• Nenhum resultado encontrado

PRINCÍPIOS DE RADIOATIVIDADE RADIOBIOLOGIA

N/A
N/A
Protected

Academic year: 2022

Share "PRINCÍPIOS DE RADIOATIVIDADE RADIOBIOLOGIA"

Copied!
65
0
0

Texto

(1)

PRINCÍPIOS DE RADIOATIVIDADE

RADIOBIOLOGIA

(2)

Estrutura e representação dos átomos

ÁTOMOS

prótons

nêutrons

partículas β- (negatron)

partículas β+ (positrons)

NÚCLEO ÓRBITAS

Eletrons

Energia nuclear

Energia que mantém a ligação de p+ e n

(3)

X A

Z

X símbolo do elemento

Z número atômico (número de prótons) A número de massa (prótons + nêutrons) A-Z = N (número de nêutrons)

Átomos

(4)
(5)

Elementos químicos naturais

Atualmente, a tabela periódica contem 118 elementos confirmados: do elemento 1 (hidrogênio) até o 118 (oganesson).

Os elementos 113 (Nihonium), 115 (Moscovium), 117 (Tennessine) e 118 (Oganesson) foram confirmados oficialmente pela União Internacional de Química Pura e Aplicada (IUPAC), em dezembro de 2015.

(6)

Elementos químicos naturais

(7)

Emissão espontânea de partículas ou energia a partir do núcleo de um átomo

Radioatividade

Radiação

ionização de átomos e moléculas modificação química

(8)

Radioatividade (Origem)

Natural

fontes naturais na superfície (“anomalias”)

radiações cósmicas (sol)

Artificial Fissão e fusão nucleares

Casal Joliot-Curie, Frederic e Irene, demonstrou a existência do nêutron e descobriu, em 1934, a radioatividade artificial, bombardeando núcleos de boro e alumínio com partículas alfa, o que lhe valeu o prêmio Nobel de Química de 1935.

(9)

Fontes artificiais de radiação

Geradores de Radiação:

Tubo de raios X nos equipamentos de radiodiagnóstico;

Aceleradores de partículas;

Fontes de nêutrons;

Irradiadores com radioisótopos.

(10)

Como usar a energia armazenada no núcleo do átomo?

Fissão nuclear

Bombardeamento de núcleos – transmutação de elementos

(11)

Ex. Urânio 235

Reação em cadeia

(12)

Fusão nuclear

(13)

Elementos químicos capazes de produzir radiação

1) ISÓTOPOS

2) ISÔMEROS

(14)

ISÓTOPOS átomos de mesmo elemento químico com massas diferentes

mesmo lugar na classificação periódica dos elementos

mesmo número de prótons

varia o número de nêutrons

Duas classes:

Estáveis não se modificam espontaneamente (não são radioativos). Ex: C12, N14, O16, ...

Instáveis emitem espontaneamente partículas ou energia pelo núcleo (radioisótopos). Ex: H3,I125, I131

(15)

Isótopos de urânio

Para a ocorrência de fissão nuclear em cadeia e produção de energia em um reator nuclear, a amostra de urânio deve ter 32 átomos U235 para 968 U238 (3,2%)

Urânio na natureza - dióxido de urânio (UO2) (99,284% do isótopo U238; 0,711% do isótopo U235; quantidade desprezível de U234.

Em 1000 átomos, 7 são U235 e 993 são U238 (0,7 %)

Urânio enriquecido é aquele cujo teor de U235 foi aumentado por tratamento industrial do isótopo natural.

(16)

O urânio enriquecido tem entre 90% e 99% de U-235. Por essa altíssima concentração, o produto gera uma energia absurda em frações de segundo durante a fissão nuclear.

Por isso, o urânio enriquecido é usado nas bombas atômicas.

Alguns gramas dele causam mais destruição do que a observada em Hiroshima, no Japão, em 1945.

Reator nuclear 3,2 % / Bomba atômica 90 %

Reator nuclear – geração de energia pela produção de calor originada na fissão nuclear

(17)

Reator nuclear – geração de energia pela produção de calor originada na fissão nuclear

(18)

Reator nuclear – geração de energia pela produção de calor originada na fissão nuclear

(19)

Alguns gramas de urânio enriquecido fornecem energia equivalente à da queima de toneladas de carvão ou de milhões de litros de gasolina

Reator nuclear – geração de energia pela produção de calor originada na fissão nuclear

(20)

ISÔMEROS

Possuem mesmo número de prótons e nêutrons, mas diferem no conteúdo de energia do núcleo.

Dois estados:

Metaestáveis (m)  excesso de energia.

Fundamental  após a emissão de energia

O estado metaestável de um átomo é causado pela excitação de um próton ou nêutron no seu núcleo atômico, de modo que estes sofram uma mudança de spin (angulação estrutural) antes que possam liberar sua energia extra.

(21)

ISÔMEROS conhecidos

(22)

Emissões radioativas - Primárias

Emissão alfa um nuclídeo emite uma partícula e se transforma em outro átomo.

(23)

Emissão beta um nuclídeo emite uma partícula β- (negatron) ou β+ (positron) e se transforma em outro átomo.

Partícula

Massa de um elétron

β- - elétron β+ - anti-elétron

(24)

Emissão gama um átomo, após emissão de partícula, sofre rearranjo nuclear e emite radiação gama (energia eletromagnética).

Não tem carga elétrica

(25)

Captura de elétrons (CE) núcleo absorve elétron da órbita K. Ao chegar no núcleo, o excesso de energia do elétron é emitido como radiação gama ou Raios X.

Emissões radioativas - Secundárias

(26)

Transição isomérica (TI) Emissão de energia gama, após rearranjo energético das partículas intra-nucleares.

Bromo, Tecnécio, Índio

(27)

Captura isomérica (CI) A radiação gama emitida pelo núcleo na transição isomérica é absorvida por elétrons orbitais, que são ejetados.

(28)

Propriedades das emissões radioativas

1) Capacidade de ionização da matéria

2) Capacidade de penetração da matéria

(29)

Propriedades das emissões radioativas

Alfa partícula mais pesada. Altamente ionizante. Mínima penetração.

Beta massa ínfima. Menos ionizante, porém mais penetrante que a partícula alfa.

Gama radiação menos ionizante de todas, porém altamente penetrante

(30)

Múltiplos:

Kilo elétron volt - keV  103 eV

Mega elétron volt - MeV 106 eV

Giga elétron volt - GeV 109 eV

Energia das radiações - Elétron volt

Emissões radioativas Alta energia ELÉTRON VOLT (eV)

1 eV = 1,6 x 10-19 J (unidade muito pequena)

Energia cinética adquirida por um átomo acelerado entre 2 pontos cuja diferença de potencial é 1 volt

(31)

Obs: Reações químicas  2 a 10 eV de Energia

keV MeV

Comuns em radioisótopos

usados em Biologia

(32)

Meia - Vida

Radioatividade de um material diminui ao longo do tempo (decaimento).

tempo necessário para a radioatividade cair à

metade

Decaimento do iodo-131

MEIA VIDA (T ½)

(33)

Unidades

Atividade de um radioisótopo emissões na unidade de tempo

Becquerel (Bq) = 1 desintegração por segundo

Curie (Ci) = 3,7 x 1010 Bq (Referência 1 grama de Ra226)

Becquerel (Bq) = 2,7 x 10-11 Ci

Atividade específica atividade x massa

Ci.g-1 = 3,7 x 1010 . g-1

(34)

Dose de radiação (exposição)

Roentgen r - dose de exposição (quantidade de radiação necessária para produzir 1,61o x 1012 pares de íons / kg ar seco a 0°C)

Rem (roentgen equivalent man) - uma unidade de dose de radiação

Sievert - 1 Sv = 100 rem Dose absorvida (D)

Rad rd - dose absorvida de radiação (unidade antiga)

Gray Gy absorção de energia (quantidade de radiação que deposita energia de 1 joule por kg de massa do material absorvente)

Grandeza Unidade antiga ou especial Unidade SI Equivalência

Atividade (A) Ci (curie) Bq (becquerel) 1 Ci = 37 G Bq

Exposição (X) R (roentgen) Gy (gray) 1 Gy ≈ 100 R

Dose de radiação rem (roentgen equivalent man) Sv (sievert) 1 Sv = 100 rem Dose absorvida (D) rad (Radiation absorbed dose) Gy (gray) 1 Gy = 100 rad

Dose equivalente (H) Sv (sievert)

(35)

Radiações ionizantes e excitantes

Alta frequência Baixa frequência

Radiações ionizantes Raios X e raios gama (possuem energia suficiente para ionizar a matéria)

Radiações excitantes Raios ultra violeta (U. V.)

(36)

Raios-X: Duros (muito energéticos); Médios e Moles (pouco energéticos)

Raio X - propriedades

Tecido a ser radiografado Tecido duro

Tecido mole Tecido oco

Classificação dependendo da capacidade de penetração da radiação no tecido:

(37)

As cinco densidades radiográficas:

A propriedade que têm os raios x de atravessar a matéria com diferentes remoções dependendo da substância e do seu estado físico faz com que no corpo possamos encontrar cinco densidades fundamentais.

- Ar (preto) a menor absorção de raio-X. Engloba o ar ou outro gás que nos encontremos dentro do organismo. Exemplo: pulmões, tubo digestivo.

- Gordura (cinza): absorve algo mais de radiação. Nós a encontramos entre os músculos, no abdômen cercando as vísceras.

- Água (cinza pálido): é a densidade normal dos tecidos moles e / ou dos órgãos cheios de líquido. Coração, fígado, baço bexiga urinária, músculos, sangue.

- Osso (branco): grande absorção. Ossos, cartilagens calcificados.

- Metal (branco absoluto): Não existe no organismo. Bário, iodo, corpos estranhos metálicos.

- Terminologia Radiológica de acordo com o tipo de densidade.

- Rádio Lúcido: objetos ou tecidos que são totalmente penetrables pelos raio-X.

Cor Preta: ar densidade: Ar.

- Rádio Opaco: objetos ou tecidos que são total ou parcialmente impenetráveis pelos raio-X.

Opacidade branca brilhante: meio de contraste, metal: densidade metálica.

Opacidade Branca: osso densidade óssea: Cálculos.

Opacidade cinza: músculos, gordura, líquidos, massas, pneumonia, órgãos sólidos.

(38)
(39)

Usos da luz UV/ benefícios:

Acelerar reações fotossensíveis

Esterilização (UVB)

Luz negra (leitores óticos, lanternas)

Germicida

Polimerização de resinas

Emprego terapêutico (fototerapia)

Síntese de vitamina D (raquitismo)

Antidepressivo “sazonal” (serotonina)

Luz Ultra-Violeta (UV) - Energia excitante

energizando o átomo (calor, radiação γ ou X, eletricidade) - elétrons absorvem energia e saltam para orbitais mais externas.

Na volta, a energia é devolvida como luz UV.

(40)

Radiação UV - principal fonte - sol (a porção UV < 10% de sua energia total).

- Toda radiação com comprimento de onda menor que 400nm.

- O espectro UV é subdivido em faixas:

UVA para 320 -400nm,

UVB para 280 - 320nm,

UVC para 200 - 280nm.

UVC - Praticamente todo absorvido pelo ozônio. Pouquíssimo ou nada chegam à biosfera.

UVB - Boa parte é absorvida pelo ozônio. A faixa dos maiores comprimentos é espalhada e atenuada, mas mesmo assim chega à biosfera.

UVA - Não é absorvida pelo ozônio. É a parte UV que mais atinge a biosfera.

(41)

Estudo dos efeitos das emissões radioativas na Natureza, especialmente nos seres vivos.

Radiobiologia

Radiação de fundo - ambiental

Jazidas Brasil

(42)

Emissões radioativas

agem nos sistemas biológicos

Formação de íons e

radicais livres na

matéria

Radicais reagem em caminhos

metabólicos diferentes dos

normais

Resultados biológicos

(43)

✓Ação direta radiação choca-se diretamente com as moléculas biológicas (DNA, proteínas, lipídeos, etc)

20 % do efeito total

Mecanismos do efeito biológico das radiações

proteína

(44)

Mecanismos do efeito biológico das radiações

✓Ação indireta radiação é absorvida pela água, formação de radicais muito reativos lesão de biomoléculas.

80 % do efeito total

(45)

Efeitos biológicos das radiações

(46)

Níveis estruturais e efeitos das radiações

(47)

Níveis estruturais e efeitos das radiações

Níveis SUPRAMOLECULARES:

sensibilidade diferencial para células e tecidos.

Nível MOLECULAR (lesões).

Podem:

Limitar-se a uma estrutura.

Ser reversível ou irreversível.

Ser transmitida geneticamente (mutações).

(48)

Níveis estruturais e efeitos das radiações

Níveis supramoleculares sensibilidade diferencial para células e tecidos.

Muito sensíveis Medianamente sensíveis Menos sensíveis 1.0 – Tecido Hematopoiético

(Linfócitos, Eritroblastos)

3.0 – Células Endoteliais 6.0 – Células Ósseas 2.0 – Células Epiteliais

(Testículo, Ovário e Pele)

4.0 – Tecido Conectivo 7.0 – Células Nervosas 5.0 – Células Tubulares dos Rins 8.0 – Células Musculares

(49)

Radiossensibilidade animal é maior

animais mais jovens

mais evoluídos na escala zoológica + sensíveis.

Fatores de sensibilidade tissular. Ordem decrescente

1. Maior quantidade de água 3. Taxa elevada de reprodução

2. Maior concentração de DNA 4. Baixo grau de diferenciação celular

(indivíduos mais jovens)

(50)

Radioisótopos Aplicações

Uso diagnóstico

Medicina nuclear

Uso terapêutico

Agricultura (pesquisa, melhoramento)

Indústria de alimentos

Indústria

Pesquisa médica / biológica (estudos ambientais)

(51)

Uso diagnóstico

Radioisótopos administrados a pacientes emitem radiação do órgão onde se concentram.

Iodo-131 (I-131) - emite partícula beta, radiação gama e tem meia- vida de oito dias.

O iodo é absorvido preferencialmente pela glândula tireoide, onde se concentra.

O paciente ingere solução de I-131 (absorvido pela glândula),

Um detector na frente do pescoço do paciente registra a distribuição / concentração do iodo em relação ao um padrão.

(52)

Uso diagnóstico

Tecnécio-99 (Tc-99m) - utilizado para mapeamento de diversos órgãos (cintilografia) :

cintilografia renal, cerebral, hepato-biliar (fígado), pulmonar e óssea, de placenta.

diagnóstico do infarto agudo do miocárdio / estudos circulatórios;

Samário-153 (Sm-153) aplicado em pacientes com metástase óssea (paliativo para a dor).

Os radiofármacos usados em medicina no Brasil são, em grande parte, produzidos pelo Instituto de Pesquisas Energéticas e Nucleares - IPEN, em São Paulo.

Distribuídos regularmente aos usuários.

(53)

Uso terapêutico

Radioterapia contra células cancerosas.

Fontes radiativas de césio-137 e cobalto-60 - usadas para destruir células de tecidos neoplásicos (mais sensíveis à radiação que dos tecidos sadios - radiosensibilidade).

Aparelho de radioterapia mais conhecido - Bomba de Cobalto - fonte cobalto-60 (Co-60), encapsulada e blindada.

Fonte de césio-137 - substituída pela de Co-60 - maior rendimento terapêutico.

(54)

Uso na indústria de alimentos/agricultura

Uma aplicação importante - irradiação para a conservação de produtos agrícolas (batata, cebola, alho e feijão).

Batatas irradiadas podem ser armazenadas por mais de um ano sem murcharem ou brotarem.

(55)

Uso na indústria de alimentos/agricultura

Cebolas irradiadas podem ser armazenadas por mais de um ano sem murcharem, brotarem ou apodrecerem.

(56)

Uso na pesquisa biológica

Estudos ambientais/agricultura

O uso de traçadores radioativos possibilita o estudo do comportamento de insetos, como abelhas e formigas.

Ao ingerirem radioisótopos, os insetos ficam marcados, passam a “emitir radiação”, e seu “raio de ação” pode ser acompanhado.

No caso de formigas, descobre-se onde fica o formigueiro e, no caso de abelhas, até as flores de sua preferência.

(57)

Uso na pesquisa biológica

Estudos ambientais/agricultura

“Marcação” de insetos - útil para eliminação de pragas.

Identifica que predador se alimenta de determinado inseto indesejável. Neste caso, o predador é usado em vez de inseticidas.

(58)

Uso na pesquisa biológica

Estudos ambientais/agricultura

Outra forma de eliminar pragas - esterilizar machos por radiação gama - soltá-los no ambiente para competirem com os normais,

- redução sucessiva da reprodução, até a eliminação da praga, sem poluição com produtos químicos.

(59)

Uso na pesquisa biológica

Fósseis de madeira, papiros e animais contêm C-14 (meia- vida - 5.600 anos). Ou seja, a cada 5.600 anos, a atividade do C-14 é reduzida à metade. Medindo-se a proporção de C-

14 ainda presente é possível saber a “idade” do material.

Exemplo - determinação da idade dos Pergaminhos do Mar Morto.

(60)

Uso na pesquisa biológica

Estudo de processos que ocorrem nos sistemas biológicos.

Podem ser usados sob duas formas:

Radionuclídeos - efeitos biológicos relacionados ao próprio nuclídeo (H3, C14, Na24, I131). Ex: transporte de sódio, metabolismo do ferro.

Radiocompostos (Radiofármacos) - radionuclídeos incorporados em moléculas. Permite verificar o que aconteceu com o composto. Ex: metabolismo da glicose.

(61)

Uso na indústria

Gamagrafia industrial - aplicação de radioisótopos - radiografia de peças metálicas.

Fabricantes de válvulas gamagrafia para Controle da Qualidade - defeitos ou rachaduras no corpo das peças.

(62)

Uso na indústria

As empresas de aviação fazem inspeções frequentes nos aviões, para verificar se há “fadiga” nas partes metálicas e soldas essenciais sujeitas a maior esforço (asas e turbinas) - gamagrafia.

(63)
(64)

Uso na indústria (farmacêutica)

Uso de fontes radioativas esterilização de seringas, luvas cirúrgicas, gaze e material farmacêutico descartável, em geral.

Seria praticamente impossível esterilizar, pelos métodos convencionais (altas temperaturas), tais materiais, que se deformariam ou se danificariam.

(65)

Referências

Documentos relacionados

A partir das afirmações descritas, Freire (2004) aponta para dois momentos distintos: o primeiro como aquele em que o oprimido passa a desvelar o mundo da opressão o qual está

A partir de uma analise historica do Institute da Propriedade na Grecia Antiga, evidencia-se que a propriedade rural se baseava inicialmente no uso coletivo da terra - administragao

Com relação à ortogonalização, nos testes iniciais, não houve muita distinção entre a deflacionária e a simétrica, já que como as funções de custo pow3, tanh e

7.2. É facultado ao IFPI o remanejamento das vagas para outros campi ou Reitoria, nos casos em que, mesmo com as alternâncias ilustradas no item 7.1, as vagas não sejam ocupadas.

No sistema de tratamento de água são aplicados dois diferentes tipos de agitação: na floculação, cujo objetivo é promover o contato entre as partículas e a

Adenomas from patients with carcinoma showed significantly higher values of total vascular area determined by immunostaining for CD105 (cutoff value = 4386 μm 2 ; P = 0.019) and

fonte formal diversa e a lei é complementada por ato normativo infralegal, como uma portaria ou um decreto. Como exemplo, pode-se citar o art. 33 da Lei nº 11.343/2006, em que

Claudia Maria Finamore e João Eduardo Coin de Carvalho (2006, p. 356-357), ressaltam o quanto esses silogismos estão evidenciados diariamente pela influência dos discursos sobre a