• Nenhum resultado encontrado

Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae

N/A
N/A
Protected

Academic year: 2021

Share "Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae"

Copied!
7
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Biotechnology

and

Industrial

Microbiology

Enhanced

ethanol

production

at

commercial

scale

from

molasses

using

high

gravity

technology

by

mutant

S.

cerevisiae

Muhammad

Arshad

a

,

Tariq

Hussain

a

,

Munawar

Iqbal

b,∗

,

Mazhar

Abbas

c

aDepartmentofBasicSciences,BiochemistrySection,CollegeofVeterinaryandAnimalSciences,JhangCampus35200,Pakistan bTheUniversityofLahore,DepartmentofChemistry,Lahore,Pakistan

cTheUniversityofLahore,InstituteofMolecularBiologyandBiotechnology,Lahore,Pakistan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5June2015

Accepted29November2015

Availableonline16February2017

AssociateEditor:SolangeInes

Mussatto

Keywords:

Veryhighgravitytechnology

Ethanol Molasses Aeration Brix

a

b

s

t

r

a

c

t

Veryhighgravity(VHG)technologywasemployedonindustrialscaletoproduceethanol

frommolasses(fermented)aswellasby-productsformationestimation.Theeffectof

dif-ferentBrix◦ (32,36and40)air-flowrates(0.00,0.20,0.40,and0.60vvm)wasstudiedon

ethanolproduction.Themaximumethanolproductionwasrecordedtobe12.2%(v/v)at40

Brix◦with0.2vvmair-flowrate.Atoptimumlevelaerationand40Brix◦VHG,theresidual

sugarlevelwasrecordedintherangeof12.5–18.5g/L,whereastheviablecellcountremained

constantupto50hoffermentationanddrymatterproductionincreasedwithfermentation

time.Bothwaterandsteamconsumptionreducedsignificantlyunderoptimumconditions

ofBrix◦andaerationratewithcompromisingtheethanolproduction.ResultsrevealedVHG

withcontinuousairflowisviabletechniquetoreducetheethanolproductioncostform

molassesatcommercialscale.

©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileirade

Microbiologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Due to higher petroleum product prices and air pollution

issues,researchersarefocusingtoexplorealternative

renew-ablesources.Inthisconnection,ethanolhasbeenemergedas

apotentialalternativecandidateasitiseco-friendlyand

use-ableasblendingwithgasolineincurrentcombustionengine

systems.1Sugarcanemolasses(highfermentablesugars)is

themajorfeedstockfordistilleriesinPakistanforethanol

pro-duction.Theindustrialprocessiswellestablishedwith7–8%

Correspondingauthor.

E-mail:bosalvee@yahoo.com(M.Iqbal).

(v/v)ethanol productionfrom dilutedmolasses(15–16%).2,3

However,duringethanolproduction,hugeamountof

efflu-ent (∼12liter effluent/literabsolute alcohol)withvery high

biologicaloxygendemandBOD(45,000–60,000mg/L)andCOD

(80,000–120,000mg/L) isproduced,whichisdischargedinto

the environment without proper treatment.4 So for, the

ethanol production using current distilleries is a potential

source ofenvironmentalpollution in Pakistanand ethanol

productionprocessneedstobeimprovedandoptimizedforan

environmentfriendly,fastandcheapethanolproduction.The

sugarcanemolasses(sugarproductionby-product)isagood

http://dx.doi.org/10.1016/j.bjm.2017.02.003

1517-8382/©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeMicrobiologia.Thisisanopenaccessarticle

(2)

optiontoproduceethanol.5,6Biomassesareefficientsourceof

energyandareeco-friendlyinnature.7–11

The application of VHG fermentation technology (the

preparationandfermentationofmashescontaining27gor

more dissolved solids per 100g mash) has been proposed

forefficient ethanol productionand to reducestillage

vol-ume.Amongdifferentethanolproductionmethods,theVHG

fermentationtechnologyisveryefficientatindustrialscale

sinceit offershigher yield (12–15%), low waste generation

and can beoperated atlow cost. Higher ethanol levelcan

reduce the distillationcost as compared tothe traditional

fermentation,wheremaximum7–8%ethanolisproduced.2,12

Theethanolpercentageproductioncanbeenhancedthrough

VHGtechnologyusingstrainstolerabletohighsugarcontents.

Yeasts are known to tolerate higher sugar contents (up

to40%), however, athigher sugar concentration, the yeast

growthisaffected,whichgrowsveryslowly.13 Yeastgrowth

isregulatedbymetabolitesgeneratedduringethanol

produc-tion. Generally,industrial ethanol production isperformed

atlowcarbohydrate concentrationinfermentablesugar.2,14

Previous reports indicated that yeast can grow up to 50%

sucroseinfermentingmedia15andbatchfermentationwith

23.8% (v/v) ethanol at laboratory scale was achieved in a

simultaneoussaccharificationandfermentationmode.16

Lab-scalemultistagecontinuouscascade,chemostatfermentation

system have been constructed to investigate its

applica-bility toward ethanol production under increased gravity

conditions.17EthanolproductionusingVHGtechnologycanbe

enhancedapplyingvariousstrategies,i.e.,vitaminfeeding,12

nutrient feeding,13 mediasupplementations,18 temperature

optimization19andaerationrate12havebeenstudiedwellto

improvethe ethanolpercentageyield.Amongthese

strate-gies,aerationimprovedtheviabilityofyeastduringhigh-level

ethanolproduction.20

The VHG fermentation technology in alcohol industry

(operatedinPakistan)isofgreatinterest,asitsaves

consider-ableamountofwaterwithhigheralcoholyield,whichneeds

lowenergyinput,lesscapitalcost,moreefficientandisalso

freefrombacterialcontamination.21Therefore,thisstudywas

aimedtoevaluatetheethanolproductionusingSaccharomyces

cerevisiae(mutantstrain).Moreover,theeffectsofaerationrate

andBrix’sonethanolpercentageyieldalongwithby-products

estimationinfed-batchmodefermentationatindustrialscale

(usingcurrentdistilleriessysteminPakistan)wasalso

inves-tigated.

Materials

and

methods

Microorganismandculturemedia

TheSaccharomycescerevisiaeparentalstrainwasobtainedfrom

Shakarganjdistillery(Instant-France).Themutantstrain of

Saccharomyces cerevisiae UAF-1 was used for fermentation (S. cerevisiae SAF-INSTANT strain were exposed to gamma

radiation(500KradusingCo-60gammaradiationsource)and

resultantly,1135mutantstrainswererecorded.Allsurvivors

were tested for sugar tolerance and ethanol production.

The survivor (GAMMA-11) furnished higher tolerance to

sugar aswell as ethanolproduction, whichwas named as

SaccharomycescerevisiaeUAF-1andusedforethanol

produc-tion).Theselectedstrainwasculturedinmediumcontaining

(g/L):sucrose(10.0), yeastextract(3.0), (NH4)2SO4 (2.0), and

MgSO4(0.5).WefoundthatgenecreAdelta4wassignificantly

mutatedandlevelsofmRNAofCreAproteininthewildstrain

were moreinquantitythan thoseofthemutantderivative

(creA delta4 geneisuseful inenhancing theproductionof

extracellularinvertase(protein)levelinthemediumaswell

astakepartincarboncataboliterepression.TheSko1gene

hasroleinactivationandrepressionofproteintranscription

involvedinosmoticandoxidativestressandalsosuppression

offkinaseoverexpressioniscontrolledbySko1gene).

More-over,copynumberofsko1geneinthemutantderivativewas

sufficiently decreased to cause repression of transcription

ofCreAmotifasdoneinwildstrain.Goodqualitymolasses

having 89 ◦Bx, total reducing sugars (TRS) (50% w/v) with

additionofnitrogenandphosphoruscontentswasusedfor

the inoculate preparationand very high gravity technique

wasusedforfermentationofmolasses.

Molassespre-treatment

For molasses pretreatment, diluted molasses was settled

in tanks of conical bottom type, especially designed for

the removalofsludge,ashcontentsand otherparticulates.

SodiumhexametaphosphatewasaddedandpHwasadjusted

at4.0–4.5withcommercialsulfuricacidwhichconvertedCa2+

intocalciumsulfate.22Brixofthesubstratewasadjustedat

32,36and40andsugarcontentswere21%,24%,and27%(w/v)

inpre-treatmentmolasses,respectively.

Inoculumpreparation

Initially,thepropagationofyeastwasstartedin1m3vessel

andcellcountreachedto3.00×106CUF/mL;itwastransferred

to60m3vesseltomaintainappropriatecellcount2andthis

inoculumwasusedforfermentationofmolasses.

Fermentation

Fed-batch experiments were performed in fermenters of

300m3capacity.Thetemperaturewasmaintainedat32±1C

and stirred by circulation of mash with the help of

elec-tric pumpat 300rpm. To controlthe foaming, silica based

antifoamingagentwasused.Airwassuppliedbytheair

blow-ers.Theaerationratesusedwere0.0,0.1,0.3,0.6and0.9(vvm).

Thefermenterwasfilledin16hafterthetransferof

inocu-lum(25%)withappropriatelydilutedmolasses.Levelriseof

thefermenterwaskeptat5%/h(15m3molasseswerefedto

fermenter/h(Fed-batchmode),whichis5%oftotalfermenter

molassesvolumeusedforfermentation).Aftertransferringof

inoculum(100m3),thesubstrate(200m3)wassupplied

contin-uously.Fivefermenterswererunforeachtreatmentinorder

tocheckreproducibility.

Distillation

Fermented mash was distilled in double effect

distilla-tion plant (Firlli, Italy) having 40,000 liters processing

(3)

columnandsteamwasappliedfrombottominsuchaway

thattemperaturemaintainedinthe rangeof78–80◦C.

Vac-uumwasappliedthroughcondensers.Vaporstraveledfrom

columntocondenserswerecondensedandcooled.The

resul-tantliquidwasre-boiledindepurationcolumnforremoving

impuritiesand finally,fedtorectificationcolumn.

Rectifica-tionofethanolwasdoneintherangeof96.0–96.4%andthis

columnwasoperatedat1.5kgm/s2pressure.

Determinationofcellcount/viability

Forcellcountdeterminationhematocytometerwasused,

fer-menterbrothsamplewasseriallydilutedwithasterilesaline

solution(0.89%(w/v)NaCl)toapointwherereasonable

num-ber ofcells could be counted (3.00×106CUF/mL). The cell

viabilitywasdeterminedbytheMethyleneBluetechnique.12

Brix,reducingsugars,ethanolandby-products determination

Concentration of TRS in diluted molasses and fermented

mash(after sucroseinversionusingHCl) wasmeasured by

Fehling-Soxhletmethod.23Brixwasmeasuredwiththehelpof

ATAGOdensimeter(model2312;ATAGOCo.Ltd.,Tokyo,Japan).

Ethanolandby-products infermentedsampleswere

deter-minedusingGC(ShimadzuGC-17A,3.0)equippedwithflame

ionization detector(FID)as reportedearlier.2 Thealdehyde

contentwasestimatedthroughASTM-D-1363method.

Results

TheVHGtechnologywithandwithoutaerationwasevaluated

onindustrialscaletoimprovethetraditionalfermentationfor

ethanolproduction.VHGtechnologyresultedinhigheralcohol

production(11–12%,v/v)ascompareto7–8%(v/v)in

conven-tionalprocessandoverall,variationamongreplicateswasin

the range of±2–3% throughoutthe experimentation. High

gravitymolassesmediacontainingdifferentconcentrationof

dissolvedsolid,rangingfrom32to40◦Brixwerepreparedand

fermentedfor60hin300m3 vessel.Maximum ethanolwas

produced(12.2%)from27%TRSat0.2vvmaerationrate.The

highersugarcontentresultsinhigherethanolproductionand

thesefindingsareinlinewithreportedfinding,i.e.,pilot-scale

ethanolproductionfromricestrawhydrolysatesusing

xylose-fermentedwithPichiastipiteswasstudied24andinfluenceof

aerationonbioethanolproductionfromozonizedwheatstraw

hydrolysatesusingPichiastipitis.25

Viablecellcount,ethanolformation,residualsugar

con-tentanddrymattergenerationweredeterminedduringthe

fermentationperiod.By-products,i.e.,methanol,aceticacid,

higheralcohols(1-propanol,1-butanol,2-butanol)production

andaldehydeappearancetimewererecordedandresultsare

depictedinTable2.Ethanol(%,v/v)andresidualsugar(g/L)

at32◦BrixwithdifferentaerationratesareshowninFig.1A

andB,respectively.Residualsugarshowedincreasingtrend

uptothecompletionofbatch.Withoutaeration,theethanol

productionwas8.9%,with35.41g/Lresidualsugarcontents.

Fig. 1C shows the viablecell countat 32◦ Brix with

differ-entaerationrates.Maximumviablecellcountremained417

Table1–Fermentationkineticparametersatdifferent Brix.

Parameters 32◦ 36◦ 40◦

Fermentationtime(h) 60 60 60

Residualsugars(g/L)max 35.4 39.7 60.4

Residualsugars(g/L)min 12.5 14.5 18.7

max(h−1) 0.38 0.34 0.35 min(h−1) 0.31 0.42 0.43 Xmax(g/L) 20.3 22.2 22.7 Xmin(g/L) 16.1 18.4 19.0 Ethanolmax(g/L) 8.2 8.9 9.6 Ethanol(ming/L) 7.18 7.30 7.50

million/mL at0.60vvm.Highoxygenconcentration exerted

stronginfluenceonyeastgrowthduringfermentationandthis trendwasinlinewithpreviousfindingsthatoxygen supple-menthassignificanteffectonethanolproductionaswellas cellviability.26Theviablecellcountincreasedto16%,20%and

22% at0.2,0.4and0.6vvm,respectively. Thefinalbiomass

(Fig.1D)andethanolproductionwasrecorded considerably

athigher sugar level, which indicates thatincreasing level

ofsugar,the yeastcopetheosmoticstressdueinresponse

ofethanolproductioninfermenter.Thestudiedparameters

(Table1)duringethanolfermentationclearlyshowedthatthe

aerationaffectedtheprocessathighersugarlevel.

Ethanolproduction(%)wasrecordedtobe9.3%(v/v)at36◦

Brixwithoutaerationandreachedto11.3%(v/v)withaeration

(Fig.2A).Aerationratesof0.20,0.40and0.60vvmincreasedthe

ethanolproductionby20%,16%and14%overthenon-aerated

fermentation, respectively.Theresidualsugar increasedup

to 30h offermentationand then,decreased sharplyup to

60h(Fig.2B).Maximumviablecellcountwasenhancedwith

increasing sugar level and 499million/mL cell count was

recordedat36◦Brix(Fig.2C).Similarly,thebiomassincreasing

trendwasobservedasthetimeoffermentationisincreasedat

differentVHGlevels(Fig.2D).Thereductionisresidualsugar

and productionof biomassisa good indicationofethanol

productionand Brix levelsignificantly affectedthe ethanol

production.Themaximumethanolproductionof12.2%(v/v)

wasrecordedat40◦Brixwith0.2vvmaerationrate(Fig.3A).

Theresidualsugar levelswere18.7g/L, 24.8g/Land21.2g/L

at0.2,0.4and0.6vvm,respectively(Fig.3B),whereasin

non-aerated fermenter, the residual sugar was recorded to be

60.4g/L,whichindicatesthataerationalongwithBrix◦ level

isalsoimportantfactorinethanolproduction.Thecellcount

wasrecordedtobe514million/mLat40◦Brix(Fig.3C),which

wasmaximum cellcountascomparedtoother Brixlevels.

Thebiomassproductiontrendat40◦Brixwasrecorded

sim-ilartootherBrixlevels,whichincreasedwiththepassageof

time.

Differentby-products, i.e.,methanol, acetic acid, higher

alcohols (1-propanol, 1-butanol, 2-butanol) were recorded

andby-productsproductionwasrecordedtobeminimumat

0.2vvmairflow-rate(Table2)ascomparedtocontrol(0.00vvm

aerationrate).Thealdehydeappearedafterlongertimeof

fer-mentationwhenaerationratewas0.2vvmversusallother

airflow-rates.Higheralcohols,i.e.,1-propanol,1-butanol,

(4)

60 50 40 30 20 10 4 5 6 7 8 9 10 11 Ethanol, % Time (h)

A

60 50 40 30 20 10 0 0 20 40 60 80 100 120 140 Residual sugar (g/L) Time (h) 0 VHG 0.02 VHG 0.04 VHG 0.06 VHG

B

C

D

60 50 40 30 20 10 0 280 300 320 340 360 380 400 420 Cell count (x 10 6 /mL) Time (h) 60 50 40 30 20 10 0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Dry matter (g) Time (h)

Fig.1–(A)Ethanolproduction,(B)residualsugarcontents,(C)cellcountand(D)drymatterat32◦Brixatdifferentveryhigh

gravitylevels.

Table2–Effectofaerationonby-productsformationsatdifferentBrixlevels.

Brix◦ Airlevel Methanol(g/hL) Aceticacid(g/hL) Higheralcohols(g/hL) APT*(min)

32◦ 0.00vvm 2.3 3.4 1.2 28 0.20vvm 1.8 2.1 1.3 40 0.40vvm 3.1 4.1 2.2 24 0.60vvm 3.5 5.0 2.4 16 36◦ None 3.7 3.5 1.3 9 0.20vvm 2.7 2.1 1.3 30 0.40vvm 4.7 4.1 2.6 18 0.60vvm 5.2 5.0 2.8 12 40◦ None 4.4 5.2 1.5 10 0.20vvm 3.2 3.1 1.7 26 0.40vvm 5.6 6.1 3.3 19 0.60vvm 6.2 7.4 3.6 14

Aldehydesappearancetimeandhigheralcoholsinclude1-propanol,1-butanol,2-butanol.

inhighaerated(0.6vvm)fermenterincomparisonwith

non-aerationmedium(1.2,1.3and1.5g/hL),respectively. Itwas

observedthatincreasedethanolproductioninhibitedthecell

growth.Cellcountviabilitydeclinedupto25%innon-aerated

cultureat32◦Brix.Overall,atBrix◦ threelevelsused,

resid-ualsugarswereveryhighinnon-aeratedfermenters.Aeration

improvedtheethanolproductionby18%ataerationlevelof

0.2vvm,however,theethanolproductiondecreasedathigher

aeration rates.Sugarfermentation byS.cerevisiaeis

gener-ally inhibitedinthe presenceofoxygen,butsmall amount

ofdissolvedoxygenenhancesethanolproductioncompared

tohighlyaerobiccondition.27 Residualsugar recordedtobe

39.7%innon-aeratedfermenterandonly14.5%inaerated

(5)

60 50 40 30 20 10 4 5 6 7 8 9 10 11 12 Ethanol, % Time (h)

A

60 50 40 30 20 10 0 0 20 40 60 80 100 120 140 Residual sugar (g/L) Time (h)

B

60 50 40 30 20 10 0 280 300 320 340 360 380 400 420 440 460 480 500 Cell count (x 10 6 /mL) Time (h)

C

60 50 40 30 20 10 0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Dry matter (g) Time (h)

D

0 VHG 0.02 VHG 0.04 VHG 0.06 VHG

Fig.2–(A)Ethanolproduction,(B)residualsugarcontents,(C)cellcountand(D)drymatterat36◦Brixatdifferentveryhigh

gravitylevels.

to130.5g/L.Theviabilityofcellsmaintained80%evenafter

48hoffermentationascomparedtocontrol(60%).Higher

alco-holsproductionalongwithotherby-productswashigherin

aeratedfermentationandaciditywaslowat0.2vvmas

com-paredtonon-aeratedprocessandhighaeratedculturesatall

Brix◦ levels.Theformationofby-productstookplaceunder

certainunfavorablefermentingconditions.Therefore,

signif-icantreductioninthe by-productswasobservedat0.2vvm

controlledaerationatallhighgravityfermentingmedium.The

production of oxidized metabolites (acetaldehyde, acetate,

andacetoin)isalwaysfavored,2however,underaerobic

con-ditionsandaceticacidproductionwasrecordedtobehigh.

Discussion

Theinhibitory effect of by-products in ethanol production

ismainfactorinethanolproduction.28Itwasobservedthat

underaeratedconditions,declineincellcountviabilitywas

muchlowerascomparedtonon-aeratedcultureatallsugar

levels.Residualsugarundernonaeratedconditionand

aer-ated process as well as the viability of cells after 48h of

fermentationclearlyindicatesthattheyeastcellsneedsome

aerationin order toovercome the osmotic stress atinitial

stageandethanolinducedoxidativestressattheendof

fer-mentation.Thesefindingsareinlinewith.29Authorsreported

thataeratedfedbatchprocessonglucosemediumisusefulin

ethanolproduction.Similarly,Maemura30alsofoundincrease

inviablecellcountwiththeaerationlevel. Thetotal

num-berofcellsreachedmaximumlevelafterincubationforabout

24handcellgrowthcultivationwasfoundtobedependent

ontheaeration.Moreaerationenhancedthedissolved

oxy-genandathigherBrix◦,theviablecellcountdecreasedand

thisisinagreementwithobservationsreportedpreviously.31

Ithasbeen reportedthatthecellviabilitydecreasedasthe

concentrationofethanolincreasedusingS.cerevisiaeduring

fermentation.16Inpresentinvestigation,ethanolproduction

was maximum at the lowest aeration rate and Seo32 also

observed similar trend. Moreover, they reported that the

growthandethanolproductionmaydecreaseatlaterstages

of fermentation, when the ethanol concentration reached

∼100g/L.Overall,ethanolproductionwashigherinthe

aer-atedfermentersandthesefindingsareinlinewithAlfenore

etal.12andinanotherstudy,productionofhigheralcoholswas

markedlyenhancedunderoxidativeconditionsmaintainedby

agitationorspargingwithair.2Sofor,basedoncurrent

find-ing,it isconcludedthat theethanolproductionusingVHG

(6)

60 50 40 30 20 10 0 4 5 6 7 8 9 10 11 12 13 Ethanol , % Time (h)

A

60 50 40 30 20 10 0 0 20 40 60 80 100 120 140 Re s idu al s ug ar ( g /L ) Time (h)

B

60 50 40 30 20 10 0 300 320 340 360 380 400 420 440 460 480 500 520 Cell count (x 10 6 /mL) Time (h) 0 VHG 0.02 VHG 0.04 VHG 0.06 VHG

C

60 50 40 30 20 10 0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 Dry matter (g) Time (h)

D

Fig.3–(A)Ethanolproduction,(B)residualsugarcontents,(C)cellcountand(D)drymatterat40◦Brixatdifferentveryhigh

gravitylevels.

optimizedconditionasignificantlyhigherethanolproduction

wasachievedalongwithminimumby-productsproduction.

Conclusions

Ethanolproductionalong withotherby-products was

eval-uated at different aeration rates and Brix levels. Aeration

increased the ethanol production up to 12.0% (v/v) in

highgravitymediumversus7–9%(conventionallyproduced

ethanol). Since ethanol production is the major objectives

infermentationusingeasilycontrolleddistillationprocesses

atreducedcosts.Therefore,theuseofhighgravitymedium

(40◦Brix)underaeratedconditionisusefulinreducingwater

consumption up to 35%, which would ultimately decrease

theeffluentsgeneration.Moreover,witheaseindistillation

process,thismethodalsohelpincuttingdownthesteam

con-sumption,resultinginlowerdistillationcostsandimproved

ethanolproductionatindustrialscale.

Conflict

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TheJhangsugarmillAuthoritiesarehighlyacknowledgedfor

providingresearchfacilitiesatJhangsugarmilllaboratories

r

e

f

e

r

e

n

c

e

s

1.HansenAC,ZhangQ,LynePW.Ethanol–dieselfuelblends–a

review.BioresourTechnol.2005;96:277–285.

2.ArshadM,KhanZ,ShahF,RajokaM.Optimizationofprocess

variablesforminimizationofbyproductformationduring

fermentationofblackstrapmolassestoethanolatindustrial

scale.LettApplMicrobiol.2008;47:410–414.

3.GoswamiM,MeenaS,NavathaS,RaniKP,PandeyA,

SukumaranRK,etal.Hydrolysisofbiomassusingareusable

solidcarbonacidcatalystandfermentationofthecatalytic

hydrolysatetoethanol.BioresourTechnol.2015;188:99–102.

4.SelladuraiG,AnbusaravananN,ShyamKP,KandhasamyP,

BalamuthuK.Recyclingofdistillerysludgefromsugarcane

industryusingbioresourcetechnology.JApplSciRes.

2010;6:218–223.

5.BabarindeA,OnyiaochaGO.Equilibriumsorptionofdivalent

metalionsontogroundnut(Arachishypogaea)shell:kinetics,

(7)

6.TreebupachatsakulT,ShioyaK,NakazawaH,KawaguchiT,

MorikawaY,ShidaY,etal.Utilizationofrecombinant

TrichodermareeseiexpressingAspergillusaculeatus

␤-glucosidaseI(JN11)foramoreeconomicalproductionof

ethanolfromlignocellulosicbiomass.JBiosciBioeng.

2015;120:657–665.

7.BaskarG,NaveenKumarR,HeronimusMelvinX,AiswaryaR,

SoumyaS.Sesbaniaaculeatebiomasshydrolysisusing

magneticnanobiocompositeofcellulaseforbioethanol

production.RenewEnergy.2016;98:23–28.

8.LiuC-M,WuS-Y.Frombiomasswastetobiofuelsand

biomaterialbuildingblocks.RenewEnergy.2016;96(Part

B):1056–1062.

9.SainiJK,PatelAK,AdsulM,SinghaniaRR.Cellulase

adsorptiononlignin:aroadblockforeconomichydrolysisof

biomass.RenewEnergy.2016;98:29–42.

10.SinghR,KrishnaBB,MishraG,KumarJ,BhaskarT.Strategies

forselectionofthermo-chemicalprocessesforthe

valorisationofbiomass.RenewEnergy.2016;98:226–237.

11.ZhangQ,ZhangP,PeiZ,RysM,WangD,ZhouJ.Ultrasonic

vibration-assistedpelletingofcellulosicbiomassforethanol

manufacturing:aninvestigationonpelletingtemperature.

RenewEnergy.2016;86:895–908.

12.AlfenoreS,CameleyreX,BenbadisL,BideauxC,Uribelarrea

J-L,GomaG,etal.Aerationstrategy:aneedforveryhigh

ethanolperformanceinSaccharomycescerevisiaefed-batch

process.ApplMicrobiolBiotechnol.2004;63:537–542.

13.PradeepP,ReddyO.Highgravityfermentationofsugarcane

molassestoproduceethanol:effectofnutrients.IndJ

Microbiol.2010;50:82–87.

14.SumariD,HoseaK,MagingoF.Geneticcharacterizationof

osmotolerantfermentativeSaccharomycesyeastsfrom

Tanzaniasuitableforindustrialveryhighgravity

fermentation.AfrJMicrobiolRes.2010;4:1064–1070.

15.BlieckL,ToyeG,DumortierF,VerstrepenKJ,DelvauxFR,

TheveleinJM,etal.Isolationandcharacterizationofbrewer’s

yeastvariantswithimprovedfermentationperformance

underhigh-gravityconditions.ApplEnvironMicrobiol.

2007;73:815–824.

16.ThomasK,HynesS,JonesA,IngledewW.Productionoffuel

alcoholfromwheatbyVHGtechnology.ApplBiochem

Biotechnol.1993;43:211–226.

17.BayrockD,IngledewWM.Applicationofmultistage

continuousfermentationforproductionoffuelalcoholby

very-high-gravityfermentationtechnology.JIndMicrobiol

Biotechnol.2001;27:87–93.

18.LaopaiboonL,NuanpengS,SrinophakunP,KlanritP,

LaopaiboonP.Ethanolproductionfromsweetsorghumjuice

usingveryhighgravitytechnology:effectsofcarbonand

nitrogensupplementations.BioresourTechnol.

2009;100:4176–4182.

19.CazettaM,CelligoiM,BuzatoJ,ScarminoI.Fermentationof

molassesbyZymomonasmobilis:effectsoftemperatureand

sugarconcentrationonethanolproduction.BioresourTechnol.

2007;98:2824–2828.

20.DenizI,ImamogluE,Vardar-SukanF.Aeration-enhanced

bioethanolproduction.BiochemEngJ.2014;92:41–46.

21.KangQ,AppelsL,BaeyensJ,DewilR,TanT.Energy-efficient

productionofcassava-basedbio-ethanol.AdvBiosci

Biotechnol.2014;5:925.

22.ConvertiA,ArniS,SatoS,deCarvalhoJCM,AquaroneE.

Simplifiedmodelingoffed-batchalcoholicfermentationof

sugarcaneblackstrapmolasses.BiotechnolBioeng.

2003;84:88–95.

23.LaneJH,EynonL.Determinationofreducingsugarsby

meansofFehling’ssolutionwithmethyleneblueasinternal

indicator.JChemSocTrans.1923;42:32–36.

24.LinT-H,HuangC-F,GuoG-L,HwangW-S,HuangS-L.

Pilot-scaleethanolproductionfromricestrawhydrolysates

usingxylose-fermentingPichiastipitis.BioresourTechnol.

2012;116:314–319.

25.BellidoC,González-BenitoG,CocaM,LucasS,García-Cubero

MT.Influenceofaerationonbioethanolproductionfrom

ozonizedwheatstrawhydrolysatesusingPichiastipitis.

BioresourTechnol.2013;133:51–58.

26.CianiM,FerraroL.Roleofoxygenonaceticacidproduction

byBrettanomyces/Dekkerainwinemaking.JSciFoodAgric.

1997;75:489–495.

27.UscangaMA,DeliaM-L,StrehaianoP.Brettanomyces

bruxellensis:effectofoxygenongrowthandaceticacid

production.ApplMicrobiolBiotechnol.2003;61:157–162.

28.LinY-H,BayrockD,IngledewW.EvaluationofSaccharomyces

cerevisiaegrowninamultistagechemostatenvironment

underincreasinglevelsofglucose.BiotechnolLett.

2002;24:449–453.

29.CotM,LoretM-O,Franc¸oisJ,BenbadisL.Physiological

behaviourofSaccharomycescerevisiaeinaeratedfed-batch

fermentationforhighlevelproductionofbioethanol.FEMS

YeastRes.2007;7:22–32.

30.MaemuraH,MorimuraS,KidaK.Effectsofaerationduring

thecultivationofpitchingyeastonitscharacteristicsduring

thesubsequentfermentationofwort.JInstitBrewing.

1998;104:207–211.

31.BajajB,TaankV,ThakurR.Potentialindustrialapplications

ofyeastcapableoffermentinghighgravitycanemolasses

despitephysiologicalstress.IndJBiotechnol.2005;4:

149–152.

32.SeoH-B,KimSS,LeeH-Y,JungK-H.High-levelproductionof

ethanolduringfed-batchethanolfermentationwitha

controlledaerationrateandnon-sterileglucosepowder

feedingofSaccharomycescerevisiae.BiotechnolBioprocesEng.

Referências

Documentos relacionados

Para se desenvolver e aplicar metodologias de avaliacao de impacto em agroecossisstemas a preciso que se conheca bem o comportamento das suas principais variaveis no espaco e no

Para finalizar, cabe ressaltar que as muitas formas de narrar de Narradores de Javé têm, para nós, a função de provocar reflexões em torno de uma das principais questões

Na dissertação de Rosangela Kirst da Silveira (2013), “Orientações da Reforma Orestes Guimarães para a Matemática na Escola Normal Catharinense”, o problema

Concomitantemente ao desenvolvimento do método analítico, as concentrações dos elementos menores e maiores em amostras dos bivalves coletados ao longo da Baía de Todos

sociadas ao controle e gestão dos recursos naturais pelo Estado, o avanço da política de im- plementação de áreas protegidas apresenta-se como questão nacional.. Esse processo

O ensino acadêmico nos cursos de produção tem uma necessidade de melhorias e uma elaboração de um laboratório, pois como os cursos de elétrica e mecânica, por exemplo, que

E finalmente, para fomentar o envelhecimento ativo de indivíduos e populações é necessário não só criar oportunidades para os adultos idosos, mas também para

Este curso surge como uma oportunidade de desenvolvimento e inclusão no mercado de trabalho e na sociedade desta população, muitas vezes desfavorecida e marginal. Além da