• Nenhum resultado encontrado

Proposta para Curso de Combustão Industrial

N/A
N/A
Protected

Academic year: 2021

Share "Proposta para Curso de Combustão Industrial"

Copied!
17
0
0

Texto

(1)

Proposta para Curso de Combustão Industrial

Clayton Fernandes

clayton.fernandes@uol.com.br

11 8951 2100

Título do Curso

Combustão Industrial e suas Emissões Atmosféricas

Objetivo

Transferir conceitos fundamentais da combustão industrial e formação de poluentes desta operação, para profissionais de formação média ou superior envolvidos em atividades de projeto, desenvolvimento, operação, gerenciamento ou análise de equipamentos de combustão industrial.

Ao final do curso o aluno estará capacitado a:

· Definir os dados necessários para calcular os parâmetros da combustão industrial.

· Calcular os teores do gás de combustão, sua temperatura, entalpia e potência. · Calcular o excesso de Ar em função do Teor de O2 (ou CO2) e vice versa.

· Criar um combustível gasoso (mistura de hidrocarbonetos tal como Gás Natural) e calcular suas propriedades

· Manipular misturas de combustíveis (por exemplo, para queimadores duais queimando óleo e Gás Natural).

(2)

· Utilizar os principais conceitos definidos pela EPA (gases de estufa, destruição da camada de ozônio, chuva ácida, etc.).

· Calcular as Taxas de Emissões Atmosféricas dos principais poluentes da combustão industrial:

§ Via estequiometria da combustão Dióxido de Carbono – CO2

Dióxido de Enxofre – SO2

§ Via fatores de emissão – AP42 Carbon monoxide – CO Methane – CH4 Nitrogen oxides – NOx Nitrous oxide – N2O PM, condensable PM, filterable PM, primary PM10, filterable PM10, primary PM2.5, filterable PM2.5, primary

Total non-methane organic compounds (TNMOC) Total organic compounds (TOC)

Volatile organic compounds (VOC)

· Calcular as Taxas de Emissões Atmosféricas em diversas unidades e bases: o Mássica (ton/mês; kg/h; lb/h; etc.)

o Taxa (g/Gcal; lb/BTU; kg/GJ; etc)

(3)

Material Didático

O curso será baseado no software ACombE. Todos os exemplos e exercícios serão feitos utilizando-se este software.

O software ACombE calcula todos os parâmetros da combustão a partir das

propriedades do combustível (líquidos, sólidos ou misturas gasosas). Também calcula, através dos fatores de emissão da AP-42, as emissões dos principais poluentes desta operação.

Cada aluno receberá uma licença anual do software AComb E.

No total são

36 exemplos

de uso do ACombE e 52 exercícios que os alunos deverão realizar no decorrer do curso.

Além do ACombE os alunos receberão apostila em formato pdf (Adobe) referente à apresentação (230 slides).

Recomenda-se que os alunos imprimam a apostila com dois slides por página à esquerda, ficando a folha da direita em branco para os exercícios e as anotações.

Ementa

1. Massa e Mol

2. Teor Mássico e Molar 3. Átomos e Moléculas 4. Equações Químicas 5. Estequiometria da Combustão 6. Excesso de Ar 7. Gases de Combustão 8. Hidrocarbonetos

9. Combustível com Cinzas 10. Combustível Não Convertido 11. Balanço de Massa

(4)

13. Energia 14. Calor 15. Entalpia

16. Poder Calorífico Superior e Inferior 17. Balanço de Energia 18. Turbina a Gás 19. Misturas 20. Propriedades do Vapor 21. Unidades 22. Caldeira Biomassa 23. Emissões Atmosféricas 24. Formação da Atmosfera 25. Gases de Estufa 26. Chuva Ácida 27. Camada de Ozônio 28. EPA - FIRE 29. Poluentes Regulados 30. Controles para minimizar

Emissões

31. Cálculo dos Fatores de Emissão 32. Inventário das Emissões

Carga Horária

16 horas divididas em 4 períodos de 4 horas, podendo ser dois dias ou 4 noites.

Custo

O Custo do Curso é de R$ 850,00 por aluno para um mínimo de cinco alunos (ou mínimo de R$ 4.250,00). Acima de cinco alunos será cobrado o mesmo valor de R$ 850,00 por aluno. Neste custo já está incluso a licença anual de uso do ACombE.

Licença de uso do AComb E

Cada aluno receberá uma licença anual do software AComb E.

Material de Apoio

Cada aluno deverá ter um micro computador com o programa previamente instalado. Para tanto enviaremos o arquivo de instalação com a antecedência necessária.

(5)
(6)

(7)

Clayton Dimas Ribeiro Fernandes

Térmica Automação e Algoritmos Ltda – Sócio Diretor fone: 8951 2100 – e-mail:clayton.fernandes@uol.com.br

Formação

· Engenheiro Químico, Escola Politécnica da Universidade de São Paulo, 1979. · Especialização em Modelagem Matemática e Simulação dos Fenômenos de

Transporte de Calor, Massa e Quantidade de Movimento.

· Especialização em Desenvolvimento de Software para a Engenharia Térmica. Pesquisador no Instituto de Pesquisas Tecnológicas de São Paulo - IPT desde 1982 até 2008. Atuou até 1992 em Uso Racional de Energia na Indústria, sendo um dos autores do Manual de Conservação de Energia na Indústria Metalúrgica. Ainda nessa área executou trabalhos de consultoria para a indústria de celulose & papel e indústria açúcar & álcool, principais cogeradoras de energia elétrica do parque industrial brasileiro. Desde os anos 80, desenvolve pesquisas na área de modelagem e simulação de operações unitárias da indústria química, metalúrgica e petroquímica tendo com objetivo a implantação e coordenação de um grupo desenvolvedor de softwares, dentro do IPT. Como resultado desta experiência especializou-se em arquitetura de software aplicado à Engenharia Térmica, tendo como principais clientes fabricantes de sistemas de ar condicionado e consumidores de óleos combustíveis. Neste grupo foram desenvolvidos dois softwares que atualmente são referências na indústria brasileira consumidora de derivados de petróleo: AComb e Caldeira: ferramentas para o uso de combustíveis e geração e vapor.

Atividades Profissionais Recentes

2006

· Módulo de Cálculo para o Sistema de Gerenciamento de Emissões Atmosféricas da Petrobras - SIGEA.

2005

· Software CSW, para seleção de Chillers da Springer-Carrier, mercado nacional e exportação.

· Implementação do software Eclima para a York International do Brasil para a disponibilização via Internet no site do Cliente.

2004

· Software Eclima para seleção de três linhas de Fancoils da York International. Linhas destinado ao mercado nacional e exportação.

2003

· Software 39CM – Cubo Mágico para seleção de duas linhas de Fancoils da Springer Carrier.

· Caldeira 5 - versão com Turbina a Gás. Comercializado via Web do IPT

· AComb 5 - versão com Gases de Exaustão como Ar de Combustão. Comercializado via Web do IPT

· Balanço de Energia. Ferramenta para os cálculos de balanço de massa e energia nos processos térmicos. Distribuído gratuitamente via Web do IPT

2002

· Software YSMW para a York International do Brasil, para a seleção das linhas de Fancoil YM e YH.

· Software 30GS, para seleção de Chillers da Springer-Carrier, mercado nacional e exportação.

· Software 39HP – para seleção de duas linhas de Fancoils da Springer Carrier. · Co-autoria e apresentação do artigo: Softaware para a Automação de Projeto,

(8)

· Co-Autoria do artigo: SOFTWARE PARA AUTOMAÇÃO DE PROJETO, SELEÇÃO

E SIMULAÇÃO DE FANCOILS. IX CONGRESSO BRASILEIRO DE ENGENHARIA

E CIÊNCIAS TÉRMICAS, Encit, 2002, ABCM. Caxambu, MG.

2001

(9)

Exemplos de Transparências apresentadas no Curso

8

Combustão Industrial

Massa e Mol

Exercício MM1

Calcule a massa molecular do CO2.

Exercício MM2

Quanto móis há em 100 kg de CO2?

Exercício MM3

Qual a massa de uma mistura de 10 móis de N2e 10 móis de O2?

Exercício MM4

Uma mistura tem massas iguais de H2e CO2. Qual a porcentagem de móis de cada componente?

Exercício MM5

Uma mistura tem número de móis iguais de H2e CO2. Qual a porcentagem mássica de cada componente?

Exercício MM6

Suponha o Ar com 77 % de N2e 23 % de O2em massa. Qual é a composição molar?

18

Combustão Industrial

(10)

21

Combustão Industrial

Teores: Massa e Mol

Exercício TM2

O GLP é formado por 50 % de Propano e 50 % de Butano em teores molares. Qual os teores mássicos.

Massa Molecular do Propano(C3H8) = 44 Massa Molecular do Butano(C4H10) = 58 Massa Molar do GLP= 0,5 * 44 + 0,5 * 58 = 51 Teor Mássico Propano= 44/51 * 0,5 = 0,431 = 43,1 % Teor Mássico Butano = 58/51 * 0,5 = 0,569 = 56,9 %

22

Combustão Industrial

(11)

41 Combustão Industrial

Estequiometria

Exercício Es1

Calcule o Ar estequiométrico para um combustível composto por 50 % de Carbono e 50 % de Hidrogênio em massa.

Exercício Es2

Calcule a massa de água formada na combustão estequiométrica de 100 kg de hidrogênio

Exercício Es3

Calcule a umidade dos gases formados na combustão estequiométrica do hidrogênio

Exercício Es4

Calcule a massa de CO2formada na queima completa de 100 kg de bagaço de cana seco (48 %

de Carbono, 6 % de Hidrogênio e 46 % de Oxigênio em massa)

Exercício Es5

Calcule o Ar estequiométrico para o bagaço de cana seco (48 % de Carbono, 6 % de Hidrogênio e 46 % de Oxigênio em massa)

Exercício Es6

Calcule a massa de H2SO4que pode ser formada na queima completa de 100 kg de óleo diesel

(86,0 % de Carbono, 13,1 % de Hidrogênio e 0,9 % de Enxofre em massa)

51 Combustão Industrial

Estequiometria

Exercício Es7

Calcule o teor de O2 nos gases de combustão para a queima de Carbono quando se tem Ar de Combustão igual ao dobro do Ar estequiométrico.

Base 1 kg de Carbono Ar Estequiométrico = 11,6 kg

Massa Total dos Gases de Combustão = 11,6 + 11,6 + 1 = 24,2 kg Massa de O2 nos Gases de Combustão = 11,6 * 0,23 = 2,67 kg

(12)

66 Combustão Industrial Excesso de Ar 77 Combustão Industrial Hidrocarbonetos Exercício Hd5

Calcule a massa de CO2 formada na queima completa de 100 kg de um alcano CnH2n+2.

1 Mol de CnH2n+2.

Massa Total = 12n + 2n + 2 = 14n + 2 Massa de Carbono = 12n

Massa de Carbono em 100 kg de Alcano = 12n/(14n +2) * 100 kg Da reação: 12 g de C => 44 g de CO2

Massa de CO2 formada = 44/12 * 12n/(14n +2) * 100 kg

Para o metano, n = 1, Massa de CO2 formada = 275 kg Para octano, n = 8, Massa de CO2 formada = 308,8 kg

(13)

91 Combustão Industrial

Combustível Não Convertido

) 1 ( * t mC -t mC* ArEst t mC* * ) * * 1 ( * t Lb ArEst m mg = C + ArEst Lb t mC* *( -1)* 122 Combustão Industrial Calor

Deve-se tomar muito cuidado no uso da expressão Calor. Calor só se define enquanto houver variação de temperatura ou do estado do sistema.

O Calor altera a energia interna de um sistema, alterando a sua temperatura ou o seu estado (por exemplo, líquido para vapor).

Não se define calor para um sistema. O sistema tem energia interna.

Calor é um fenômeno de fronteira entre dois, ou mais, sistemas com temperaturas diferentes.

Quando um sistema altera a sua energia interna ele troca Calor com um outro sistema

(14)

158 Combustão Industrial Turbina a Gás Balanço de Massa Balanço de Energia ) * 1 ( * Lb ArEst m mg = c + Eixo Gases Ar Comb P P P P + = + Eficiência Ar Comb Gases Ar Comb Eixo P P P P P P Ef + -= + = 1 193

Combustão Industrial

Emissões Efeito Estufa maps.grida.no/go/graphic/greenhouse_effect

Gases de Combustão que alteram o efeito estufa

• CO2

• CH4 - Metano • N2O

• Provocam o aumento de temperatura

(15)

199

Combustão Industrial

Emissões Poluentes API COMPENDIUM, pg 83 208

(16)

217

Combustão Industrial

Fire

Process

·External Combustion Boilers ·Stationary Source Fuel Combustion ·Mobile Sources

·Industrial Processes Sector

•Commercial and Institutional •Electric Generation •Industrial

EPA Fuel Class •Distillate Oil •Residual Oil

•Bituminous and Sub bituminous Coal Property Process

•Cogeneration •Grade 4 Oil •< 10 Million Btu/hr ** •10-100 Million Btu/hr ** •Grades 1 and 2 Oil

SCC Source Classification Code

220

Combustão Industrial

(17)

239

Combustão Industrial

Emissões AComb E

Exemplo Em1

Referências

Documentos relacionados

ensino superior como um todo e para o curso específico; desenho do projeto: a identidade da educação a distância; equipe profissional multidisciplinar;comunicação/interatividade

Discussion The present results show that, like other conditions that change brain excitability, early environmental heat exposure also enhanced CSD propagation in adult rats.. The

Os Coordenadores Setoriais, enquanto professores, procuram dar o exemplo, mas deixam claro que encontram, no seu percurso como extensionistas, esse elemento dificultador;  O

Os resultados deste estudo mostram que entre os grupos pesquisados de diferentes faixas etárias não há diferenças nos envoltórios lineares normalizados das três porções do

Este trabalho buscou, através de pesquisa de campo, estudar o efeito de diferentes alternativas de adubações de cobertura, quanto ao tipo de adubo e época de

esta espécie foi encontrada em borda de mata ciliar, savana graminosa, savana parque e área de transição mata ciliar e savana.. Observações: Esta espécie ocorre

Dessa forma, os níveis de pressão sonora equivalente dos gabinetes dos professores, para o período diurno, para a condição de medição – portas e janelas abertas e equipamentos

O valor da reputação dos pseudônimos é igual a 0,8 devido aos fal- sos positivos do mecanismo auxiliar, que acabam por fazer com que a reputação mesmo dos usuários que enviam