• Nenhum resultado encontrado

Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels

N/A
N/A
Protected

Academic year: 2021

Share "Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels"

Copied!
10
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Food

Microbiology

Screening

and

characterization

of

lactic

acid

bacterial

strains

that

produce

fermented

milk

and

reduce

cholesterol

levels

Xuefang

Guan,

Qingxian

Xu,

Yi

Zheng,

Lei

Qian,

Bin

Lin

InstituteofAgriculturalEngineeringTechnology,FujianAcademyofAgriculturalSciences,Fuzhou,Fujian,People’sRepublicofChina

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11July2016

Accepted16February2017

Availableonline2June2017

AssociateEditor:SusanaSaad

Keywords: Fermentedmilk Lactobacillusplantarum Cholesterol Rat

a

b

s

t

r

a

c

t

Objective:Toscreenforandcharacterizelacticacidbacteriastrainswiththeabilityto

pro-ducefermentedmilkandreducecholesterollevels.

Methods:ThestrainswereisolatedfromtraditionalfermentedmilkinChina.Invitroand

invivoevaluationofcholesterol-reductionwereusedtoidentifyandverifystrainsofinterest.

Characteristicswereanalyzedusingspectrophotometryandplatecountingassays.

Results:TheisolateHLX37consistentlyproducedfermentedmilkwithstrong

cholesterol-reducingpropertieswasidentifiedasLactobacillusplantarum(accessionnumber:KR105940)

andwasthusselectedforfurtherstudy.ThecholesterolreductionbystrainHLX37was

45.84%.Theisolateswereacid-tolerantatpH2.5andbile-tolerantat0.5%(w/v)insimulated

gastricjuice(pH2.5)for2handinsimulatedintestinalfluid(pH8.0)for3h.The

auto-aggregationrateincreasedto87.74%after24h,whiletheco-aggregationwithEscherichiacoli

DH5was27.76%.StrainHLX37wasintrinsicallyresistanttoantibioticssuchaspenicillin,

tobramycin,kanamycin,streptomycin,vancomycinandamikacin.Comparedwithratsin

themodelhyperlipidemiagroup,thetotalcholesterolcontentintheserumandtheliver

aswellastheatherogenicindexofratsintheviablefermentedmilkgroupsignificantly

decreasedby23.33%,32.37%and40.23%,respectively.Fewerfatvacuolesandotherlesionsin

livertissuewerepresentinboththeinactivatedandviablefermentedmilkgroupscompared

tothemodelgroup.

Conclusion:ThesestudiesindicatethatstrainHLX37ofL.plantarumdemonstratesprobiotic

potential,potentialforuseasacandidateforcommercialuseforpromotinghealth.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Correspondingauthorat:InstituteofAgriculturalEngineeringTechnology,FujianAcademyofAgriculturalSciences,Fuzhou,Fujian

350003,People’sRepublicofChina.

E-mail:binlin591@163.com(B.Lin).

http://dx.doi.org/10.1016/j.bjm.2017.02.011

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

Introduction

Cholesterolisanindispensablenutrientinthehumanbody,1

asit serves as acomponent of the cell membraneand as

aprecursor forcholicacid and steroidhormonesynthesis.

However,excesscholesterolisamajorcontributorto

hyper-lipidemiaandcardiovascularandcerebrovasculardiseases.2,3

AccordingtothestatisticsfromtheNationalHealthand

Fam-ilyPlanningCommissionofChina(2015),cardiovascularand

cerebrovascular diseases have become a leading cause of

deathworldwide,withasmanyas 15millionpeople dying

fromthesediseasesannually.Researchshowsthatthe

prob-abilityofsufferingfromcardiovasculardiseasedecreasesby

2–3%4withevery1%decreaseintheserumcholesterollevel.

Therefore,aneffectivemethodforreducinghighcholesterol

toahealthylevelcouldprotectagainstthesediseases.

Studies haveshown that sometherapeutics, suchas

3-hydroxy-3-methylglutarylcoenzymeAreductase inhibitors,

effectivelyreduceserumcholesterol.5Alongwiththese

ther-apeutics,aperson’sdietshouldalsoberegulatedtoinclude

foodseffectiveatpreventingandreducingcholesterol.

Numer-ousexperimentshavedemonstratedthatprobioticlacticacid

bacteriacanalsoreducecholesterolviaadsorption,

conver-sion,co-precipitationandbilesalthydrolase(BSH)enzymatic

degradation.5,6 However,the oralintakeofprobioticsisnot

palliativeformostpeople.

Fermented milk obtained through the lactobacillus

fer-mentationoffreshmilkisadairyproductwithanumberof

nutritionalandhealthadvantages.Thefermentationprocess

also involves the growth of lactic acid bacteria that

con-vertthelactoseandmilkproteinintolacticacid,galactose,

aminoacids and small peptides, whichare easilydigested

andabsorbedbythehumanbody.Moreover,thenutritional

valueoffermentedmilkproductsgeneratedbyvariouslactic

acidbacteriacanalsobedifferent. Inadditiontosatisfying

nutritionalrequirements,somefermentedmilkproductscan

improvetheabsorptionanduptakeofnutritivesubstances,

suchascalcium-containingsubstances.Therearenumerous

lacticacidbacteriathatcaninhabittheinternalwallofthe

intestinaltractandformmicrobialcommunitiesand a

bio-logicalbarrier.Inhibitionofthegrowthofpathogenicbacteria

intheintestinaltract7,8andtheregulationofthebalanceof

intestinalmicroflorainsuchawaymayhaveeffectssimilarto

thoseofprobioticsandmetabolites.9,10

Forthesereasons,wesetouttoscreenforlacticacid

bac-terial(LAB)strainscapableofproducingfermentedmilkand

reducing cholesterollevels foruse asstarter cultures.

Fur-thermore,thisstudyinvestigatedtheabilityofthesestrains

infermentedmilktoreducecholesterolinhigh-fatrats,and

evaluatedthesestrainsascandidatecommercialprobioticsto

promotehealth.

Materials

and

methods

Samplesandmedia

Traditionalfermentedmilksampleswerescreenedforlactic

acidbacteriastrainsabletoreducecholesterollevels.Selected

strainswerecultivatedinfreshmilkcollectedfromafarmerin

MangdangTown,YanpingDistrict,NanpingCity,intheFujian

ProvinceofChina(26.510◦N,118.090◦E).Traditionalfermented

milkwasmadeasfollows:thefreshmilkfromChinese

Hol-steincowswasincubatedat15◦Cfor35daystoferment;when

thepHvaluereachedapproximately4.4,fermentedmilkhad

beenproduced.Man,RogosaandSharpe(MRS)mediumwas

usedforculturingthe LAB.Abasaldietwasobtainedfrom

theCenterforDiseaseControlandPrevention(Fujian,China)

andcontained10%moisture,22%crudeprotein,4%crudefat,

5%crudefiber,and8%crudeash.Ahypercholesterolforage

consistedof57%basaldiet,13%lard,5%peanuts,2%sesame

oil, 20% sucrose,3% cholesterol (Zhengzhou Tianjian Food

TechnologyCo.,Ltd,HunanProvince,China),and0.1%sodium

cholate(ZhengzhouTianjianFoodTechnologyCo.,Ltd.,Hunan

Province,China).

Animals

Sprague-Dawley(SD)malerats(weighing150–170g)were

pur-chased from the Hayes Lake Laboratory Animal Co., Ltd.

(Shanghai, China) [license number: SCXK (Shanghai

2007-0005)]. The rats were housed under standard controlled

laboratoryconditions(temperatureof24±3◦C,humidityof

50±10% and 12h light/12h dark cycle), with unrestricted

accesstofoodandwater.Allanimalswerehandledin

accor-dancewiththeanimalcareanduseguidelinesestablishedby

theFujianUniversityofTraditionalChineseMedicine(Fujian,

China), which entailed minimizing both the number and

sufferingoftheanimalsusedfortheexperiments.All

experi-mentalproceduresinvolvingratswereapprovedbytheFujian

AssociationforLaboratoryAnimalScience(FALAS).

Screeningforstrainscapableoffermentingmilkand

reducingcholesterollevels

Naturalfermentedmilksamples(1mL)wereseriallydiluted,

and 10−5, 10−6 and 10−7 dilutions insalinewere platedon

solidMRSagarplates.Theplateswereincubatedat42◦Cfor

2days.Colonieswithphenotypesandcharacteristicssimilar

tothoseofLactobacilluswereselectedandsub-inoculatedinto

MRSmediumthreetimes.Theisolated strainswere

inocu-latedinto10mLofMRSmediumandincubatedanaerobically

at42◦Cfor1day.A1.0-mLaliquotoftheculturebrothwas

sub-inoculated into a fermenter containing 100mLof

pas-teurizedmilk(ChangfuDairyGroupCo.,Ltd.FujianProvince,

China), which had been sterilizedat 115◦C for20min and

incubatedat42◦Cfor12h.Followingfermentation,anystrain

thatconsistently resultedinsolidifiedfermentedmilkwith

apleasingsmell andapHvalue≤4.4wasselected, labeled

and stored in 20% glycerol at −20◦C until further

analy-sis.Toscreenforstrainsthatcouldreducemilkcholesterol

levels, a 1-mLaliquot of theculture brothfrom the tested

fermentationstrains wastransferredintoafermenter

con-taining100mLofcholesterol(SinopharmChemicalReagent

Co.,Ltd.,Shanghai,China)screeningmediumandincubated

at 42◦C for 2 days. Any strain that produced turbidity in

the culturebrothwas testedforcholesterolreduction

abil-ity.LABculturesweregrowninMRSmediumsupplemented

(3)

24 to 72h and then centrifuged at 9000×g for 15min at

4◦C.Thecholesterolinthesupernatantwasquantifiedusing

theO-phthaldehydemethoddescribedbyRudeletal.,11and

cholesterol was used for the standard curve. The control

brothwasuninoculatedMRSbrothcontainingapproximately

200mg/L of water-soluble cholesterol. The ability of each

straintoreducetheamountofcholesterolwascalculatedwith

thefollowingequation:

%ofcholesterolreducingrate=



C0−C

C0



×100,

whereC0isthecontrolbrothandCisfermentedbroth.The

strainthatresultedinthehighestyogurtfermentationand

cholesterolreductionwasselectedforfurtherstudy.

Identificationofstrainsabletobothfermentmilkand

reducecholesterol

The colony morphology of the isolates incubated on MRS

mediumplatesat42◦Cfor2dayswasevaluated.Gram

stain-ingwasperformed,andthebacteriawereexaminedusinga

YS100typemicroscope(Nikon,Japan).Cellmorphologywas

determined using a JSM-6380/LV scanning electron

micro-scope(ElectronOpticsLaboratoryCo.,Ltd.,Japan).Inaddition,

the16SrRNAandRNApolymerasealphasubunit(rpoA)genes

of the strains were partially sequenced using the primers

F9–27/R1525–1542 (5-GAGTTT GAT CCT GGC TCAG-3/5-AGA

AAGGAGGTGATCCAGCC-3)andrpoA-21-F/rpoA-22-R(5

-ATGATYGARTTTGAAAAACC-3/5-ACYTTVATCATNT

CWGVY-TC-3),as described byNaser etal.12 respectively.The PCR

reactionmixturecomprised2.5␮Lof10×PCRbuffer(Tiangen

BiotechCo.,Ltd.Beijing,China),2.5␮Leach of2mMdNTPs

(dATP,dCTP,dGTP,anddTTP)(TiangenBiotechCo.,Ltd.Beijing,

China),1␮Lof50mMMgCl2(TiangenBiotechCo.,Ltd.Beijing,

China),2␮Lofeachprimer(5pmol/L),0.5␮LofBIOTaqDNA

polymerase(2.5U/L),1␮Loftemplate,anddistilledddH2Oto

afinalvolumeof25␮L.ThePCRprogramonanEppendorfAG

included35amplificationcyclesof1minat94◦Cfor

denatur-ation,1minat55◦C(16SrRNA)or50◦C(rpoA)forannealing,

and1minat72◦Cforextension,followed byafinal

exten-sioncycleat72◦Cfor10min.Inaddition,the16SrDNAand

rpoApartialsequencesobtainedwereanalyzedusingBLAST

ontheNCBIserver(http://www.ncbi.nlm.nih.gov/).

Phyloge-neticanalysesofthe16SrRNAandrpoAgenesequenceswere

performedusingtheClustalWprogramwiththeMEGA4

soft-wareversion14.0.0.162.13

Acidtoleranceandbiletolerancetest

Theacidtoleranceofthestrainswasevaluatedasdescribed

byArcheretal.14withslightmodifications.Briefly,MRS

pre-paredatpHvaluesof1.5,2.0,2.5,3.0,3.5and4.0,inoculated

witha5%overnightbacterialsuspension,andgrown

anaero-bicallyat37◦Cfor24h.Aliquotsweretakenatintervalsof0,2

and4h,seriallydiluted,andplatedontoMRSagarplates.After

incubatinganaerobicallyat37◦Cfor48h,thenumberofviable

colonies was counted. Similarly, MRS broth supplemented

with0.1%,0.2%,0.3%,0.4%and0.5%bilesalts(w/v)(Huankai

MicrobialSciCo.,Ltd.China)wasfreshlypreparedand

inocu-latedwitha5%overnightbacterialsuspension.Aliquotswere

takenatintervalsof0,2and4h, andthenumberofviable

coloniesonMRSagarplateswascounted.Samplestakenat

0hwereusedasacontrol.

Simulatedgastricjuiceandintestinalfluidtolerancetests

Gastricjuicewassimulatedusingasolutionof125mMNaCl,

7mMKCl, 45mMNaHCO3 and 3g/Lpepsin adjustedtopH

valuesof2.5and3.0andpreparedaccordingtothemethod

describedbyArcheretal.14Bacterialculturesweregrownfor

24h,centrifugedfor5000×gfor15minat4◦Candaddedto

thesamevolumeofnormalsaline(0.9%)toreplacethebroth,

while10%wasinoculatedintothegastricfluidandincubated

at37◦Cinanincubator(MS-2102,LNB,Shanghai,China)with

shakingat180rpm.Samplesweretakenat0,1,2,3and4hof

incubation,andthenumberofbacterialcoloniesonMRSagar

plates wascounted.Intestinalfluidconsistingof0.1%(w/v)

pancreatin and0.15%(w/v)ox-bilewasadjustedtopH8or

7.5.Inamannersimilartothegastricjuiceassay, the

bac-terialculturewasusedtoinoculateintestinalfluidandthen

incubated.Viablecellcountswereobtainedbyplatingsamples

takenat0,3and6hofincubation.Samplestakenat0hwere

usedascontrols.Thepercentsurvivalwascalculatedusing

thefollowingformula:

Bacterialsurvival (%)=CFUcontrolCFUassay ×100,

whereCFUassayisthecellcountafterincubationinsimulated

gastricjuiceorintestinalfluid,andCFUcontrolisthecellcount

afterincubationinnormalMRSat0h(control).

Aggregationactivity

Cultures ofHLX37and Escherichia coli DH5␣ were grownin

MRS and Luria-Bertani medium (LB, Canspec, Inc., China)

overnight,respectively,and thencentrifugedat3000×gfor

10minat4◦C.Thecellswerewashedtwice,resuspendedin

phosphate-bufferedsolution(PBS),andadjustedtoaninitial

OD600of0.4±0.1(A0).Thecellsuspensionswerethen

incu-batedatroomtemperature at25◦Cfor24htoallowphase

separation, and the final OD600 value(A24) ofthe aqueous

phasewasmeasured.Thepercentageofauto-aggregationwas

expressedasfollows:Aauto%=(A0−A24)/A0×100.15Similarly,

equalvolumesofLABandE.coliDH5␣weremixed,adjustedto

aninitialOD600of0.6±0.1(A0)inPBSandincubatedatroom

temperaturefor24hwithoutagitation.TheOD600value(A24)

oftheaqueousphasewasmeasured.Theco-aggregation

per-centagewasexpressedasfollows:Aco%=(A0−A24)/A0×100.

Antibioticresistance

TheantibioticresistancepatternsofstrainHLX37were

deter-mined by a disk diffusion method using the Kirby-Bauer

technique.16 MRSagar plates witha thicknessof4±1mm

wereevenlyspreadwith100␮LofstrainHLX37(8.0lgcfu/mL)

using a sterile swab. Antibiotic discs (Hangzhou Microbial

ReagentCo.,Ltd.,GuangdongProvince,China)wereplacedon

theplates.Theplateswerethenincubatedfor36hat37◦C.

(4)

Verniercaliper,andtheantibioticresistancewasdetermined

accordingtoCLSI.17

Cholesterolreductionabilityinarathyperlipidemiamodel

AfermentedmilksamplewithHLX37waspreparedby

fer-mentingfreshmilk(wholemilk,ChangfuDairyGroupCo.,Ltd.,

FujianProvince,China)withLactobacillusplantarumHLX37at

42◦C for12huntilaviablecount(8.30±0.01lgcfu/mL)was

achievedandtheaciditywas82.32±0.99◦T(asmeasuredby

titrationwithaGB5409-85,China).Fermentedmilkwas

pro-ducedevery7daysandstoredat4◦C,sothestorageperiodof

thefermentedmilkwas7days.Onthe7thday,theviablecount

was8.39±0.04lgcfu/mL(F=13.73,p=0.021>0.05),theviable

countdidnotchangesignificantlyduringstorage.Atotalof

40ratswererandomlyassignedtothefollowingfourgroups

(n=10):(1)aninactivatedfermentedmilkgroup(Inactivated)

inwhichtheratswerefedafermentedmilksamplethatwas

inactivatedina100◦Cwaterbathfor30minanda

hyperc-holesterolchow,(2)aviablefermentedmilkgroup(Viable)in

whichtheratswerefedafermentedmilksampleand

hyper-cholesterolchow,(3)ahyperlipidemiamodelgroup(Model)in

whichtheratswerefedasalinesolutionanda

hypercholes-terolchow,and(4)anormalcontrolgroup(Normal)inwhich

theratswerefedsalineandonlyabasaldietprovidedbythe

CenterforDiseaseControlandPrevention,Fujian,China.The

fermentedmilk(1mL/100(dg)ofratbodyweight)orsalinewas

fedtotheratsfor62dbygavage.Theratswereallowedfree

accesstotheexperimentaldietandwater;foodconsumption

andbodyweightweremonitored.Thebloodandliverwere

collected after12h offasting underanesthesia byinjected

sodiumpentobarbital(40mg/kgbodyweightofrat,Shanghai

ChemicalReagentsProcurementSupplyStation,China).Blood

collectedfromthepostcavaserumwasisolatedby

centrifug-ingthebloodsamplesat3000×gfor10min.Aportionofthe

liverwasimmediatelyfixedin10%formalinbufferforfreezing

andliquidhistologicalsectioning,andtheremainingtissues

wereflashfrozeninliquidnitrogenandstoredat−80◦Cuntil

use. Thetotalcholesterol(TC)levelinthe serum and liver

weredeterminedusingatotalcholesterolassaykit(Jiancheng,

Nanjing,China).High-densitylipoproteincholesterol(HDL-C)

and low-densitylipoproteincholesterol(LDL-C) inthe liver

weremeasuredusinghigh-densityandlow-density

lipopro-tein cholesterolassay kits,respectively (Nanjing Jiancheng

Bioengineering Institute,China).Theatherogenic index(AI)

wasexpressedasfollows:AI=(TC-HDL-C)/HDL-C.18

Statisticalanalysis

All experimentalsampleswere testedintriplicate,and the

resultingvaluesareexpressedasthemean±standard

devi-ation(sd).ThestatisticalanalysiswasperformedusingSPSS

17.0software.Aone-wayANOVAwasperformedacross

mul-tiplegroupstotestsignificance,andp<0.05wasconsidered

significant.

Results

Screeningandisolationofbacterialstrainsabletoferment

milkandreducecholesterol

Strainscapableoffermentingmilkandreducingcholesterol

werescreenedandisolatedfromtraditionalfermentedmilk

samples collected from a farmer. A preliminary screening

yielded22isolatesthathadaphenotypeandcharacteristics

similartoLactobacillusspp.onsolidMRSplates.Theseisolates

weretransferredtopasteurizedmilk.Ofthese22isolates,8

isolatesfermentedmilkandwereselectedanddesignatedas

HLX31-HLX38.Ofthese8isolates,2strains(HLX33andHLX37)

producedturbidityinacholesterolscreeningmedium,sothey

werefurthertestedfortheirabilitytoreducecholesterol.The

cholesterolcontentandtheresidualcholesterolintheculture

brothduringgrowthareshowninTable1.StrainsHLX33and

HLX37Aconstantlyreducedcholesterolinthebroth

through-outthefermentationprocess.After72hofincubation,strain

HLX37showedthehighestcholesterolreduction,45.84%,in

aculturebrothcontaining123.1␮g/mgofcholesterol;the F

valuebetweenstrains=21.016,andp=0.000<0.01,which

indi-cates that the ability ofstrain HLX37 to lower cholesterol

was significantlybetterthan strainHLX33.thus,HLX37was

selectedforfurtherstudy.

CharacterizationandidentificationofstrainHLX37

ThemorphologyofstrainHLX37isshowninFig.1.Colonies

on MRS plates were white, round, opaque, Gram-positive,

androd-shapedwithacellsizeof(1.8–3.5)×(0.7–0.9)␮m.LAB

Table1–Abilityoflacticacidbacterialstrainstolowercholesterol.Thedataareexpressedasx±sd(n=3foreach sample).Note:TheLABstrainsweregrowninacholesterolmedium(MRSmedium+approximately200␮g/mL

cholesterol).TheFvaluebetweenstrains=21.016,andp=0.000<0.01,whichindicatesthattheabilityofstrainHLX37to lowercholesterolwassignificantlybetterthanstrainHLX33.

Incubationtime(h) Incubationtemperature(◦C) HLX33 HLX37

Cholesterol content(␮g/mL) Cholesterol reduction(%) Cholesterol content(␮g/mL) Cholesterol reduction(%) 0 42 227.30±5.80 227.30±5.80 24 42 172.80±9.84 23.88±4.33 143.69±1.80 36.78±0.79 48 42 168.59±6.74 25.83±2.97 143.12±9.39 37.04±4.13 72 42 158.88±0.77 30.10±0.34 123.10±23.05 45.84±10.14

(5)

A

B

C

D

Fig.1–ColonycharacteristicsandmorphologyofL.plantarumstrainHLX37.Note:(A)Colonycharacteristicsinoculatedin MRSmedium;(B)Gramstaining;(C)ScanningElectronMicroscopy(SEM);(D)TransmissionElectronMicroscope(TEM).

A

8.4

V

iable count (lg cfu/mL)

V

iable count (lg cfu/mL)

Survival percentage (%) Survival percentage (%) 8.2 8 7.8 7.6 7.4 1.5 2 2.5 3 3.5 (pH) 0 8 7 6 0.1 0.2 0.3 0.4 0.5 30 0 60 90 120 150 (%) 7.5 6.5 30 60 90 120 150 4

B

Fig.2–Theviablecount(lgcfu/mL)andsurvival(%)ofLactobacillusplantarumHLX37incubatedin(A)acidicand(B) bile-containingmediumwithtime.Theviablecountsweremeasuredafter,0h;,2h;and䊉,4h.Thesurvivalwas measuredafter,2hand,4h.

strainswereidentifiedbyBLASTsequencesofthe16SrRNA

geneandwerefoundtohave>99%homologywithLactobacillus

plantarumandLactobacilluspentosus.L.plantarumandL. pen-tosusweredifferentiatedbyarpoApartialsequence(861bp)

thatwasalsoanalyzedbyBLASTandwerefoundtohave99%

homologywithL.plantarumbutonly97%homologywithL.

pentosus.Thisresultwasfurtherconfirmedbymappingthe

strainphylogeny;thus,strainHLX37wasidentifiedasL.

plan-tarum.The16SrDNAsequence (1425bp)forthisstrainwas

depositedintheGenBankdatabaseundertheaccession

num-berKR105940. Additionally, HLX37wasadded tothe China

General Microbiological Culture Collection Center (CGMCC)

collectionunderthenumber10632.

Acidandbiletolerance

TheeffectofacidicconditionsontheviabilityofL.plantarum

HLX37isshowninFig.2.StrainHLX37survivedwellunder

acidicconditions(pH≥2.5),andtheviablecellcountreached

7.43±0.05lgcfu/mL. Thesurvival rate was 56.84±0.57% at

pH=2.5 after 4h of incubation at 37◦C. Survival reached

122.86% and 143.81%after2 and 4hincubation periodsat

a pH of 4.0. The bile tolerance of the strain was

consid-eredanimportantcharacteristicbecauseitenablesthestrain

to surviveandremain functional followinggastrointestinal

transit.15 Strain HLX37wasgrown inthepresenceof0.1%,

0.2%,0.3%,0.4%and0.5%bilesalts andwasdeterminedto

haveahighbiletolerance.Therateofsurvivalin0.3%bilesalts

after2hwas53.24±4.09%andthatafter4hwas54.68±2.03%,

withaviablecountof7.57±0.03lgcfu/mL.Thisstraincould

alsotolerateupto0.5%bilesalts,andtheviablecountrange

was6.40±1.10to6.5±0.16lgcfu/mLafter2–4hofincubation.

ThisresultsuggeststhatHLX37cantoleratealowpHanda

highconcentrationofbilesalts.

Simulatedgastricandintestinalfluidtolerancetests

The effect of simulated gastric fluidsand intestinal fluids

on the viability of strain HLX37 is shown in Fig. 3. Strain

HLX37couldsurviveatpH3.0for2hwithasurvivalrateof

33.41%. Strain HLX37also had asurvival rategreater than

13.66%atapH2.5after2hingastricfluidwithaviablecount

8.40 8.50 8.00 7.50 7.00 6.50 0 3 6 (h) 150 100 50 0 1 0 2 3 4 0 50 100 150 (h) 7.90 6.90 V

iable count (lg cfu/mL)

V

iable count (lg cfu/mL)

Survival percentage (%) Survival percentage (%) 7.40

A

B

Fig.3–Viablecount(lgcfu/mL)andsurvival(%)ofLactobacillusplantarumHLX37afterexposuretosimulatedgastricjuice(A) andintestinalfluid(B).Theviablecountwasmeasuredinthepresenceof䊉,pH2.5inAorpH8.0inB;and,pH3.0inAor pH7.5inB.Thesurvivalwasmeasuredinthepresenceof,pH2.5inAorpH8.0inB;and,pH3.0inAorpH7.5inB.

(6)

Table2–AdhesiveabilityofL.plantarumHLX37(n=3,x±sd).

Tests A0 A24 Aggregationpercentage(%)

Auto-aggregation 0.5131±0.0045 0.0629±0.0369 87.74

Co-aggregationwithEscherichiaDH5␣ 0.5133±0.0082 0.3708±0.0355 27.76

greater than 7.47±0.03lgcfu/mL (Fig. 3A) and greater than

40.05±7.09%atpH8.0after3hwithaviablecountgreater

than7.90±0.07lgcfu/mLinintestinalfluid(Fig.3B).Thisresult

suggestsstrainHLX37couldtoleratesimulateddigestivejuice.

Aggregationactivity

Theresultsofassaystomeasureaggregation areshown in

Table2. Auto-aggregation increasedto 87.74%after 24h at

roomtemperature(25◦C),whiletheco-aggregation

percent-age was 27.76% for Escherichia DH5␣ after24h ina mixed

suspension.

Antibioticresistance

ThesusceptibilitypatternsofL.plantarumHLX37areshown

inTable3.Noinhibitionzonewasobservedinthepresence

of tobramycin. Furthermore strain HLX37was resistant to

kanamycin,streptomycinand vancomycinaccordingtothe

Table3–AntibioticsusceptibilityofL.plantarumHLX37 usingtheKirby-Bauermethod(n=3,x±sd.)Note:(S),(I) and(R)denotesensitive,intermediaryandresistant strainsaccordingtothebreakpointsestablishedbyCLSI (2007).

Antibioticdisks Paper content ␮g/piece Diameterof zoneof inhibition (cm) Antimicrobial susceptibility type Beta-amide/penicillin Penicillin(P) 10 23.00±2.83 R Cephalosporins Cephalexin(CA) 30 23.17±5.103 S Ceftriaxone(CTR) 30 44.67±0.473 S Aminoglycosides Amikacin(AK) 30 13.33±0.24 R Gentamicin(GM) 10 12.33±2.17 I Tobramycin 10 – R Kanamycin(K) 30 – R Streptomycin(S) 10 – R Tetracyclines Tetracycline(TE) 30 19.43±0.50 S Beta-lactam/Beta-inhibitor Amoxicillin(AMX) 20 33.17±1.18 S Phenicols Chloroamphenicol(C) 30 21.33±4.11 S Glycopeptides Vancomycin(VA) 30 – R Macrolides Erythromycin(E) 15 32.50±0.41 S

CLSI withStaphylococcus aureusATCC25923 asthe indicator bacterium.Thediametersoftheinhibitionzoneofpenicillin andamikacinwerelessthan2.8cmand1.4cm,respectively, indicating resistance. The antimicrobial susceptibility type was Intermediary(I)withgentamicin.Noresistance tothe other antibiotics tested was evident, and the clear zones rangedfrom19.43to44.67cm.

Cholesterolreductionabilityofthebacterialstrainsinrats

EffectsofHLX37fermentedmilkinrats

Food consumption was significantlygreater in the normal group than in the other groups, but no significant differ-enceswerenotedfortheinactivated,viableandmodelgroups. Meanwhile,thevalueofbody finalweightwassignificantly greaterinthenormalgroupthanintheinactivatedandmodel groups. No significant differenceswere foundbetween the viablegroupandtheothergroups(Table4).TheTClevelsin

therat’sserumandliverareshowninFig.4A.Comparedtothe

hyperlipidemiamodelgroup,theTClevelsintheserumand

liveroftheratsintheviablegroupweresignificantlylessby

23.33%and32.37%,respectively,andasignificantdecreaseof

27.46%intheserumwasobservedfortheinactivatedgroup.

TheorderoftheTCcontentvaluesintheratsforeach

treat-mentwereModel>Inactivated>Viable>Normal.Ratsinthe

inactivatedgroupshowedasignificantdecreaseinserum

LDL-Cof15.19%despitetheirhigh-fatdiet(Fig.4B),butthiswasnot

observedinviablegroup.Nosignificantdifferenceswerefound

in the HDL-C inthe inactivated,viable and model groups.

Additionally,theviablegroupshowedasignificantdecrease

inAI(40.23%;Fig.4C).

Microscopemorphologicalanalysis

Morphological differences were noticed in the treated rat

liver tissue biopsiescompared to the healthy tissuesfrom

normalrats(Fig.5).Inthemodelgroup,numerousfat

vac-uoles,hepaticlobulescontainingdebris,loosecytoplasmand

afoldedmembranethatwaspushedtoonesidewerefound

inthe liverbiopsies, confirming thatthe modelgroup was

unhealthycomparedtothenormalgroup.Onlyafewfat

vac-uoles were notedin the rats in the inactivated and viable

bacterial fermented milk groups, which were notably less

thaninthehyperlipidemiamodelgroup.Furthermore,inthe

inactivated andviablebacterialfermentedmilkgroups, the

hepaticlobuleswereclear,thecellswereneatlyarranged,and

theliversinusoidwasnormalwithnosignificantlesions.The

occurrenceoffattyliverlesionswassignificantlyreducedin

the high-fatrats,and liveradipose degenerationwas

ame-lioratedtosomedegreeintheinactivatedandviablegroups,

(7)

Table4–Foodconsumptionandfinalbodyweightofratsfor62d(x±sd,n=10).Note:Valueswiththesameletterarenot significantlydifferent(p>0.05),whiledifferentsuperscriptlettersindicatesignificanceatp<0.05.

Diettreatment Inactivatedgroup Viablegroup Modelgroup Normalgroup

Consumptionofdiet[g/(onerat·d)] 24.94±2.26b 25.34±1.91b 25.64±2.02b 36.74±1.36a Bodyfinalweight(g/onerat) 345.61±54.03b 376.41±38.51ab 361.27±41.25b 431.73±42.83a

C

B

A

5 6 3 2 1 0 Inactivated

Viable Model Normal

Inactivated

Viable Model Normal

Inactivated

Viable Model Normal 4 5 6 2 1.20 0.90 0.60 0.30 0.00 1.6 1.2 0.8 0 3 2 1 0 4 b bc d a Serum Liver LDL-C HDL-C b ab ab ab a a c c c Al Content (mmol/L) TC (mmol/g protein) TC (mmol/L) cd a a a cd ab d

Fig.4–EffectsofL.plantarumHLX37fermentedmilkinrat.(A)Totalcholesterol(TC)levelsinserum(mmol/L)andliver (mmol/gprotein),(B)LDL-CandHDL-Clevelsinserumfollowingtreatment,(C)theatherogenicindex

(AI)=(TC-HDL-C)/HDL-C.Note:(1)Inactivated:thefermentedmilksamplewasinactivatedina100◦Cwaterbathfor30min andtheratswerefedthehypercholesterolchow;(2)Viable:thefermentedmilksampleandtheratswerefedthe

hypercholesterolchow;(3)Model:salineandtheratswerefedthehypercholesterolchow;(4)Normal:salineandtherats werefedabasaldiet.Valueswiththesameletterswerenotsignificantlydifferentp>0.05,whiledifferentsuperscriptletters indicatesignificanceatp<0.05.

Discussion

Traditional fermented foods such as cabbage, cucumber andmilk,whichprovideproductswithdefinedconsistency andhaveadditionalhealth-promoting(functional)properties, have usually been used as a source for screening various LAB.19,20 Screening for strains with the ability to ferment

milkandreducecholesterollevelsidentifiedaLABstrain

des-ignated as HLX37, which was subsequently cultured. This

strain could ferment milkand reducethe cholesterollevel

inMRSmediumby45.84%;consequently,itbecamethe

sub-jectforfurtherstudy.Amorphologicalanalysisand16SrDNA

sequencingidentifiedtheisolateHLX37asLactobacillusspp.To

furtheridentifyHLX37tothespecieslevel,weusedrpoAgene

sequencesthatofferareliableidentificationsystemfornearly

all species of the genus Lactobacillus,12 and strain HLX37

wasidentifiedasL.plantarum(Accession no.KR105940).We

foundthatL.plantarumHLX37couldlowercholesterolandwas

suitableforthermophilicfermentationtoproducefermented

milk.ThisstrainwaslistedintheStrainListApplicabletoFood

specifiedinFileNo.[2010]65bythehealthofficeoftheChina

MinistryofHealth,whichsupervisesediblemicroorganism.

AnFAO/WHOworkinggroupconfirmedthatsomebacterial

speciessuchasL.fermentumcanbedesignatedasprobiotics

whendeliveredinfoodandfoodsupplementsataminimum

levelof9lgcfuviablecellsperserving.21Thisindicationmeans

thatconsumingenoughfermentedmilk(i.e.,morethan10mL

fermentedmilkthatcontains8lgcfu/mL)perservingnotonly

tastesexcellentandprovidesahighnutritionalvaluebutalso

is agood deliverysystem forprobiotics. Humanscan

con-sumesufficientfermentedmilktoexertabeneficialprobiotic

effecttoregulatetheintestinalmicroecology.However,before

theseprobioticscanreachthedistalpartoftheintestinaltract

Inactivated Viable Model Normal

Fig.5–Ratlivermorphologyasindicatedbystainingwithhematoxylinandeosin(20×10magnification).Note:(1) Inactivated:thefermentedmilksamplewasinactivatedina100◦Cwaterbathfor30minandtheratswerefedthe hypercholesterolchow;(2)Viable:thefermentedmilksampleandtheratswerefedthehypercholesterolchow;(3)Model: salineandtheratswerefedthehypercholesterolchow;(4)Normal:salineandtheratswerefedabasaldiet.

(8)

andexertaprobioticeffect,theLABmustpassthroughthe

highlyacidic(approximatelypH3)gastricfluidinthe

stom-achandtheweaklybasic(pHof7.8–8.4)intestinaljuicethat

contains0.3–2%(w/v)bile-saltsintheupperpartofthe

intesti-naltract,includingaresidencetimeof1–2h.22–24 Therefore,

itwasnecessarytodetermineifthestraincouldfunctionas

desiredafterovercomingthestressfromacidicgastricjuicein

additiontostressfromweaklybasicandbile-salt-containing

intestinaljuice.StrainHLX37wasacidtolerant,asindicated

bytestinginsimulatedgastricjuice(pH2.5)for2h.

Specifi-cally,insimulatedgastricjuice(pH=3for2h)orinacid(pH

3.0,for2h),thesurvivalrateswere33.41%or85.45%,

respec-tively,whilehumangastricjuiceshowedsurvivalratesof15

and45%.20Similarresultswereobtainedbyotherresearchers

suchasZieli ´nskaetal.,20whonotedthatthesurvivalrateof

bacteriaofthegenusLactobacillusinalowpHrangedfrom30

to100%.Meanwhile,HLX37wasalsoabletotoleratea

simu-latedintestinalfluid(pH8.0)for3handbile-salts0.3%(w/v)

for2hwithasurvivalraterangingfrom53.27to95.83%.This

resultwasalsoconfirmedbyMatharaetal.,19whofoundthatL.

plantarumstrainsisolatedfromfermentedmilkproductswere

resistantto0.1–0.5%bilesalts.Thisresultsuggeststhatour

isolatescantoleratelowpHaswellasasuitablebile

concen-tration.

Somelacticacidbacteriacanproducecellsurfaceproteins,

whichoftennotonlydegradesubstratesandingestproducts24

butalsoaidinbindingthebacteriatotheepitheliumofthe

humangastrointestinaltract.Thisbindingphenomenon

pro-vides the required conditions for the immunoregulation25

necessary to remove pathogenic bacteria26 from the host.

Therefore,theadhesivecapacityofabacterialstraininthe

intestinalmucosaisanimportantindex forevaluating the

invivonichesofaprobiotic.Inthisstudy,theauto-aggregation

rateofstrainHLX37and the coagulationrateofEscherichia

DH5␣ were 87.74% and 27.76%, respectively. These results

demonstrated thatthe HLX37strain hasa strongadhesive

capacityconducivetostrongadherenceintheintestinaltract.

Researchhasshownthatanumberofproteinsoccuronthe

surfaceofL.plantarum. Severalsingleproteinscould

medi-atethe in vitroepithelialadhesive capacityofthe bacteria.

Importantly,amannose-specificadhesivefactorparticipates

inthebindingofstrainstotheintestinaltract.27Further

stud-iesarerequiredtodeterminewhetherspecificproteinsand/or

amannose-specificadhesivefactorispresentonthesurface

ofstrainHLX37.

Antibioticresistancestudiesindicatedthatlactobacilliare

usually resistant to classes of antibiotics such as

amino-glycosides, beta-lactams, cephalosporins, quinolones, and

glycopeptides.28–30Kattlaetal.31confirmedthatLactobacillus

issensitivetotetracyclineandchloramphenicol.L.salivarius

strainMTC1026wasfoundtobesensitivetopenicillin,

strep-tomycinandvancomycin.32Inthisstudy,strainHLX37was

alsoresistantto antibiotics,including almostall

aminogly-cosidesaswell aspenicillinandvancomycin testedinthis

study,whichwasalsoreportedinpreviousstudies.Previous

studiesalsoindicatedthatantibioticresistance,suchasthat

observedforL.plantarumHLX37,wasconsideredtobeintrinsic

ornaturalnon-transmissibleresistance.20,33–35

Thesignificantlylower foodconsumptionandfinalbody

weightshowedthatratsfedwithhypercholesterolchowthat

contains higherenergyandismoredifficulttodigest could

causetheratstoreducetheirintakesignificantly.Thisresult

wasaccompaniedbyaslowerweightgain,exceptintheviable

group, which showed thatfeeding withstrain L.plantarum

HLX37couldincreasetheabsorptionandutilizationoffood

inrats.InadditiontoTC,theLDL-CandHDL-Ccontentand

theAIsareimportantindicatorsthatmeasurethe

predispo-sitionforcardiovascularandcerebrovasculardiseases.HDL-C

ismainlysynthesizedintheliver.Itmovessystemic

choles-teroltotheliverforprocessing,whichreducestheprobability

ofcardiovasculardisease,soitisknownasgoodcholesterol.

However,thefunctionofLDL-CopposesthatofHDL-C,and

LDL-Clevelsareindirectlycorrelatedwithgoodhealth.36The

conceptofAIwasproposedbyBhanetal.29 inastudythat

had a large sample, and it was positively correlated with

atherosclerosis,whichsuggestedthatatherosclerosisoccurs

in individuals, and increases the risk ofindividual

cardio-vascular and cerebrovascular disease. Theeffect ofHLX37

fermentedmilkoncholesterolinratswasinvestigatedinthis

study.Wefoundthatviablefermentedmilkratgroupsshowed

alowercholesterollevelintheserumandliverfollowingthe

intakeofahigh-fatdietaswellasalowerAIcomparedwiththe

modelgroup,whichindicatedthatL.plantarumstrainHLX37

couldlowercholesterollevelinvivo.Thisresulthasalsobeen

confirmedbyEl-Gawadetal.37 andFazelietal.38No

signifi-cantdifferenceintheHDL-Clevelbetweentheviablegroup

andmodelgroupwasobservedattheendofthe62d

exper-imentalperiod.Endo etal.39andEl-Gawadetal.37 reported

thattheadditionofaprobiotictothediethadnoeffectonthe

HDL-Clevel.Ourdataagreedwiththisfinding.Inaddition,we

alsofoundthatdeadbacteriahadnoeffectontheHDL-Clevel.

HDL-Cconsistsofcholesterol,lipoprotein,phospholipidand

asmallamountoffatty acid.29 TheHDL-Clevelinthe

nor-malgroupwaslowerthanintheotherexperimentalgroup,

possiblybecausetheexperimentalgroupsreceiveda

hyperc-holesteroldietthatcontainedlard,peanut,sesameoil,sucrose

andcholesterol,whichcouldleadtoanincreaseintheHDL-C

levelcomparedwiththebasaldiet.StudiesbyLiongetal.,40

Kimotoetal.41andJiaoetal.2notedthatdeadbacteriamaybe

abletolowerthecholesterollevel.Inthisstudy,wealsofound

thatratsfedinactivatedfermentedmilkshowedanobviously

lowercholesterollevelintheliverandthepresenceofLDL-C

intheserum.Thisstrainmayreducethecholesterolinthe

mediathroughvariousmeans,suchasco-precipitation.

Meanwhile,amicroscopicpathomorphismanalysisnoted

fewerfatvacuolesandlesionsintheliverininactivatedand

viablegroupscomparedtotheuntreatedmodelcontrolgroup.

Both inactivated and viablefermentedmilkimproved lipid

metabolismwithsignificantdecreasesinbloodfatand

inhi-bitionofhighcholesterolinratsandincreasedresistanceto

arteriosclerosis and repair of hepatic steatosis in the rats.

Thus,it ispossiblethatthis straincanbeusedtocreatea

fermentedmilkproductthatefficientlyreducescholesterol.

Nguyenet al.42foundthatL.plantarumPH04had ahigh

bilesalthydrolaseenzymaticactivity,whichreducesthetotal

cholesterol ina hyperlipidemia rat model, but Tok et al.43

foundthatL.delbrueckiisp.hadnoBSHactivity.The

capac-itytoreducecholesterolintheculturemediumwasdirectly

correlatedwiththebacterialexopolysaccharide.Inthisstudy,

(9)

reducethe TCintheliverandthe LDL-Clevel.These

char-acteristics ofstrain HLX37 are combined with a very high

coagulationrate.Furtherstudiestoinvestigatewhetherthe

metabolicsubstancesinfreshmilkfermentedbythisstrain

can reducecholesteroland to elucidatethe mechanism of

actionunderlyingthisreductionarenecessary.

In conclusion, inthis study,we isolated the LAB strain

L.plantarum HLX37, which could ferment milkand reduce

cholesterol,fromtraditionalfermentedmilk.Aninvitrostudy

confirmed that strain HLX37 could tolerate acid and bile

saltsandsurviveundersimulatedgastrointestinalconditions.

StrainHLX37wasintrinsicallyresistant tothe usual

antibi-oticstestedcomparedtootherL.plantarumforwhichprevious

reports exist, but more information is required to

estab-lishwhetherstrainHLX37containanytransferableantibiotic

resistancegenes.StrainHLX37wasalsofoundtohavestrong

adhesiveproperties,butmorestudiesabouttheadhesive

fac-torare required.Specifically, strainL.plantarumHLX37can

lowercholesterol,asconfirmedbyaninvivostudythatshowed

asignificantreductionoftheTClevelandAIinrats.

Addition-ally,fewerfatvacuolesandliverlesionswerefoundinratsfed

viablefermentedmilkcontainingstrainHLX37.L.plantarum

strainHLX37showsacommercialprobioticpotentialforuse

inpromotinghealth.

Compliance

with

ethics

requirements

Allofanimalsinthisstudywerehandledinaccordancewith

theanimalcareanduseguidelinesestablishedbytheFujian

University of Traditional Chinese Medicine (Fujian, China),

whichentailsminimizingboththenumberandsufferingof

theanimalsusedfortheexperiments.Allexperimental

proce-duresinvolvingratswereapprovedbytheFujianAssociation

forLaboratoryAnimalScience(FALAS).

Conflicts

of

interest

Nonedeclared.

Acknowledgments

Thisworkwassupportedbygrantsfromthewelfareprojects

oftheScienceandTechnologyDepartmentofFujianProvince,

China[2015R1015-8]; the YouthInnovation Fund Project of

AcademyofAgriculturalSciences ofFujianProvince, China

(2014CX-21); the SpecialScienceand Technology Project of

Provincial Department of Finance Fujian Province, China

[2011]211and[2012]1025;andthesurplusfundsofinstituteof

AgriculturalEngineeringTechnology,FujianAcademyof

Agri-culturalSciences[2016-1].

Appendix

A.

Supplementary

data

Supplementarydataassociatedwiththisarticlecanbefound,

intheonlineversion,atdoi:10.1016/j.bjm.2017.02.011.

r

e

f

e

r

e

n

c

e

s

1.WangWM,XuL.Lacticacidbacteria:mechanismsfor cholesteroldegradationin-vitroandin-vivoandits application.JAnimNutr.2014;26(2):295–303(inChinese).

2.JiaoYH,ZhangLW,YiHX,ZhangLL,MaW.Cholesterol removingabilityandbiletoleranceoflacticacidbacteria isolatedfromfermentedyakmilk.JNortheastAgricUniv.

2012;43(2):6–12(inChinese).

3.LiuX,FangYL,DuZL,DaiMX.Screeningofanacinetobacter strainproducingcholesteroloxidaseandstudyonits characteristicandfermentationconditions.Biotechnology.

2010;20(3):80–82(inChinese).

4.LiN,SuGC,ZhouCY,SuWJ.Theprogressinresearchonthe applicationandmechanismofLacticacidbacteriain reducingcholesterol.JMicroecol.2012;24(5):460–464(in Chinese).

5.ShobharaniP,HalamiPM.Invitroevaluationofthe

cholesterol-reducingabilityofapotentialprobioticBacillus

spp.AnnMicrobiol.2015,

http://dx.doi.org/10.1007/s13213-015-1146-6.

6.JeunJ,KimS,ChoSY,etal.Hypocholesterolemiceffectsof

LactobacillusplantarumKCTC3928byincreasedbileacid excretioninC57BL/6mice.Nutrition.2010;26(3):321–330.

7.TomasMSJ,BruE,Nader-maciasME.Differentcombinations ofsaltsaffectthegrowthandbacteriocinproductionby

LactobacillussalivariusCRL1328.JChemTechnolBiotechnol.

2010;85(1):91–99.

8.ArakawaK,KawaiY,FujitaniK,etal.Bacteriocinproduction ofprobioticLactobacillusgasseriLA39isolatedfromhuman fecesinmilk-basedmedia.AnimSciJ.2008;79(5):634–640.

9.WangCY,WuSC,NgCC,ShyuYT.Effectof Lactobacillus-fermentedadldy-basedmilkonlipid metabolismofhamstersfedcholesterol-enricheddiet.Food ResInt.2010;43(3):819–824.

10.LiuYY,YuCQ,WangRH.EffectofLactobacillusplantarumon

fermentationoncholesterolcontentinyogurt.JHeilongjiang BayiAgricUniv.2011;23(6):56–59(inChinese).

11.RudelLL,MorrisMD.Determinationofcholesterolusing O-phtaldealdehyde.JLipidRes.1973;14:364–366.

12.NaserSM,DawyndtP,HosteB,etal.Identificationof lactobacillibypheSandrpoAgenesequenceanalyses.IntJ SystEvolMicr.2007;57:2777–2789.

13.TamuraK,DudleyJ,NeiM,KumarS.MEGA4:molecular evolutionarygeneticanalysis(MEGA)softwareversion4.0.

MolBiolEvol.2007;24:1596–1599.

14.ArcherAC,HalamiPM.ProbioticattributesofLactobacillus fermentumisolatedfromhumanfecesanddairyproducts.

ApplMicrobiolBiotechnol.2015;99:8113–8123.

15.BaoY,ZhangYC,ZhangY,etal.Screeningofpotential probioticpropertiesofLactobacillusfermentumisolatedfrom traditionaldairyproducts.FoodControl.2010;21:

695–701.

16.BauerRW,KirbyMDK,SherrisJC,TurckM.Antibiotic susceptibilitytestingbystandardsinglediscdiffusion method.AmJClinPathol.1966;45:493–496.

17.CLSI(2007)PerformanceStandardsforAntimicrobial

SusceptibilityTesting;SeventeenthInformational

Supplement.ClinicalandLaboratoryStandardsInstitute:

M100-S17(ISBN1-56238-652-5):27(1)(inUSA).

18.HaCH,SwearinginB,JeonYK,LeeM.Effectsofcombined exerciseonHOMA-IR,HOMAb-cellandatherogenicindexin Koreanobesefemale.SportSciHealth.2015;11:49–55.

19.MatharaJM,SchillingerU,KutimaPM,etal.Functional propertiesofLactobacillusplantarumstrainsisolatedfrom MaasaitraditionalfermentedmilkproductsinKenya.Curr Microbiol.2008;56:315–321.

(10)

20.Zieli ´nskaD,RzepkowskaA,RadawskaA,Zieli ´nskiK.Invitro screeningofselectedprobioticpropertiesofLactobacillus strainsisolatedfromtraditionalfermentedcabbageand cucumber.CurrMicrobiol.2015;70:183–194.

21.HillC,GuarnerF,ReidG,etal.TheInternationalScientific AssociationforProbioticsandPrebioticsconsensus statementonthescopeandappropriateuseoftheterm probiotic.NatRevGastroenterolHepatol.2014;11(8): 506–514.

22.ChenW,TanHZ,HuB,LiuXM.Themechanismofacidand biletoleranceofprobioticsinGI-trac.JChinInstFoodSci Technol.2010;12(6):1–6(inChinese).

23.JiangXJ.Effectofintestinalfloraandmicroecologicalin paediatrics.JPhysician.2005;35(3):79–82(inChinese).

24.NavarreWW,SchneewindO.Surfaceproteinsof

gram-positivebacteriaandmechanismsoftheirtargetingto thecellwallenvelope.MicrobiolMolBiolRev.

1999;63(1):174–229.

25.Cunningham-RundlesS,AhrnéS,BengmarkS,Johann-liang R,MarshallF.Probioticsandimmuneresponse.AmJ Gastroenterol.2000;95(1):S22–S25.

26.MackDR,MichailS,WeiS,McdougallL,HollingsworthMA. ProbioticsinhibitenteropathogenicE.coliadherenceinvitro byinducingintestinalmucingeneexpression.AmJPhysiol.

1999;276(4Pt1):G941–G950.

27.AdlerberthI,AhrneS,JohanssonML,MolinG,HansonLA, WorldAE.Amannose-specificadherencemechanismin

Lactobacillusplantarumconferringbindingtothehuman coloniccelllineHT-29.ApplEnvironMicrobiol.

1996;62(7):2244–2251.

28.KaurIP,ChopraK,SainiA.Probiotics:potential

pharmaceuticalapplications.EurJPharmSci.2002;15:1–9.

29.BhanV,YanRT,LeiterLA,etal.Relationbetweenobesityand theattainmentofoptimalbloodpressureandlipidtargetsin highvascularriskoutpatients.AmJCardiol.2010;9:

1270–1276.

30.SinghTP,KaurG,MalikRK,SchillingerU,GuigasC,KapilaS. CharacterizationofintestinalLactobacillusreuteristrainsas potentialprobiotics.ProbioticsAntimicrobProteins.

2012;4:47–58.

31.KatlaAK,KruseH,JohnsenG,HerikstadH.Antimicrobial susceptibilityofstarterculturebacteriausedinNorwegian dairyproducts.IntJFoodMicrobiol.2001;67:147–152.

32.TinratS,SarayaS,ChomnawangMT.Isolationand characterizationofLactobacillussalivariusMTC1026asa potentialprobiotic.JGenApplMicrobiol.2011;57:365–378.

33.KumarM,GhoshM,GanguliA.Mitogenicresponseand probioticcharacteristicsoflacticacidbacteriaisolatedfrom indigenouslypickledvegetablesandfermentedbeverages.

WorldJMicrobiolBiotechnol.2012;28:703–711.

34.MatharaJM,SchillingerU,GuigasC,etal.Functional characteristicsofLactobacillusspp.fromtraditionalMaasai fermentedmilkproductsinKenya.IntJFoodMicrobiol.

2008;126:57–64.

35.TamangJP,TamangB,SchillingerU,FranzC,GoresM, HolzapfelWH.Identificationofpredominantlacticacid bacteriaisolatedfromtraditionallyfermentedvegetable productsoftheeasternHimalayas.IntJFoodMicrobiol.

2005;105:347–356.

36.YuP,WangXH.Cholesterol-degradinginmicebyLactobacillus plantarumLpT1andLpT2invivo.ActaMicrobiolSin.

2012;52(1):124–129.

37.EI-GawadIAA,EI-SayedEM,HafezSA,El-ZeiniHM,SalehFA. Thehypocholesterolaemiceffectofmilkyoghurtand soy-yoghurtcontainingbifidobacteriainratsfedona cholesterol-enricheddiet.IntDairyJ.2005;15(1):37–44.

38.FazeliH,MoshtaghianJ,MirlohiiM,ShirzadiM.Reductionin serumlipidparametersbyincorporationofanativestrainof

LactobacillusplantarumA7inmice.IranianJDiabetesLipid Disord.2010;9:17.

39.EndoT,NakanoM,ShimizuS,FukushimaM,MiyoshiS. Effectsofaprobioticonthelipidmetabolismofcocksfedon acholesterol-enricheddiet.BiosciBiotechnolBiochem.

1999;63:1569–1575.

40.LiongMT,ShahNP.Acidandbiletoleranceandcholesterol removalabilityoflactobacillistrains.JDairySci.

2005;88:55–66.

41.KimotoH,OhmomoS,OkamotoT.Cholesterolremovalfrom mediabyLactococci.JDairySci.2002;85:3182–3188.

42.NguyenTDT,KangJH,LeeMS.Characterizationof

LactobacillusplantarumPH04,apotentialprobioticbacterium withcholesterol-loweringeffects.IntJFoodMicrobiol.

2007;113:358–361.

43.TokE,AslimB.Cholesterolremovalbysomelacticacid bacteriathatcanbeusedasprobiotic.MicrobiolImmunol.

Referências

Documentos relacionados

Viable cell counts during fermentation and storage of fermented milk with yogurt starter culture (SC) and

The objective of this study was to model MUN and lactose levels in Holstein cows and their relationship with days in milk (DIM), milk yield, milk fat, milk protein, and

Therefore, the aim of this study was to determine the molecular weight and the presence of aromatic amino acids of peptides released by LAB in a commercial fermented milk stored

Em alguns locais não existia uma correta diferenciação nem locais próprios para lixo (Figura 32). Figura 32 - Plástico de proteção de planos magnéticos espalhado no chão Figura

Average values for the variation of the mass of the kefir grains (Δm) and yield of fermented beverage (R) of mixed fermented beverages of whole milk and açaí berry pulp using

Thus, the foods were divided into 13 groups: milk and dairy products (yogurt, chocolate milk, cheese, processed cheese spread, and fermented milk); fruits and natural

In this study, the physical and physicochemical stability of peel off facial mask formulations containing fermented soy milk, and their respective cosmetic bases, were compared by

External Data “Managing supply chain disruption is a challenge for both global and local enterprises and requires a risk -versus- economic efficiency calculation on the part of