• Nenhum resultado encontrado

Biofilm formation by Staphylococcus aureus and Salmonella spp. under mono and dual-species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite

N/A
N/A
Protected

Academic year: 2021

Share "Biofilm formation by Staphylococcus aureus and Salmonella spp. under mono and dual-species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite"

Copied!
10
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Food

Microbiology

Biofilm

formation

by

Staphylococcus

aureus

and

Salmonella

spp.

under

mono

and

dual-species

conditions

and

their

sensitivity

to

cetrimonium

bromide,

peracetic

acid

and

sodium

hypochlorite

Maricarmen

I ˜niguez-Moreno,

Melesio

Gutiérrez-Lomelí,

Pedro

Javier

Guerrero-Medina,

María

Guadalupe

Avila-Novoa

UniversidaddeGuadalajara,CentroUniversitariodelaCiénega,DepartamentodeCienciasMédicasydelaVida,Ocotlán,Jalisco,Mexico

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26January2017 Accepted9August2017 Availableonline13October2017 AssociateEditor:SolangeI. Mussatto Keywords: Biofilms Salmonellaspp. Staphylococcusaureus Disinfectants Sensitivity

a

b

s

t

r

a

c

t

TheaimofthisstudywasevaluatedthebiofilmformationbyStaphylococcusaureus4Eand Salmonellaspp.undermonoanddual-speciesbiofilms,ontostainlesssteel316(SS)and pol-ypropyleneB(PP),andtheirsensitivitytocetrimoniumbromide,peraceticacidandsodium hypochlorite.ThebiofilmsweredevelopedbyimmersionofthesurfacesinTSBby10dat 37◦C.Theresultsshowedthatinmonospeciesbiofilmsthetypeofsurfacenotaffectedthe cellulardensity(p>0.05).However,indual-speciesbiofilmsonPPtheadhesionofSalmonella spp.wasfavored,7.61±0.13Log10CFU/cm2,comparedwithmonospeciesbiofilmsontothe

samesurface,5.91±0.44Log10CFU/cm2(p<0.05).Themonoanddual-speciesbiofilmswere

subjectedtodisinfectiontreatments;andthemosteffectivedisinfectantwasperaceticacid (3500ppm),reducingbymorethan5Log10CFU/cm2,whiletheleasteffectivewas

cetrimo-niumbromide.Inaddition, S.aureus4EandSalmonellaspp.weremoreresistant tothe disinfectantsinmonothanindual-speciesbiofilms(p<0.05).Therefore,theinterspecies interactionsbetweenS.aureus4EandSalmonellaspp.hadanegativeeffectonthe antimi-crobialresistanceofeachmicroorganism,comparedwiththemonospeciesbiofilms.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Salmonellaisazoonoticbacteria,whichisoneofthemost sig-nificantentericfoodbornebacterialpathogens1thatcaused

lossesestimatedat3.3billiondollarsperyearintheUnites States.2Extra-animalsurvivalisanimportantparameterfor

Correspondingauthorat:Av.Universidad1115,Col.LindaVista,47820,Ocotlán,Jalisco,Mexico.

E-mail:avila.novoa@cuci.udg.mx(M.G.Avila-Novoa).

the environmental dissemination ofsalmonellae, with the ability ofthesebacteria tosurvive inthe food chaintobe largely dueto theirabilitytosense and adaptto adiverse rangeofadverseenvironmentalconditions.1Salmonellaisable

to adhere and form biofilms on a wide range of surfaces, includingmetal,plasticandrubber,duetotheiraggregative fimbriae andlipopolysaccharides; it isalsoabletoproduce

https://doi.org/10.1016/j.bjm.2017.08.002

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

brazilian journal of microbiology49(2018)310–319

311

cellulose, leading to bacterial cells being immersed in a hydrophobic network.3 On the other hand, Staphylococcus aureus is a ubiquitous bacterial species commonly found on the skin and hair, as well asin the noses and throats ofpeople andanimals.4,5 S.aureuscanproduceheat-stable

enterotoxins,whichcause13–40%ofpoisoningsincountries liketheUnitedStates,CanadaandJapan.6–8 TheabilityofS. aureustodevelopbiofilmsisstronglylinkedtotheproduction ofpolysaccharideintracellularadhesion(PIA),andadhesins calledMSCRAMM(microbialsurfacecomponentsrecognizing adhesivemoleculesmatrix)onthesurfaceofthe microorgan-ism,whichhavebeenimplicatedasmajorfactorsinbiofilm formationbytheica-independentpathway.9,10

The biofilms are the dominant lifestyle of bacteria in all environments, either natural or man-made (e.g. food processing).11Biofilmscandeveloponawidevarietyof

sur-faces, including those used within the food industry. The biofilms have been implicatedin food spoilage, foodborne diseases and damagetoprocessingequipment inthe food industry,including the meat industry, brewing, dairy, fish-eries, and other industries.12–14 In the food industry, the

presenceofmicroorganisms,inorganicandorganicdebrison thesurfacesfavoredbiofilmformation.15Therefore,withouta

suitablecleaningtreatmentfollowedbytheapplicationof dis-infectants,themicroorganismscancolonizeand persiston foodcontactandnon-foodcontactsurfaces.Thus,thefood might be contaminated bycontact with the contaminated surface.16–18 Fewstudies havefocusedon theevaluationof resistancetodisinfectantsbymultispeciesbiofilms;mostof thesestudiesdidnotincludeanassessmentoftheresistance fromeachmicroorganisminthesingle-speciesmodels; there-fore,itisimpossibletojudgewhethertheinterspecieseffect affectstheindividualresistanceofeachspeciesinthe multi-speciescommunities.14,19–21Evenwhenthesecommunitiesin

theenvironmentaremainlymulti-specie;andtheinteractions betweenthemicroorganismscanaffectthebiofilmstructure andfunction.22Inaddition,thebiofilmformationbybacterial

pathogensisimportantduetoitsapotentialrisk,the antimi-crobialresistanceandbacterialpersistenceincrease.14,23,24For

thisreason,theaimofthisstudywasevaluatethebiofilm for-mationofS.aureus4EandSalmonellaspp.undermonoand dual-speciesbiofilms,ontostainlesssteel316and polypropyl-eneB,andtheirsensitivitytocetrimoniumbromide,peracetic acidandsodiumhypochlorite.

Materials

and

methods

Bacterialstrains

ThebacterialstrainsusedwereS.aureus4Eisolatedfrom a stainlesssteeltablefromthedairyindustry.Thestrainwas confirmedby23SrDNAaccordingtoStraubetal.25Inaddition,

thepresenceoficaABCDoperon26andgenofbapproteinwere

determined,27whichareimportantfactorsforicadependent

andindependentbiofilmformation,respectively.8Salmonella

spp. were isolated from the meat industry, and was con-firmedbyPCRusingtheprimerpairST11andST15,specific forSalmonellaspp.28 Aspositivecontrolsforbiofilm

forma-tion,S.aureusATCC259236,29andSalmonellaEnteritidisATCC

1307630 were used. Before utilization, the microorganisms

wereincubatedintrypticsoybroth(TSB;Bioxon,LePontde Claix,France)for24hat37◦Ctogiveafinalconcentrationof 108CFU/mL.

BiofilmformationofS.aureusandSalmonellaspp. Contactsurfaces

StainlessSteel(SS,AISI 316,0.7×0.8×0.1cm)and polypro-pyleneBcoupons(PP,0.8×2×0.1cm)werecleanedaccording to the method described by Rossoni and Gaylarde (2000), modifiedbyMarquesetal.(2007).Briefly,thesurfaceswere immersedinpureacetone(Fermont) for1h toremoveany debris andgrease,immersedinneutraldetergent (30mL/L, providebyCIP&GROUP)for1h,rinsedwithsteriledistilled water,cleanedwithethanol(70%,Hycel),driedfor2hat60◦C, andsterilizedinautoclave(121◦Cfor15min).

Developmentofmonoanddual-speciesbiofilmsand quantification

For the biofilm formation, each coupon was individually introduced into a glass test containing 5mL of TSB. The monospecies biofilms were inoculated with 50␮L of cul-turesincubatedat37◦Cfor24hofthecorrespondingstrain and the dual-species biofilms were inoculated with 25␮L of each bacterial suspension, afterthat, the biofilms were incubated at 37◦C for 10 d.32,33 Finally, after the

incuba-tion period,the couponswere removedfrom the glasstest usingsterileforces,andrinsedtwotimesbypipetting2mL ofDulbecco’sphosphatebufferedsaline(PBS;Sigma-Aldrich) inordertoremovethelooselyattachedcells.14Eachcoupon

was introducedindividuallyinto aglass testwith10mLof caseinpeptone(BD,Bioxon,BectonDickinson)(1g/L),andthe biofilmswereremovedbysonication(1min,SonicorModel SC-100thoperating50–60Hz).Serialdilutionsand conventional plating ontrypticsoyagar (TSA;BectonDickinson,Le Pont deClaix,France)formonospeciesbiofilmsandTSAwith lac-tose(10g/L,Sigma–Aldrich)andphenolred(0.025g/L,Hycel) for dual-species biofilms were used to estimate the num-berofmicroorganismsinthebiofilm.ThePetridisheswere incubated at 37◦C for 24h.34 The colonies ofS. aureus4E

wereyellowduetolactosefermentationandSalmonellaspp. colonieswerecolorless.

Biocideresistanceassays

Thecouponswiththebiofilmswereremovedfromthe cul-ture media described above, and immersed individuallyin 2mLaqueoussolutionsofdisinfectants:i)cetrimonium bro-mide (CB; Sigma–Aldrich)at 100and 200ppm, ii) peracetic acid(PAA;Sigma–Aldrich)at10and3500ppmandiii)sodium hypochlorite (NaClO)at100and 200ppm; the disinfectants werepreparedinsteriledistilledwater.TheCBandPAAwere appliedat25◦Cand50◦C,whileNaClOwasassessedat25◦C and37◦C;thethreedisinfectantswereevaluatedattwotimes ofexposure(10and15min).Aftertheexposureperiod,each couponwastransferredinto1.5mLor3mLofneutralizer solu-tion (SS and PP,respectively): sodium thiosulfate1molL−1 forNaClO,LetheenbrothforCB,andGibsonneutralizer(3g soy lecithin,30mLTween-80, 5gsodium thiosulfate,1g

(3)

l-histidineand10mLPBSperliterofdistilledwaterpH7.2)for PAA.16After30minofcontactwiththeneutralizer,the

surviv-ingcellswereestimatedbysonicationandcountingplateas describedabove.34

Epifluorescentmicroscopy

BeforeandafterdisinfectionstreatmentallcouponsofSSand PPwerestainedwith5(6)-carboxyfluoresceindiacetate(CFDA, 10␮g/mL),and driedin alevel II cabinet;the CFDA excess wasrinsedwithSDS.ThecouponswereobservedinaNikon EclipseE400EpifluorescentMicroscopeusing100×oil immer-sionlensandfilterBA515B-2aat450–490nm;atleasteighteen fieldswereobserved.35Withthistechnique,itispossibleto

observethepresenceofmetabolicallyactivelivingcells,the CFDAisalipophilicsubstratethatismoderatelypermeableto mostcellmembranes.35Onceinsidethecell,thediacetateis

hydrolyzedbyintracellularnon-specificesterases,producing carboxy-fluorescein(CF),whichisretainedbylivecellswith anintactplasmamembrane.Hence,theconversiontoCFby thecellsindicatestheintegrityoftheplasmamembraneand theesteraseactivity.35

Statisticalanalysis

Alloftheexperimentswereperformedintriplicate;the statis-ticalanalysiswascarriedoutusingANOVA,andthevariances wereexaminedbyaleastsignificantdifference(LDS)testin thesoftwareStatgraphicsCenturionXV(Statpoint Technolo-gies,Inc.,Warrenton,USA).

Results

Biofilmformationandquantification

The cell density in the biofilm and cellular viability were evaluated using standard plate counting and epifluo-rescent microscopy. The biofilm formation by S. aureus 4E at 10 d of incubation at 37◦C reached 6.26±0.15 and 6.17±0.15Log10CFU/cm2 on PP and SS,

respec-tively (p>0.05). On the other hand the cellular density recovered from Salmonella spp. monospecies biofilms was 6.24±0.56 and 5.91±0.44Log10CFU/cm2 from SS

and PP (p>0.05), respectively. Hence the type of surface had not effect on biofilm development by S. aureus 4E and Salmonella spp. under monospecies conditions and both microorganisms shown the same ability to develop biofilms (p>0.05). In dual-species biofilms, Salmonella spp. was present in approximately 1Log10CFU/cm2 more

that S. aureus 4E (p<0.05) in both surfaces. Onto SS the cellular density enhanced 6.65±0.06Log10CFU/cm2, of

which 5.60±0.28Log10CFU/cm2 was S. aureus 4E and

6.61±0.10Log10CFU/cm2 Salmonella spp. in this case the

S. aureus 4E decreased in comparison with monospecies biofilms(p<0.05)whileSalmonellaspp.maintainedtheir den-sity(p>0.05).Incontrast,onPP7.67±0.10Log10CFU/cm2were

recovered, ofwhich 6.77±0.32Log10CFU/cm2 wasS. aureus

4Eand7.61±0.13Log10CFU/cm2ofSalmonellaspp.;therefore

both microorganisms increased their cellular densities in

comparisonwithmonospeciesbiofilmsinthesamesurface (p<0.05).Hence,indual-speciesbiofilmsonPPboth microor-ganisms werefavoredthan intheothers modelsevaluated (p<0.05). Through epifluorescent microscopy, the biofilms were observed.Inthe micrographsofthe negativecontrols SS(Fig.1A)andPP(Fig.1E),onlythesurfacetopographywas observedwithout bacterialcells,inmono and dual-species biofilms of S. aureus 4E and Salmonella spp. metabolically activecellswereobservedonbothsurfaces(Fig.1).

Disinfectantstest

Effectivenessofperaceticacid

The disinfectants were evaluated on monospecies biofilms of S. aureus 4E develop and Salmonella spp. monospecies biofilms and dual-speciesbiofilms developedin TSB,at 10 dofincubation, becausetheseconditionsguaranteedmore than 5Log10CFU/cm2.UsingthePAAat3500ppmat10and

15minoftimeexposureand25and50◦C,itwasnotpossible torecoverbacterialcellsinanyofthestudiedmodels(Table1). Through epifluorescencemicroscopy,itwasnotpossibleto observe viablecellsinthecoupons,withthethreebiofilms evaluated,subjectedtodisinfectionwithPAAat3500ppmat 25◦Cfor15min(Fig.3A–F);however,inthesurfaceswithS. aureus4Ebiofilms, thepresenceofdeadcellswasobserved (Fig.3AandB).Hence,PAA3500ppmwasabletokillS.aureus 4Ecellsinthebiofilmbutwasnotabletoremovethemfrom theSSandPPsurfaces.

On the other hand, with PAA at 10ppm on S. aureus 4E monospecies biofilms, the reductions fluctuated from 3 to 6.5Log10CFU/cm2 on SS and 1–5Log10CFU/cm2 onto

PP surfaces,depending ofthe temperatureand time expo-sure. In Salmonella spp. monospecies biofilms on PP, this was just reduced 2.5–3.5Log10CFU/cm2. Instead, the PAA

at 10ppm showed the same effect as PAA at 3500ppm, on dual-species biofilms on both surfaces and Salmonella spp.monospeciesbiofilmsonSS(p>0.05).Fromdual-species biofilms treated with PAA at 10ppm, Salmonella spp. were recoveredfrom SS(1.12±0.45Log10CFU/cm2),and S.aureus

4E from PP coupons (1.20±0.35Log10CFU/cm2). By

epifluo-rescentmicroscopy,metabolicallyactivecellswereobserved afterthetreatment,exceptinthebiofilmsofSalmonellaspp. ontoSSevenwhen1–1.13Log10CFU/cm2wasrecoveredinthe

standardplatecounting.Theresultsobtaineddemonstrated thatPAAhasabettereffectivenesswhenitisusedonSS sur-faces; atlow concentrations,their effectisfavored athigh temperatures, but their effectivenessdependsthe microor-ganismsinthebiofilm.

Effectivenessofsodiumhypochlorite

In the case of NaClO, in all of the conditions evaluated, Salmonellaspp.inmonospeciesbiofilmsontoPPcouponswere abated (Table1);thisagreedwiththeresultsobtainedfrom epifluorescentmicroscopy,inwhichcellswerenotobserved (Fig.2I–L).Indual-speciesbiofilms,theresultsforboth con-centrationsofNaClO (100and200ppm)ineach surfaceare similar,withagreatereffectat200ppminbothsurfaces; how-ever,inalltreatments,theabatementachievedwasmorethan 5Log10CFU/cm2(Table1).

(4)

brazilian journal of microbiology49(2018)310–319

313

Fig.1–Epifluorescencephotomicrographsofmonoanddual-speciesbiofilmsofS.aureus4EandSalmonellaspp.Biofilms weredeveloponSS(B–D)andPP(F–H)by10dofincubation.(A)and(E)representnegativecontrolsofSSandPPrespectively, (B)S.aureus4E,(C)Salmonellaspp.,and(D)dual-speciesbiofilmsonSS,(F)S.aureus4E,(G)Salmonellaspp.and(H)

dual-speciesbiofilmsontoPP.Thewhitebarscaleindicates10␮m.

Fig.2–Epifluorescencephotomicrographsofmonoanddual-speciesbiofilmsofS.aureus4EandSalmonellasppafter disinfection.Thedisinfectiontreatmentswereappliedatdifferenttemperatureandtimeexposure:(A–F)50◦Cfor10min; (G–L)37◦Cfor10min;and(M–R)50◦Cfor10minThewhitebarscaleindicates10␮m.

(5)

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 (2 0 1 8) 310–319

Table1–ComparisonoftheeffectivenessofdifferenttreatmentsinthethreetypesofbiofilmsonSSandPPsurfaces.

Disinfectant Concentration (ppm)

Temperature(◦C) Timeexposure (min)

Log10CFU/cm2reduceonSS±DSa Log10CFU/cm2reduceonPP±DSa

S.aureus4E monospecies biofilms Salmonellaspp. monospecies biofilms Dual-species biofilms S.aureus4E monospecies biofilms Salmonellaspp. monospecies biofilms Dual-species biofilms PAA 10 25 10 3.22±0.97ABbac 5.86±0.30ABb ND 3.10±0.13 DEFGHa 3.10±0.69ABa ND

10 50 10 5.06±0.51EFa 5.70±0.41ABCa ND 2.04±0.06ABCb 2.73±0.34BDEc 6.14±0.45ABa

10 25 15 3.33±0.10ABa 5.88±0.23Ab 4.86±0.35Ac 5.24±0.25Jc 2.69±0.37BDEd ND

10 50 15 5.26±0.23EFa 5.88±0.25Ab ND 1.67±0.07ABc 3.43±0.42ACd ND

3500 25 10 ND ND ND ND ND ND

3500 50 10 ND ND ND ND ND ND

3500 25 15 ND ND ND ND ND ND

3500 50 15 ND ND ND ND ND ND

NaClO 100 25 10 1.97±0.09Ca 4.91±0.39BCDEb 5.07±0.49ABb 1.65±0.67ABa ND 6.22±0.50ABc

100 37 10 3.71±0.38ABDa 4.57±0.36DEFb 5.52±0.17Bc 4.59±0.77IJabcd ND 5.78±0.97ABbcd

100 25 15 3.29±0.34ABa 4.99±0.81CDEFb ND 2.33±0.88 ABCDEa ND ND 100 37 15 2.95±1.60ABCa 4.97±0.30 ABCDbc 5.62±0.45Bb 3.38±0.67FGHa ND 6.67±0.17Ad 200 25 10 3.25±0.04ABa 4.40±0.23Fb ND 3.24±0.64EFGHa ND ND

200 37 10 3.39±0.87ABa 4.56±0.17DEFb 5.64±0.18Bc 3.73±0.38GHIa ND ND

200 25 15 5.34±0.33Fa 5.27±0.18ABCa ND 3.90±0.57HIb ND ND 200 37 15 3.87±0.53BDa 5.27±0.51ABCb ND 5.33±0.17Jb ND ND CB 100 25 10 1.92±0.13Ca 2.10±0.20Ia 5.38±0.18ABb 1.45±0.17Ac 2.20±0.12EFa 4.76±0.73CDb 100 50 10 2.69±0.98ACa 4.62±0.17DEFb 5.54±0.45Bc 2.35±0.72 ABCDEa 2.41±0.10DEFa 4.45±0.49Db 100 25 15 2.12±0.24Ca 3.48±1.15GHb ND 2.88±0.95 CDEFGabc 2.50±0.39DEFa 4.32±0.42Dc

100 50 15 3.23±0.18ABa 4.82±0.30CDEFb ND 3.83±0.62GHIab 2.81±0.21BDc 3.94±0.36Db

200 25 10 4.50±0.36DEa 4.52±0.08EFa ND 2.62±0.18

BCDEFb

2.96±0.14ABDb 4.49±0.29Da

200 50 10 3.68±0.70ABDa 2.37±0.05HIb ND 3.76±0.14GHIa 2.00±0.07Fc 5.61±0.65BCd

200 25 15 2.87±0.88ABCab 3.43±0.69Gbc ND 2.18±0.15 ABCDa 2.54±0.24DEFa 4.61±0.84Dc 200 50 15 3.50±0.42ABDa 4.76±0.26Ib ND 2.49±0.57 BCDEFc 3.98±0.25Ca ND

a MeanofthreetestofpopulationreductionafterdisinfectioninLog10±standarddeviation. b Valuesinthesamecolumnwiththesamecapitalletterarenotsignificantlydifferent(p>0.05). c Valuesinthesamerowwiththesamelowercaseletterarenotsignificantlydifferent(p>0.05).

(6)

brazilian journal of microbiology49(2018)310–319

315

4.5 3.5 2.5 0.5 1 4 2 3 1.5 0 15 10 10 15 15 15 15 15 15 10 100 100 10 100 100 200 10 10 10 10 10 10 10 10 10 25 25 37 37 25 50 25 25 37 37 25 50 25 50 25 50 25 50

PAA NaCIO CB PAA NaCIO CB

SS PP

Treatment applied

Time exposure (min) Temperature (°C) Concentration (ppm) Disinfectant Surface Log 10 UFC/cm 2

Fig.3–Meanofcellsrecoveredfromdual-speciesbiofilmsafterdisinfection.Thebarsrepresentsthemeanofthreetests afterdisinfection:S.aureus4E( )andSalmonellaspp.().Thetreatmentsinwhichonesjustonebarappeared,indicates thatjustonemicroorganismwererecovered.

However,forother models,the NaClO effectivenesswas favored at 200ppm and 15min exposure (Table 1). Never-theless, the effect ofNaClO under these conditions varied betweenmodels,inS.aureus4Emonospeciesbiofilmsonboth surfacesSSandPP,onlyonetreatmentwasabletoreducemore than5Log10CFU/cm2,whichwasappliedat25◦Cfor15minOn

PPsurfaces,theNaClOappliedat200ppm,for15minat37◦C, reducedbymorethan5Log10CFU/cm2(Table1);nonetheless,

metabolicallyactivecellswereobservedafterthetreatment (Fig.2H).UsingNaClO,therewasnon-apparentresistanceof eithermicroorganism usedin dual-speciesbiofilms; it was possible to recover both in some cases (Fig. 3). With the NaClOat100ppm,activecellswereobservedinSalmonellaspp. monospeciesbiofilmsonSS,butnotonPP;thesameoccursin dual-speciesbiofilms.

Effectivenessofcetrimoniumbromide

CB in this study was the least effective disinfectant com-pared with PAA and NaClO. In monospecies biofilms, the reductions ranged between 2 and 4Log10CFU/cm2, so the

disinfectant was affected more by the application temper-ature (50◦C, p<0.05) and time exposure (15min; p<0.05), ratherthantheconcentration(100or200ppm;p>0.05). More-over,inmonospeciesbiofilms,metabolicallyactivecellswere observed after treatment with CB (Fig. 2M–P). However, in dual-speciesbiofilms onPPcoupons,reductionsmorethan 5Log10CFU/cm2wereachievedusingCBat200ppm,at50◦C

(Table1).Finally,indual-speciesbiofilmsonSS,all

microor-ganismswereabated,usingCBunderanytemperatureand concentration; in these conditions, no cells were observed by microscopy (Fig. 2Q). From dual-species biofilms on PP couponstreatedwithCB,bothmicroorganismswere recov-ered,althoughSalmonellaspp.predominated(Fig.2R),while fromdual-speciesbiofilmsonSS,onlycellsofS.aureus4Ewere recoveredaftertreatment(Fig.3).

Ingeneral,S.aureus4Eseemstobemoreresistantthan Salmonellaspp.totheantimicrobialactionofalltested disin-fectants.TheresistanceofSalmonellaspp.wasdependenton thesurface;Salmonellaspp.monospeciesbiofilmsweremore sensitive toPAAat10ppm onPPthan SS, but showed the sameresistanceonbothsurfacestoNaClOandCB.In addi-tion,S.aureus4EandSalmonellaspp.weremoresensitiveto alldisinfectantsindual-speciesconditions;however,thecell densityofSalmonellaspp.wasfavoredinthisgrowth condi-tion.Hence,interspeciesinteractionshaveasignificanteffect ontheantimicrobialresistanceofeachspecieswiththe disin-fectants.Nevertheless,dual-speciesbiofilmsonSSweremore sensitivetoCBthananyothermodel.

Discussion

Biofilmformationhasbecomeaproblemofgreatimportance in a wide range offood industries; including the brewery, dairy,fish andmeatindustry.16,36,37 Thebiofilmsrepresents

a persistent source of microbial contamination. These are associatedwithfoodspoilageandfoodbornediseases,which resultinhugeeconomiclossesandthreatenfoodsafety; pre-ventingthisisthedailypriorityintheglobalmarket.38The

biofilmresistancecanbeduetodifferentfactors,rangingfrom inhibitingthediffusionofthedisinfectingagentby extracel-lularpolymericsubstances(EPS),physiologicalheterogeneity causedbythegradientsofnutrientsand oxygengenerated withinthebiofilm.17Therefore,thecleaninganddisinfection

processesarethemostimportantactivitiestobiofilmscontrol inthefoodindustry.16

SeveralstudieshaveevaluatedtheabilityofSalmonellaand S.aureustodevelopbiofilms.3,6,14,39–42Inthisstudy,S.aureus4E

inmonospeciesbiofilmsonbothsurfacesshownsimilar cel-lulardensity,thismaybeduetoS.aureushavingthesame ability to adhereto hydrophilic or hydrophobic surfaces.42

(7)

InSalmonellaspp.monospeciesbiofilms,nodifferenceswere observedbetweencellulardensitiesonbothtypesofsurface; however,othersstudiesdiffer.TheadhesionofSalmonella Wel-tevredenwasevaluatedonthreesurfacesat48h,andshowed increasedadhesiononplastic,followedbycementand stain-lesssteel(7.53, 6.20and 5.48Log10CFU/cm2, respectively).40

Thedifference observed can be attributedto the fact that thebacterialcountsinourstudywereperformedinmature biofilms, when the cell population maintained stable lev-els, while the cells were reversibly adhered after 48h of incubation.33

Indual-speciesbiofilmsSalmonellaspp.was foundtobe 10 timesmore oftenthan S. aureus4E,this can berelated tothe with the high rate of growth ofSalmonella; and the predominantmicroorganismsinthebiofilmsarethosewith ahighergrowth rate, althoughthesecannevercompletely excludethemicroorganismswithslowgrowth.43Several

stud-ieshavereportedthatbiofilm productionofSalmonellaspp. may be promoted by the presence of other bacteria.4,44–46

However, Knowles et al. (2005) evaluated the biofilm for-mation by these microorganisms on SS at 25◦C for 12 d; the resultsshowed thatbiofilm was constitutedmainly by S. aureus (∼99%, 7–8logCFU/section), while Salmonella was present in lower amounts (6logCFU/section). In line with this,Gkana etal. (2017)evaluatedthe biofilmformation in monoand dual-speciesconditions SalmonellaTyphimurium and S. aureusand found that in dual-species biofilms the cells of each microorganism deceased in comparison with monospeciesbiofilms(p<0.05). Thedifferentresultscanbe relatedwiththefactofthecelldensityofeach microorgan-ismcouldbedependentonstrainabilitytobiofilmformingin co-culture48;inadditionithasbeenexplainedthatSalmonella

requireoxygentoproducebiofilmincontrastwithS.aureus.49

In addition, the ability of six environmental strains of S. aureus to develop mono and dual-species biofilms with L. monocytogenesisolatedfromrabbitoutbreakwereevaluated, and the results showed that the effect ofL. monocytogenes onthepopulationofS.aureuswasstrain-dependent.TheS. aureuspopulationincreased,decreasedor wasnotaffected inthepresenceofL.monocytogenesindual-speciesin com-parisonwithmonospeciesbiofilms,whiletheL.monocytogenes populationwasnotaffected.50Thesedatashowthat

interac-tionsbetweenthemicroorganismscanstimulateordiminish thecolonizationofabioticsurfaces;nonetheless,the interac-tionsaremainlyinfluencedbytheenvironmentalconditions. Inanotherstudy,differentinteractionswerefoundtooccur betweenpathogenic microorganisms, inthe biofilm forma-tion by Listeria monocytogenes and Salmonella under mono and dual-species conditions on SS;both species exhibited similarbiofilmcounts(105CFU/cm2),independentofculture

conditions.14

Additionally, theeffect ofthreedisinfectants commonly usedinthefoodindustryonmonoanddual-speciesbiofilms ofS. aureus 4Eand Salmonella spp. were evaluated, due to themajorityofstudiesfocusingonlyonmonospecies mod-elsanddual-speciesbiofilmsnotoftenbeingstudied.Inthe currentinvestigation,PAAwasthemosteffectivedisinfectant; thisdisinfectantcausedalinearlossofcellviability, demon-stratingthathigherresistancecouldnotbeduetolimitations ofpenetrationbytheEPS.51ThePAAat10ppmonS.aureus

4Emonospeciesbiofilmsreducedmorethan2Log10CFU/cm2

onSScomparedwithPP,whileSalmonellaspp.monospecies biofilmsweremoresensitiveonPPthanonSS.Inthisline, itwasreportedthatSalmonellabiofilmsweremoresensitive todisinfectantswhentheyweredevelopedonstainlesssteel comparedtothoseformedonplastic.40Duetothestainless

steelbeinghydrophilic,whilePPisahydrophobicsurface,for thesereasons,thePAAinaqueoussolutionhaslesscontact withthesurfaceofPPduetothesurfacetensionofthe solu-tion.

Regarding thetreatmentswithsodiumhypochlorite, the concentration (100and200ppm)had asignificant effectin reducingthebacterialcellsonbothtypesofsurface.However, RossoniandGaylarde(2000)foundthattheconcentrationof sodium hypochlorite(100and 200ppm) didnothavea sig-nificanteffectonS.aureuscelladherencetostainlesssteel, after10minofexposuretothedisinfectantatroom temper-ature.Thedifferencebetweentheseresultscouldbedueto theconcentrationhavinganeffectonmaturebiofilms com-pared with cells in the adhesion process. Mature biofilms are moreresistantduetovariousfactorssuchashigh con-centration EPS. The EPS limits the spread of disinfectant intothebiofilm,withpotentialinteractionsexistingbetween antimicrobialsandbiofilmcomponents;therefore,thestate of slow growth of microorganisms in biofilms increases its resistance to disinfectants.17,52,53 In the Salmonella spp.

monospecies biofilms treated with an aqueoussolution of sodium hypochlorite, atotal abatementin biofilmsformed on PPsurfaceswas achieved,whereas those formedon SS wererecoveredtomorethan1Log10CFU/cm2,withsixofthe

eighttreatmentsapplied.Josephetal.(2001)treatedSalmonella Weltevredenmonospecies biofilmsonplasticsurfaceswith hypochloriteat200ppmofCl2,for10and15min,and

recov-ered4and3Log10CFU/cm2,respectively,whileafter10min,

3 Log10 CFU/cm2 was recovered from SS surfaces, but no

microorganismwasdetectedafter15minThedifferencecould beattributedtoJosephetal.(2001)havinganinitialpopulation of2Log10CFU/cm2moreonPPthanonSS,whileinthisstudy

obtainednodifferencesbetweenthecountsofSalmonellaspp. onSSandPP.

Instead,theCBhasalowereffectthanPAAonS.aureus 4E monospecies biofilms; in Salmonella spp. monospecies biofilms, theeffectwas smallerthanPAA,evenforsodium hypochloriteonbothsurfaces,whileindual-speciesbiofilms, theCBwaslesseffectivewhenthebiofilmwasdevelopedon PP.TheresistanceofS.aureustoquaternaryammonium com-pound (QAC)is relatedto theQAC effluxsystem, whichis responsible fortheresistanceofQACandcationicbiocides inplanktoniccells.54Throughthissystem,bacterialcellsare

able tofree themselves of toxic molecules, allowing them to survive in the presence of these substances.51 In

addi-tion,theroleofthethree-dimensionalstructureofS.aureus biofilms inQACresistance islimitedand the physiological changes in the biofilm cells are morehighly implicatedin their resistance.55 Inthe caseofSalmonella,

Mangalappalli-Illathuetal.56reportedthatresistanceofthesessilecellsof S.entericaserotypeEnteritidisATCC4931onglasssurfacesto benzalkoniumchloridewasduetothephenotypicadaptation todevelopbiofilm.AnotherimportantobservationisQACon S.epidermidis,whichcausedmembranepermeabilizationthat

(8)

brazilian journal of microbiology49(2018)310–319

317

startedontheperipheryofcellclusters,thenmigratedsteadily inward;therefore,penetrationtothecenterofthebiofilmis 60timeslongerthanthetimeestimatedfordiffusiveaccessin theabsenceofsorption.57Moreover,thepositivechargeand

hydrophobicnatureofQACexplainthedelayedpenetration.53

Besides,inPseudomonasaeruginosabiofilms,thebacterial resis-tanceincreasedwiththeC-chainlengthofQAC55;thesedata

canbe relatedtothe low effectivenessofCBinour study, insomuchastheCBhasaC-chainof16C.58

Inthepresentstudy,biofilmmonospecies,treatedwithPAA at10ppm,hadgreaterreductionsonSSthanonPPcouponsin mostinthecases(p<0.05).Duetotheeffectivenessofthe dis-infectantcanbeinginfluencedbytheadhesionsurface;and thisresistanceofbiofilmscanonlybeobservedwithcertain disinfectants.41,59Therefore,theefficiencyofdisinfectantsto

thebiofilmsmayvaryconsiderablydependingondisinfectant characteristics,thenatureofthesurfacewherethebiofilm is developed, the type of microorganisms in the biofilm, and other factors suchastemperature and time exposure. Thedual-species biofilms were more sensitive to disinfec-tants than monospecies biofilms. Conversely, the majority ofstudies havedemonstratedthatmulti-species are gener-allyequalormoreresistanttodisinfectionthanmonospecies biofilms.20,48,60–62 Unfortunately,theresistancemechanisms

involvedremainunclear.51However,somepossiblewaysare:

chemicalinteractionsbetweenthemicroorganismsproduce amoreviscousmatrixandthespatialubicationof microor-ganismswithinthebiofilm.62,63Theinteractionbetweenthe studiedstrainshasanegativeeffectontheirresistance;these dataprovideanewperspectiveonthebehaviorindual-species biofilms.

Itisactuallydifficult touse epifluorescencemicroscopy as a counting technique for cells in biofilms, because the bacterialcells ina biofilm usuallydevelop inlayers. How-ever,itispossibletoobservethepresenceofsurvivingcells afterdecontaminationtreatments,eveninthosetreatments whereit wasnotpossibletoachieveexpressioninthe cul-turemedium,eitherbythedetectionlimitofthetechniqueor bythemetabolicstateofthebacteria.Ontheotherhand,in thosetreatmentswherebacterialcellswererecoveredthrough countingtechnique,butnotwereobservedbymicroscopy,this mightberelatedtothelowpresenceofbacterialcellsperunit area.Additionally,theaerobicplatecountiscommonlyused todetectviablecells;therefore,itdoesnotallowthe quan-tificationofsub-lethallydamagedcellsornon-cultivablebut metabolicallyactivecells.60,64–66Forthese,itisimportantto

usemorethanonetechniqueforbiofilmstudyasthe microor-ganismsinthebiofilmsareindifferentstates:metabolically active,metabolicallyinactiveanddeadcells.67,68The

discrep-ancybetweenourresultsandthoseofotherstudies14,31,40,47

canbeattributedtoseveralfactors,includingexperimental conditionsandsurfaceproperties.Inthecaseofsurface prop-erties,thetopographyaffectsbacterialadhesion,particularly ifthesurfacehaschannelsthatprotectbacteriafromtheeffect ofdisinfectants.15Anotherreasonthatexplainsthe discrep-ancyisthattheeffectoftheadhesionsurfaceontheresistance ofbiofilmsmightdisinfectant-dependent.

Inconclusion,theresistancetoantimicrobialcompounds of microorganisms such as S. aureus 4E and Salmonella spp. in biofilms depends of diverse factors such as type

of surface and interspecies interactions. In this study, the surface did not affect the cellular density in monospecies biofilms,butPPsurfacesfavoreddedual-speciesbiofilms.In dual-speciesbiofilms,Salmonellaspp.predominated,however both microorganisms were more sensitive to disinfectants thaninmonospeciesbiofilms.ThePAAwasthemost effec-tivedisinfectant,whiletheleasteffectivewasCB;however, thedisinfectant effectivenesswasdependentmainlyofthe microorganismsinthebiofilmandthesurfaceonwhichthe biofilmwasdeveloped.

Conflict

of

interest

Noconflictofinterestdeclared.

Acknowledgments

WethanktheNational CouncilonScienceand Technology ofMexicoforthescholarshipgrantedtoMaricarmenI ˜niguez Moreno.

r

e

f

e

r

e

n

c

e

s

1.RubyT,McLaughlinL,GopinathS,MonackD.Salmonella’s

long-termrelationshipwithitshost.FEMSMicrobiolRev.

2012;36:600–615.

2.HoffmannS,BatzMB,MorrisJG.Annualcostofillnessand

quality-adjustedlifeyearlossesintheUnitedStatesdueto

14foodbornepathogens.JFoodProt.2012;75:1292–1302.

3.SolomonEB,NiemiraBA,SapersGM,AnnousBA.Biofilm

formation,celluloseproduction,andcurlibiosynthesisby

Salmonellaoriginatingfromproduce,animal,andclinical

sources.JFoodProt.2005;68:906–912.

4.GiaourisE,HeirE,DesvauxM,etal.Intra-andinter-species

interactionswithinbiofilmsofimportantfoodborne

bacterialpathogens.FrontMicrobiol.2015;6:841.

5.OttoM.Staphylococcalinfections:mechanismsofbiofilm

maturationanddetachmentascriticaldeterminantsof

pathogenicity.AnnuRevMed.2012;64:175–188.

6.MarquesSC,RezendeJDGOS,AlvesLADF,etal.Formationof

biofilmsbyStaphylococcusaureusonstainlesssteelandglass

surfacesanditsresistancetosomeselectedchemical

sanitizers.BrazilianJMicrobiol.2007;38:538–543.

7.MarinoM,FrigoF,BartolomeoliI,MaifreniM.Safety-related

propertiesofstaphylococciisolatedfromfoodandfood

environments.JApplMicrobiol.2010;110:550–561.

8.ArcherNK,MazaitisMJ,CostertonJW,LeidJG,PowersME,

ShirtliffME.Staphylococcusaureusbiofilmsproperties,

regulationandrolesinhumandisease.Virulence.

2011;2:445–459.

9.BolesBR,HorswillAR.Staphylococcalbiofilmdisassembly.

TrendsMicrobiol.2011;19:449–455.

10.TangJ,ChenJ,LiH,ZengP,LiJ.Staphylococcusaureusstrains

isolatedfromdifferentsources.FoodbornePathogDis.

2013;10:757–763.

11.GiaourisE,ChorianopoulosN,SkandamisP,NychasG-J. AttachmentandbiofilmformationbySalmonellainfood processingenvironments.In:MahmoudBSM,ed.Salmonella –ADangerousFoodbornePathogen.InTech;2012:157–180. Availablefrom:http://www.intechopen.com/books/ salmonella-a-dangerous-foodborne-pathogen/attachment-

(9)

12.DonlanRM.Biofilms:microbiallifeonsurfaces.EmergInfect

Dis.2002;8:881–890.

13.BrooksJD,FlintSH.Biofilmsinthefoodindustry:problems

andpotentialsolutions.IntJFoodSciTechnol.

2008;43:2163–2176.

14.KostakiM,ChorianopoulosN,BraxouE,NychasG-J,Giaouris

E.Differentialbiofilmformationandchemicaldisinfection

resistanceofsessilecellsofListeriamonocytogenesstrains

undermonospeciesanddual-dpecies(withSalmonella

enterica)conditions.ApplEnvironMicrobiol.2012;78:2586–2595.

15.KumarCG,AnandSK.Significanceofmicrobialbiofilmsin

foodindustry:areview.IntJFoodMicrobiol.1998;42:9–27.

16.GibsonH,TaylorJH,HallKE,HolahJT.Effectivenessof

cleaningtechniquesusedinthefoodindustryintermsofthe

removalofbacterialbiofilms.JApplMicrobiol.1999;87:41–48.

17.MahTF,O’TooleGA.Mechanismsofbiofilmresistanceto

antimicrobialagents.TrendsMicrobiol.2011;9:34–39.

18.KusumaningrumHD,RiboldiG,HazelegerWC,BeumerRR.

Survivaloffoodbornepathogensonstainlesssteelsurfaces

andcross-contaminationtofoods.IntJFoodMicrobiol.

2003;85:227–236.

19.SimõesM,SimõesLC,VieiraMJ.Speciesassociation

increasesbiofilmresistancetochemicalandmechanical

treatments.WaterRes.2009;43:229–237.

20.vanderVeenS,AbeeT.MixedspeciesbiofilmsofListeria

monocytogenesandLactobacillusplantarumshowenhanced

resistancetobenzalkoniumchlorideandperaceticacid.IntJ

FoodMicrobiol.2011;144:421–431.

21.GiaourisE,HeirE,HébraudM,etal.Attachmentandbiofilm

formationbyfoodbornebacteriainmeatprocessing

environments:causes,implications,roleofbacterial

interactionsandcontrolbyalternativenovelmethods.Meat

Sci.2013;97:298–309.

22.BurmølleM,RenD,BjarnsholtT,SørensenSJ.Interactionsin

multispeciesbiofilms:dotheyactuallymatter?Trends

Microbiol.2014;22:84–91.

23.GiaourisE,ChorianopoulosN,DoulgerakiA,NychasGJ.

Co-culturewithListeriamonocytogeneswithinadual-species

biofilmcommunitystronglyincreasesresistanceof

Pseudomonasputidatobenzalkoniumchloride.PLOSONE.

2013;8:1–14.

24.ChmielewskiRAN,FrankJF.Biofilmformationandcontrolin

foodprocessingfacilities.ComprRevFoodSciFoodSaf.

2003;2:22–32.

25.StraubJA,HertelC,HammesWP.A23SrDNA-targeted

polymerasechainreaction-basedsystemfordetectionof

Staphylococcusaureusinmeatstarterculturesanddairy

products.JFoodProt.1999;62:1150–1156.

26.ArciolaCR,BaldassarriL,MontanarioL.PresenceoficaAand

icaDgenesandslimeproductioninacollectionof

staphylococcalstrainsfromcatheter-associatedinfections.J

ClinMicrobiol.2001;39:2151–2156.

27.CucarellaC,TormoMÁ,ÚbedaC,etal.Roleof

biofilm-associatedproteinbapinthepathogenesisofbovine

Staphylococcusaureus.InfectImmun.2004;72:2177–2185.

28.SoumetC,ErmelG,RoseN,etal.EvaluationofaMultiplex

PCRassayforsimultaneousidentificationofSalmonellasp.,

SalmonellaEnteritidisandSalmonellaTyphimuriumfrom

environmentalswabsofpoultryhouses.LettApplMicrobiol.

1999;28:113–117.

29.StepanovicS,VukovicD,DakicI,SavicB,Svabic-VlahovicM.

Amodifiedmicrotiter-platetestforquantificationof

staphylococcalbiofilmformation.JMicrobiolMethods.

2000;40:175–179.

30.OrgazB,LobeteMM,PugaCH,SanJoseC.Effectivenessof

chitosanagainstmaturebiofilmsformedbyfoodrelated

bacteria.IntJMolSci.2011;12:817–828.

31.RossoniEM,GaylardeCC.Comparisonofsodium

hypochloriteandperaceticacidassanitisingagentsfor

stainlesssteelfoodprocessingsurfacesusing

epifluorescencemicroscopy.IntJFoodMicrobiol.

2000;61:81–85.

32.HeydornA,NielsenAT,HentzerM,etal.Quantificationof

biofilmstructuresbythenovelcomputerprogramCOMSTAT.

Microbiology.2000;146:2395–2407.

33.XuH,ZouY,LeeH,AhnJ.EffectofNaClonthebiofilm

formationbyfoodbornepathogens.JFoodSci.

2010;75:580–585.

34.MariscalA,Lopez-GigososRM,Carnero-VaroM,

Fernandez-CrehuetJ.Fluorescentassaybasedonresazurin

fordetectionofactivityofdisinfectantsagainstbacterial

biofilm.ApplMicrobiolBitechnol.2009;82:

773–783.

35.GorokhovaE,MattssonL,SundströmAM.Acomparisonof

TO-PRO-1iodideand5-CFDA-AMstainingmethodsfor

assessingviabilityofplanktonicalgaewithepifluorescence

microscopy.JMicrobiolMethods.2012;89:216–221.

36.JessenB,LammertL.Biofilmanddisinfectioninmeat

processingplants.IntBiodeteriorBiodegrad.2003;51:265–269.

37.SreyS,JahidIK,HaS-D.Biofilmformationinfoodindustries:

afoodsafetyconcern.FoodControl.2013;31:572–585.

38.VanHoudtR,MichielsCW.Biofilmformationandthefood

industry,afocusonthebacterialoutersurface.JAppl

Microbiol.2010;109:1117–1131.

39.OliveiraK,OliveiraT,TeixeiraP,AzeredoJ,OliveiraR.

AdhesionofSalmonellaEnteritidistostainlesssteelsurfaces.

BrazilianJMicrobiol.2007;38:318–323.

40.JosephB,OttaSK,KarunasagarI.Biofilmformationby

Salmonellaspp.onfoodcontactsurfacesandtheirsensitivity

tosanitizers.IntJFoodMicrobiol.2001;64:367–372.

41.NguyenHDN,YukH-G.ChangesinresistanceofSalmonella

Typhimuriumbiofilmsformedundervariousconditionsto

industrialsanitizers.FoodControl.2013;29:236–240.

42.KouidhiB,ZmantarT,HentatiH,BakhroufA.Cellsurface

hydrophobicity,biofilmformation,adhesivespropertiesand

moleculardetectionofadhesinsgenesinStaphylococcus

aureusassociatedtodentalcaries.MicrobPathog.

2010;49:14–22.

43.BanksMK,BryersJD.Bacterialspeciesdominancewithina

binaryculturebiofilm.ApplEnvironMicrobiol.

1991;57:1974–1979.

44.HabimanaO,MøretrøT,LangsrudS,VestbyLK,NesseLL,

HeirE.Microecosystemsfromfeedindustrysurfaces:a

survivalandbiofilmstudyofSalmonellaversushostresident

florastrains.BMCVetRes.2010;6:48.

45.JonesK,BradshawSB.Synergisminbiofilmformation

betweenSalmonellaenteritidisandanitrogen-fixingstrainof

Klebsiellapneumoniae.JApplBacteriol.1997;82:663–668.

46.SchaeferLM,BrözelVS,VenterSN.FateofSalmonella

Typhimuriuminlaboratory-scaledrinkingwaterbiofilms.J

WaterHealth.2013;11:629–635.

47.KnowlesJR,RollerS,MurrayDB,NaiduAS.Antimicrobial

actionofcarvacrolatdifferentstagesofdual-speciesbiofilm

developmentbyStaphylococcusaureusandSalmonellaenterica

SerovarTyphimurium.ApplEnvironMicrobiol.

2005;71:797–803.

48.GkanaEN,GiaourisED,DoulgerakiAI,KathariouS,Nychas

G-JE.BiofilmformationbySalmonellaTyphimuriumand

Staphylococcusaureusonstainlesssteelundereither

mono-ordual-speciesmulti-strainconditionsandresistanceof

sessilecommunitiestosub-lethalchemicaldisinfection.

FoodControl.2017;73:838–846.

49.ScherK,RomlingU,YaronS.Effectofheat,acidification,and

chlorinationonSalmonellaentericaSerovarTyphimurium

cellsinabiofilmformedattheair-liquidinterface.Appl

EnvironMicrobiol.2005;71:1163–1168.

50.RieuA,LemaîtreJ,GuzzoJ,PiveteauP.Interactionsindual

(10)

brazilian journal of microbiology49(2018)310–319

319

severalstrainsofStaphylococcusaureus.IntJFoodMicrobiol.

2008;126:76–82.

51.BridierA,BriandetR,ThomasV,Dubois-BrissonnetF.

Resistanceofbacterialbiofilmstodisinfectants:areview.

BiofoulingJBioadhesionBiofilmRes.2011;27:1017–1032.

52.WingenderJ,NeuTR,FlemmingH-C.Whatarebacterial

extracellularpolymericsubstances?In:WingenderJ,NeuTR,

FlemmingH-C,eds.MicrobialExtracellularPolymeric

Substances.Berlin:Springer-Verlag;1999:1–19.

53.BridierA,Dubois-BrissonnetF,GreubG,ThomasV,Briandet

R.DynamicsoftheactionofbiocidesinPseudomonas

aeruginosabiofilms.AntimicrobAgentsChemother.

2011;55:2648–2654.

54.CervinkovaD,BabakV,MarosevicD,KubikovaI,JaglicZ.The

roleoftheqacAgeneinmediatingresistancetoquaternary

ammoniumcompounds.MicrobDrugResist.2012;0:1–8.

55.CampanacC,PineauL,PayardA,Baziard-MouyssetG,

RoquesC.Interactionsbetweenbiocidecationicagentsand

bacterialbiofilms.AntimicrobAgentsChemother.

2002;46:1469–1474.

56.Mangalappalli-IllathuAK,VidovicS,KorberDR.Differential

adaptiveresponseandsurvivalofSalmonellaentericaSerovar

Enteritidisplanktonicandbiofilmcellsexposedto

benzalkoniumchloride.AntimicrobAgentsChemother.

2008;52:3669–3680.

57.DavisonWM,PittsB,StewartPS.Spatialandtemporal

patternsofbiocideactionagainstStaphylococcusepidermidis

biofilms.AntimicrobAgentsChemother.2010;54:2920–2927.

58.NationalCenterforBiotechnologyInformation.PubChem SubstanceDatabase;SID=57651369.52365SIGMA;2009. Availablefrom:https://pubchem.ncbi.nlm.nih.gov/

substance/5765136Accessed16.09.09.

59.SomersEB,WongAL.Efficacyoftwocleaningandsanitizing

combinationsonListeriamonocytogenesbiofilmsformedat

lowtemperatureonavarietyofmaterialsinthepresenceof

ready-to-eatmeatresidue.JFoodProt.2004;67:2218–2229.

60.LericheV,BriandetR,CarpentierB.Ecologyofmixedbiofilms

subjecteddailytoachlorinatedalkalinesolution:spatial

distributionofbacterialspeciessuggestsaprotectiveeffect

ofone.EnvironMicrobiol.2003;5:64–71.

61.SimõesLC,SimõesM,JoãoM.Biofilminteractionsbetween

distinctbacterialgeneraisolatedfromdrinkingwater.Appl

EnvironMicrobiol.2007;73:6192–6200.

62.BridierA,Sanchez-VizueteMP,LeCoqD,etal.Biofilmsofa

BacillussubtilishospitalisolateprotectStaphylococcusaureus

frombiocideaction.PLOSONE.2012;7:e44506.

63.BurmølleM,WebbJS,RaoD,HansenLH,SørensenSJ,

KjellebergS.Enhancedbiofilmformationandincreased

resistancetoantimicrobialagentsandbacterialinvasionare

causedbysynergisticinteractionsinmultispeciesbiofilms.

ApplEnvironMicrobiol.2006;72:3916–3923.

64.GiraffaG.Studyingthedynamicsofmicrobialpopulations

duringfoodfermentation.FEMSMicrobiolRev.

2004;28:251–260.

65.ZottaT,ParenteE,RicciardiA.Viabilitystainingand

detectionofmetabolicactivityofsourdoughlacticacid

bacteriaunderstressconditions.WorldJMicrobiolBiotechnol.

2009;25:1119–1124.

66.ZottaT,GuidoneA,TremonteP,ParenteE,RicciardiA.A

comparisonoffluorescentstainsfortheassessmentof

viabilityandmetabolicactivityoflacticacidbacteria.WorldJ

MicrobiolBiotechnol.2012;28:919–927.

67.WentlandEJ,StewartPS,HuangC,McFetersGA.Spatial

variationsingrowthratewithinKlebsiellapneumoniae

coloniesandbiofilm.BiotechnolProg.1996;12:316–321.

68.HuangC-T,YuFP,McFetersGA,StewartPS.Nonuniform

spatialpatternsofrespiratoryactivitywithinbiofilmsduring

Referências

Documentos relacionados