte, quando possível, é essencial, proporcionando redução do atrito na interface cavaco-ferramenta-peça e menores temperaturas na zona de corte. A maioria dos fluidos de corte não contemplam estas duas funções ao mesmo tempo, pois a ação puramente refrigerante irá aumentar a resistência do material e, consequentemente, a geração de calor no processo de formação do cavaco. Neste sentido surge o grafite sólido, que possui boas características lubrificantes e ao mesmo tempo é um bom condutor de calor, mas ainda pouco testado em operações de usinagem. Este trabalho apresenta um estudo da influência do lubrificante sólido (grafite) misturado em diferentes concentrações (0; 1,33; 5 e 10%) ao fluido de corte emulsionável de base vegetal e aplicado pela técnica convencional de jorro na região de corte, no torneamento da superliga a base de níquel (Inconel 718) com ferramentas de metal duro revestidas com TiAIN/(Al,Cr)2O3/TiAIN pelo processo PVD. A eficiência da mistura do

grafite foi avaliada em termos de componentes da força de usinagem, vida e desgaste da ferramenta de corte. Imagens das ferramentas desgastadas foram obtidas no MEV para análise dos mecanismos de desgaste envolvidos. Os resultados mostraram que houve influência da concentração do lubrificante sólido na vida da ferramenta, e a concentração de 5% foi a mais satisfatória, permitindo 17% de aumento na vida em relação ao fluido sem a mistura. O desgaste de flanco foi predominante, envolvendo mecanismo de adesão, mas, bem menos expressivo quando se empregou a concentração de 5%. Para todas as condições de lubri-refrigeração foram observadas trincas de origem térmica. Não houve influência significativa da adição do grafite nas componentes de força de usinagem.

Palavras-chave: Superligas de níquel, grafite, lubrificantes sólidos, desgaste da ferramenta, acabamento superficial. 1. INTRODUÇÃO

A superliga a base de níquel Inconel 718 apresenta excelentes propriedades mecânicas, que combinadas com elevada resistência a corrosão em altas temperaturas e boa relação resistência/peso são amplamente utilizadas em turbinas a gás, motores de aeronaves, reatores nucleares, bombas, etc. (Choudhury, Baradie, 1998). Entretanto, a usinagem dessas ligas é extremamente complexa devido à sua baixa condutividade térmica, alta taxa de encruamento e alta afinidade química com os materiais das ferramentas de corte, resultando em um desgaste rápido e severo das mesmas, bem como baixa produtividade, danos superficiais e subsuperficiais (Kitagawaet al., 1997; Ezugwu et al., 1999 e Yazid et al., 2011). Essas ligas possuem a tendência de aderir à superfície da ferramenta devido às altas temperaturas geradas (>1000ºC) na zona de corte o que gera a formação de aresta postiça de corte (APC) (Dudzinski et al., 2004). Além disso, a formação de cavacos contínuos de alta resistência durante a usinagem afeta negativamente a usinabilidade destas ligas. Os mecanismos de desgaste das ferramentas estão fortemente relacionados com os parâmetros de corte e as propriedades da peça que está sendo usinada. Os modos de falha dominantes na usinagem das superligas a base de níquel com ferramentas de metal duro são desgaste de flanco e de entalhe (Bhatt et al., 2010). A presença de fases duras no material da peça, bem como partículas duras removidas da ferramenta favorecemos mecanismos de desgastes abrasivos (Dudzinski et al., 2004). Apesar das interações dos mecanismos serem complexas, pode haver desenvolvimento simultâneo de desgaste por difusão, abrasão, adesão e outros (Ezugwu et al, 1999). Em baixas velocidades de corte, a APC pode ser formada reduzindo drasticamente a qualidade da superfície da peça usinada.

Uma forma eficaz de melhorar a usinabilidade destes materiais de difícil usinagem é através do emprego de fluidos de corte que tem como principal objetivo a redução do atrito na região de corte por meio de lubrificação, redução da

(2)

temperatura por meio do resfriamento pelo aumento da convecção, reduzindo assim o desgaste através da combinação lubri-refrigeração. No entanto, o uso de fluidos de corte em operações de usinagem tem diminuído nos últimos anos, devido aos problemas ambientais e de saúde que provocam, além de auferir redução nos custos da usinagem (Reddy et al., 2010). Além disso, a maior parte dos fluidos de corte não podem oferecer simultaneamente boas características refrigerantes e lubrificantes simultaneamente. Visando atender estas duas condições, além de atender a apelos ecológicos, a utilização de lubrificantes sólidos vem sendo estudada por diversos pesquisadores (Reddy et al., 2010; Reddy e Rao, 2006; Zailani et al., 2011 e Krishna, Rao, 2008). O lubrificante sólido pode ser aplicado na zona de corte em pó (neste caso atende ao apelo ecológico diretamente) ou misturado ao fluido de corte (neste caso pode atender ao apelo ecológico indiretamente ou parcialmente). As formas de aplicação dos lubrificantes sólidos podem ser por gravidade (Krishna, Rao, 2008), com jato de ar (Rao e Krishna, 2008), por jorro (Zailani et al., 2011) e eletrostática (Reddy et al., 2010). A utilização de lubrificante sólido na usinagem tem apresentado resultados satisfatórios quanto ao acabamento superficial, força de corte e vida da ferramenta de corte.

Neste trabalho a vida e os mecanismos e desgaste das ferramentas de corte foram avaliados durante o torneamento da superliga de níquel Inconel 718, com aplicação de lubrificante sólido (grafite) misturado ao fluido de corte convencional e aplicado na zona de corte por jorro.

2. PROCEDIMENTOS EXPERIMENTAIS

Para a realização dos ensaios de usinagem foi utilizado um torno CNC Multiplic 35D, fabricado pela empresa ROMI, com 16 kW de potência no eixo principal e rotação máxima de 3000 rpm, pertencente ao Laboratório de Ensino e Pesquisa em Usinagem – LEPU da Universidade Federal de Uberlândia – UFU.

Foram utilizadas barras de Inconel 718 na condição recozida, com dureza média de 214 HV30 com 101 mm de diâmetro e 250 mm de comprimento. A composição química do material da peça usinada é apresentada na Tab.(1).

Tabela 1: Composição química Inconel 718 % em peso.

Ni Fe Cr Nb Mo Ti Al Si Co C Mn Cu V B

52,92 18,91 18,34 5,13 2,99 0,98 0,57 0,04 0,03 0,033 0,02 0,01 0,01 0,0043

Foram utilizadas ferramentas de metal duro ISO SNMG120408-SM classe (S1115) com quebra cavaco, revestida com TiAIN/(Al,Cr)2O3/TiAlN pelo processo PVD, com raio da ponta de 0,8 mm, ângulo de folga/saída de +/-6º e

ângulo de posição de 75º, quando montada no porta ferramenta. Para cada condição de ensaio foi utilizada uma aresta de corte nova e para efeito estatístico foram feitas três repetições. Como o principal objetivo deste trabalho é avaliar a influência do lubrificante sólido (grafite) misturado ao fluido de corte convencional, foram mantidos constantes a velocidade de corte (100 m/min), a profundidade de corte (1,5 mm) e o avanço (0,15 mm/rot).

Utilizou-se um fluido de corte de base vegetal Vasco 1000 miscível em água com concentração de 8%, fabricado pela Blaser Swisslube do Brasil Ltda. O fluido foi aplicado na posição sobre-cabeça com uma vazão de 4,5 l/min. O mesmo fluido de corte foi misturado com lubrificante sólido (grafite) em três diferentes concentrações (0%; 1,33%; 5% e 10%) e aplicado na zona de corte com a mesma vazão. Os tamanhos das partículas de grafite variam entre (24 e 27 µm).

Os sinais de força foram adquiridos através de um dinamômetro Kistler modelo 9265B e enviados para um amplificador de sinais modelo 5070A, também fabricado pela Kistler e posteriormente para uma placa de aquisição da

National Instrument, modelo USB DAQPad-6251, onde se pode gerenciar a medição através do programa Labview®,

instalado em um computador.

As medidas dos desgastes foram realizadas por microscopia ótica, usando um estereomicroscópio marca Olympus, modelo SZ6145TR, com câmera digital e software Image-Pro Express 5.1. Utilizou-se como critério de fim de vida da ferramenta o desgaste de flanco de 0,6 mm.

As análises dos mecanismos de desgastes foram realizadas por microscopia eletrônica de varredura – MEV, modelo TM 3000 – Tabletop Microscope e EDS modelo SwiftED3000, ambos fabricado pela empresa Hitachi. Estes equipamentos pertencem ao LEPU – Laboratório de Ensino e Pesquisa em Usinagem da Faculdade de Engenharia Mecânica da UFU.

3. RESULTADOS E DISCUSSÕES 3.1. Força de Usinagem

As componentes da força de usinagem contribuem de forma significativa na avaliação do desempenho de qualquer processo de usinagem. Ela é dependente de uma série de fatores, dentre eles, as propriedades mecânicas do material a ser usinado, da ferramenta, do fluido de corte, etc. (Reddy e Rao, 2006). Observa-se na Fig.(1) o comportamento das

(3)

componentes da força de usinagem (força de corte, força de avanço e força passiva) para as diversas condições de lubri-refrigeração estudadas.

Figura 1. Componentes da força de usinagem para as diversas condições de lubri-refrigeração

De um modo geral, observa-se que as componentes da força de usinagem apresentam um comportamento característico, ou seja, a força de corte apresenta maior valor seguido da força de avanço e passiva. Entretanto, não foi observada nenhuma diferença significativa entre as condições de lubri-refrigeração estudada. Possivelmente, qualquer eventual benefício na capacidade lubrificante oferecida pelo grafite foi ofuscado pelo poder refrigerante do fluido, que tende a aumentar as componentes de força, uma vez que refrigera também a peça e o cavaco (aplicação sobre-cabeça), aumentando a resistência ao cisalhamento a ser vencido para formar o cavaco.

3.2. Vida da Ferramenta

Na Fig. (2) estão representados os resultados da vida da ferramenta na usinagem do Inconel 718 com ferramentas de metal duro nas diversas condições de lubri-refrigeração.

De um modo geral observa-se que para todas as condições de lubri-refrigeração os resultados apresentam uma curva característica, onde os três estágios de desgaste da ferramenta podem ser observados (Machado et al., 2011). No primeiro estágio há um aumento acelerado do desgaste da ferramenta, natural de adequação ao sistema tribológico envolvido, promovendo uma acomodação ao processo. No segundo estágio a taxa de desgaste é constante ao longo do tempo, pois a ferramenta já se encontra totalmente adequada ao processo e os mecanismos específicos de desgaste operam em uma taxa constante. No terceiro estágio ocorre uma aceleração acentuada na taxa de desgaste, podendo promover, em um curto espaço de tempo, o colapso da ferramenta.

0 100 200 300 400 500 600 700 800 Vasco 1000 Vasco 1000 + 1,33% grafite Vasco 1000 + 5% grafite Vasco 1000 + 10% grafite C o m p o n e n te s d a f o a d e u s in a g e m ( N ) Condição de lubri-refrigeração Força de corte Força de avanço Força passiva

(4)

Figura 2. Desgaste de flanco VBBMáx em função do tempo de usinagem

A adição de grafite ao fluido de corte proporcionou uma melhora significativa na vida da ferramenta de corte, sendo que a concentração de 5% apresentou os melhores resultados. Quando comparado com a condição de usinagem convencional, ou seja, sem a adição de lubrificante sólido a solução com 5% (em peso) de grafite apresentou um aumento da vida da ferramenta em torno de 17%. Para uma maior concentração de grafite na mistura 10% (em peso) a vida da ferramenta decresceu levando a concluir que para as condições avaliadas a concentração de 5% é a mais recomendada. O aumento da vida da ferramenta com a adição de lubrificante sólido (grafite) ao fluido de corte pode estar relacionado às boas características de lubrificantes de grafite, bem como a sua elevada condutividade térmica.

Segundo Reddy e Rao (2006), o aumento da vida pode ser atribuído à formação de uma fina película de lubrificante na superfície da ferramenta, reduzindo o atrito entre a peça/ferramenta/cavaco, facilitando o escoamento do material, proporcionando menor desgaste da ferramenta.

Desgaste de flanco e de entalhe na altura da profundidade de corte são as formas de desgaste dominantes ao se usinar superligas a base de níquel com ferramentas de metal duro (Ezugwu et al., 1990). Entretanto, nos ensaios realizados foram observados os desgaste de flanco e de cratera, sendo que o desgaste de flanco foi predominante para todas as condições de lubri-refrigeração investigadas.

A velocidade utilizada nestes testes está bem acima das recomendadas pelo fabricante, bem como as velocidades encontradas na literatura para usinagem das superligas a base de níquel que normalmente estão entre 10 e 40 m/min. Isto só foi possível porque o material usinado estava na condição recozida e com dureza bastante inferior das ligas envelhecidas.

No entanto, a grande dificuldade encontrada neste trabalho foi o grande empastamento de material tanto na superfície de folga quanto na superfície de saída do cavaco, como será observado no item seguinte.

3.3. Mecanismos de Desgaste

Após os testes de vida da ferramenta, o desgaste foi analisado através do Microscópio Eletrônico de Varredura - MEV. A Fig. (3) apresenta detalhes da superfície de folga e de saída da ferramenta de metal duro revestida quando utilizou o fluido convencional, sem aditivos de grafite. O material aderido pode ser claramente observado nas micrografias obtidas através do MEV das superfícies da ferramenta utilizada para usinagem do Inconel 718, bem como os elementos químicos presentes na aresta de corte, avaliado por meio de espectroscopia por dispersão de energia (EDS), representados na Tab. (2).

Figura 3. Micrografias obtidas através do MEV das superfícies (a) de folga e (b) de saída, após a usinagem do Inconel 718 com fluido de corte convencional (Vasco 1000)

Tabela 2. Composição química dos pontos indicados na Fig. (3) obtida por EDS (% em peso)

Elementos Ni Fe Cr Nb Mo Ti Al W Co C O N EDS – 1 e 4 47,80 16,58 17,10 5,05 3.31 1.03 0.77 -- -- 8.36 -- -- EDS – 2 e 5 7,56 2,79 3,11 -- -- -- -- 65.51 0.29 16.56 4.17 -- EDS – 3 e 6 -- -- 4,59 -- -- 27.32 13.37 -- -- 7.58 14.46 32.69

a)

b)

EDS - 3 EDS - 1 EDS - 2 EDS - 4 EDS - 5 EDS - 6 VBBMáx Desgaste de cratera

(5)

Observa-se que no EDS – 1 e 4 mostra uma grande concentração de níquel, cromo e ferro que são os principais elementos químicos presentes nas superligas de níquel Inconel 718. Indicando a presença de material aderido nas superfícies de saída e de folga da ferramenta, indicando que a adesão (attrition) pode ser o principal mecanismo de desgaste atuante. Isto também pode explicar o melhor desempenho das ferramentas quando se utilizou o grafite como lubrificante sólido misturado ao fluido de corte. Além da refrigeração proporcionada pelo fluido de corte, o grafite atuou como lubrificante na interface cavaco/ferramenta/peça reduzindo a aderência do material nas superfícies da ferramenta e consequentemente diminuindo o desgaste por attrition. No EDS – 2 e 5 é possível observar uma grande quantidade de tungstênio, indicando que se trata basicamente de material do substrato da ferramenta. A grande quantidade de titânio, alumínio, oxigênio e nitrogênio apresentada no EDS – 3 e 6 indica que se trata do revestimento da ferramenta que é de TiAIN/(Al,Cr)2O3/TiAlN.

Devido a grande quantidade de material aderido sobre a superfície da ferramenta, as mesmas foram embebidas em ácido clorídrico (HCl) por um período de aproximadamente 48 horas para remoção desse material e permitir a observação das áreas desgastadas.

A Fig.(4) mostra micrografias obtidas através do MEV tanto da superfície de folga quanto da superfície de saída da ferramenta de corte utilizada na usinagem do Inconel 718 com fluido de corte Vasco 1000, sem adição de lubrificante sólido, com velocidade de corte de 100 m/min, após lavagem com ácido. Observa-se que quase todo material aderido foi retirado pelo ácido, com apenas pequenas quantidades ainda aderidas. Na aresta principal de corte há microlascas e uma lasca maior, onde observa-se algumas trincas predominantemente perpendiculares. Segundo Machado et al., (2011), normalmente trincas perpendiculares são requisitos fundamentais para classificar uma trinca como de origem térmica. No corte contínuo, como o torneamento, essas trincas não são comuns, podendo aparecer, somente, se houver acesso irregular do fluido de corte, por exemplo. Durante a usinagem observou-se a formação de emaranhamento de cavaco, promovendo o efeito guarda-chuva, em algumas ocasiões, com flutuações do acesso do fluido de corte. Isto pode acarretar na possibilidade de aparecimento das trincas de origem térmica. Entretanto, essas trincas podem, também, ser provocadas pelas grandes cargas mecânicas experimentadas pela ferramenta na usinagem do Inconel 718. A grande taxa de encruamento dessa liga pode colaborar para proporcionar cargas suficientes para também promover trincas de origem mecânica. Assim, essas trincas podem ser tanto de origem térmica ou mecânica, ou da combinação desses efeitos.

Nas áreas desgastadas a retirada do material aderido com ácido permitiu observar regiões ásperas, características de superfícies com perda de grãos, indicativo forte para predominância do mecanismo adesivo (attrition) de desgaste.

Aspectos similares foram observados na Fig. (5), na usinagem com fluido de corte Vasco 1000 + 5% de grafite. Nota-se o desenvolvimento de um desgaste de flanco máximo, desgaste de cratera, microlascas, trincas e áreas desgastadas ásperas.

Superfície de folga

Attrition

Trinca

Trinca

Material

aderido

a)

(6)

Figura 4. Micrografias obtidas através do MEV das superfícies (a) de folga e (b) de saída, após a usinagem do Inconel 718 com fluido de corte (Vasco 1000), vazão de 4,5 l/min

Figura 5. Micrografias obtidas através do MEV das superfícies (a) de folga e (b) de saída, após a usinagem do Inconel 718 com fluido de corte (Vasco 1000 + 5% de grafite), vazão de 4,5 l/min

Superfície de saída

Attrition

Trinca

Trinca

Superfície de folga

Attrition

Material

aderido

Superfície de saída

Attrition

Trinca

Trinca

b)

a)

b)

(7)

O mecanismo de desgaste predominante para ambas as condições de lubri-refrigeração analisadas foi e o attrition (aderência arrastamento), tanto na superfície de saída como na superfície de folga como pode ser observado nas Fig. (4 e 5). Este mecanismo se caracteriza por apresentar uma superfície da ferramenta com uma aparência áspera ao ser analisado no microscópio, pois, se processa no nível dos grãos. Normalmente ocorre a baixas velocidades de corte, onde o fluxo de material sobre a superfície se torna irregular (Trent e Wright, 2000). No entanto, se o fluxo de material sobre as superfícies de folga e de saída for irregular este mecanismo pode ser encontrado também em velocidades de corte mais altas (Machado et al., 2011). Ainda segundo os autores, a presença da aresta postiça de corte (APC) pode favorecer este tipo de desgaste, principalmente se for instável. Na investigação atual, entretanto, não se observou formação de APC, que provocaria o aspecto fosco na superfície usinada. Não foi o caso.

Bhatt et al., 2010, observaram que o desgaste abrasivo e adesivo foram os mecanismos de desgaste predominantes na usinagem do Inconel 718 com ferramentas de metal duro com e sem revestimento com velocidades de corte variando entre 50 e 100 m/min, avanço entre 0,075 e 0,125 mm/rot e profundidade de corte constante de 0,25 mm.

No entanto, nas condições analisadas as características do mecanismo de desgaste abrasivo são mínimas. Isto se deve provavelmente a condição do material usinado que se encontra no estado recozido e com baixa dureza.

4. CONCLUSÕES

A vida e os mecanismos de desgaste das ferramentas de corte de metal duro foram avaliados durante o processo de torneamento da superliga a base de níquel Inconel 718, com aplicação de grafite como lubrificante sólido misturado ao fluido de corte.

Os resultados mostraram que a adição de grafite ao fluido de corte proporcionou uma melhora significativa na vida da ferramenta quando comparado com o fluido de corte convencional. A concentração de 5% foi a que apresentou os melhores resultados, aumentando a vida da ferramenta em torno de 17%.

Não houve diferença significativa das componentes de força de usinagem com a utilização de fluido de corte com adição de grafite.

Os tipos de desgaste predominantes foram o desgaste de flanco, inclusive o máximo, e o desgaste de cratera. Foi observado também a presença de trincas mecânicas/térmicas em todas as condições de lubri-refrigeração avaliadas.

Para todas as condições avaliadas, o mecanismo de desgaste predominante foi o attrition (aderência e arrastamento).

5. AGRADECIMENTOS

Os autores agradecem aos órgãos de fomento, CAPES, CNPq e FAPEMIG, pelo apoio financeiro, à Villares Metals pelo material cedido para a pesquisa e à Sandvik Coromant pela doação das ferramentas. Um dos autores agradece o apoio recebido do Instituto Federal do Espírito Santo – IFES Campus Vitória.

6. REFERÊNCIAS

Bhatt, A., Attia,H., Vargas, R., Thomson, V., 2010, “Wear mechanisms of WC coatedand uncoated tools in finish turning of Inconel 718”. Tribology International, Vol. 43, pp. 1113–1121.

Choudhury, I.A., El-Baradie, M.A., 1998, “Machinability of nickel-base super alloys: a general review”. J. Mater. Process Technol,Vol. 77, pp. 278 - 284.

Dudzinski, D., Devillez, A., Moufki, A., Larrouquere, D., Zerrouki, V., and Vigneau, J., 2004, "A review of developments towards dry and high speed machining of Inconel 718 alloy," International Journal of Machine Tools and Manufacture, Vol. 44, pp. 439-456.

Ezugwu, E. O., Wang, Z. M., Machado, A. R., 1999, “The Machinability of Nickel-Based Alloys: A Review”. Journal of Materials Processing Technology, Vol. 86, pp. 1–16.

Kitagawa, T., Kubo, A., Maekawa, K., 1997, “Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6Al-6V-2Sn”. Wear, Vol. 202, pp. 142 - 148.

Krishnaa, P. V., Rao, D. N., 2008, “Performance evaluation of solid lubricants in terms of machining parameters in turning”, International Journal of Machine Tools & Manufacture, Vol. 48, pp. 1131–1137.

Machado, A. R.; DA Silva, M. B.; Coelho, R. T.; Abrão, A. M., 2011, Teoria da Usinagem dos Metais, 2ª ed.; Editora Edgard Blucher, São Paulo, Brasil.

Reddy, N. S. K., Nouari,M., Yang,M., 2010, “Development of electrostatic solid lubrication system for improvement in machining process performance”, International Journal of Machine Tools & Manufacture, Vol. 50, pp. 789–797. Reddy, N. S. K., Rao, P. V., 2006, “Experimental investigation to study the effect of solid lubricants on cutting forces

and surface quality in end milling”, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 189–198. Trent, E.M.; Wright, P.K., 2000, “Metal Cutting”, Butterworths, 4th Edition, London.

Yazid, M.Z.A., CheHaron, C.H., Ghani, J.A., Ibrahim, G.A., Said, A.Y.M., 2011, “Surface Integrity of Inconel 718 when Finish Turning with PVD Coated Carbide Tool Under MQL”. Procedia Engineering, Vol.19, pp. 396 – 401.

(8)

Zailani,Z.A., Hamidon, R., Hussin, M.S.,Hamzas,M.F.M.A.,Hadi,H., 2011, “The Influence Of Solid Lubricant In Machining Parameter of Milling Operation”, International Journal of Engineering Science and Technology, Vol. 3 No. 6.

7. DIREITOS AUTORAIS

(9)

TOOL LIFE AND WEAR MECHANISMS IN TURNING OF INCONEL 718

WITH GRAPHITE AS SOLID LUBRICANT

Armando Marques, amarques@ifes.edu.br1

Cleudes Guimarães, profcleudes@yahoo.com.br1

Marcelo do Nascimento Sousa, mnascimento28@yahoo.com.br1

Narala Suresh Kumar Reddy, nskreddy@hyderabad.bits-pilani.ac.in2

Osmar Custódio de Moura Filho, osmar_cmf@hotmail.com1

Álisson Rocha Machado, alissonm@mecanica.ufu.br1

1Universidade Federal de Uberlândia - UFU, Faculdade de Engenharia Mecânica - FEMEC, Av. João Naves de Ávila,

2121, Uberlândia – MG, 38.408-100, Brasil.

2BITS-Pilani Hyderabad Campus, Hyderabad, INDIA, Jawahar Nagar, Shameerpet Mandal, Hyderabad, 500078,

Telangana State, India.

Abstract: Nickel alloys have high mechanical strength, which remains at elevated temperatures and are therefore considered superalloys. Moreover, this characteristic represents a major problem when they are machined, since it promotes generation of high amount of heat at the flow zone, resulting in the development of high wear rates on the cutting tool. In order to reduce the problems caused by the high temperatures generated in the cutting zone, application of cutting fluid, when possible, is essential to reduce friction at the workpiece-tool-chip interface and lower temperatures in the cutting zone. Most cutting fluids do not address these two functions at the same time, since purely the cooling action will increase the strength of the material being cut and consequently the generation of heat in the chip formation process. In this sense the solid graphites arise as a possibility, because they have good lubricating characteristics and at the same time is a good heat conductor, but still untested in machining operations. This paper presents a study of the influence of the solid lubricant (graphite) mixed at different concentrations (0, 1.33, 5 and 10%) to emulsion of a vegetable-based cutting fluid, applied by the conventional overhead technique, during turning of the nickel base superally (Inconel 718) with carbide tools coated with TiAlN / (Al, Cr)2O3 / TiAlN by PVD process. The

efficiency of the graphite mixture was evaluated in terms machining force components, tool life and tool wear. Images of worn tools were obtained from SEM to analyze the wear mechanisms involved. The results showed that there has been influence of the concentration of the solid lubricant in the tool life, and the 5% concentration was the most satisfactory, allowing a 17% increase in life when compared to the fluid without mixing griphite. The flank wear was predominant, involving adhesion mechanism, but with lower rate when the fluid with concentration of 5% was used. Cracks with mechanical/thermal origin were observed in tools used in al lubri-coling condition. No significant influence of the graphite addition was observed in the machining force components.

Referências

Documentos relacionados

Dentre as principais conclusões tiradas deste trabalho, destacam-se: a seqüência de mobilidade obtida para os metais pesados estudados: Mn2+>Zn2+>Cd2+>Cu2+>Pb2+>Cr3+; apesar dos

A placa EXPRECIUM-II possui duas entradas de linhas telefônicas, uma entrada para uma bateria externa de 12 Volt DC e uma saída paralela para uma impressora escrava da placa, para

O objetivo do curso foi oportunizar aos participantes, um contato direto com as plantas nativas do Cerrado para identificação de espécies com potencial

possibilitou a criação e consolidação dos grupos e da rede de pesquisa Abrahão sobre as HV, numa dimensão dialógica entre os pesquisadores, os Christine Delorygrupos e as

Esta realidade exige uma abordagem baseada mais numa engenharia de segu- rança do que na regulamentação prescritiva existente para estes CUA [7], pelo que as medidas de segurança

Substrate clod stability (A), number of roots (B), number of leaves (C), root length (D), root surface (E), root growth rate (F) and relative root growth rate (G) of sweet

The aim of this study was to analyze the current state of bariatric surgery performed by the Brazilian public health system, including macroregion data and the effect of digestive

No primeiro, destacam-se as percepções que as cuidadoras possuem sobre o hospital psiquiátrico e os cuidados com seus familiares durante o internamento; no segundo, evidencia-se