• Nenhum resultado encontrado

Selection of starter cultures for the production of sour cassava starch in a pilot-scale fermentation process

N/A
N/A
Protected

Academic year: 2021

Share "Selection of starter cultures for the production of sour cassava starch in a pilot-scale fermentation process"

Copied!
9
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Biotechnology

and

Industrial

Microbiology

Selection

of

starter

cultures

for

the

production

of

sour

cassava

starch

in

a

pilot-scale

fermentation

process

Fernanda

Corrêa

Leal

Penido

a,∗

,

Fernanda

Barbosa

Piló

b

,

Sávio

Henrique

de

Cicco

Sandes

c

,

Álvaro

Cantini

Nunes

c

,

Gecernir

Colen

a

,

Evelyn

de

Souza

Oliveira

a

,

Carlos

Augusto

Rosa

b

,

Inayara

Cristina

Alves

Lacerda

a

aUniversidadeFederaldeMinasGerais,FaculdadedeFarmácia,DepartamentodeAlimentos,BeloHorizonte,MG,Brazil

bUniversidadeFederaldeMinasGerais,InstitutodeCiênciasBiológicas,DepartamentodeMicrobiologia,BeloHorizonte,MG,Brazil cUniversidadeFederaldeMinasGerais,InstitutodeCiênciasBiológicas,DepartamentodeBiologiaGeral,BeloHorizonte,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18May2017 Accepted5February2018 Availableonline28February2018 AssociateEditor:SolangeI. Mussatto

Keywords:

Lacticacidbacteria Yeasts

Startercultures Fermentation Bakeryproducts

a

b

s

t

r

a

c

t

Sourcassavastarch(Polvilhoazedo)isobtainedfromaspontaneousfermentationconducted bymicroorganismsfromrawmaterialsandfermentationtanks.Thisproductis tradition-allyusedinthebakingindustryforthemanufactureofbiscuitsandBraziliancheesebreads. However,theendoffermentationisevaluatedempirically,andtheprocessoccurswithout standardization,whichresultsinproductsofinconsistentquality.Predominantmicrobiota fromacassavaflourmanufacturerwasisolatedinordertoselectstarterculturesforthe productionofsourcassavastarchinapilot-scalefermentationprocess.Lacticacid bacte-riaand yeasts wereisolated,enumerated andgroupedbyRestrictionFragment Length Polymorphism,andPCRfingerprinting,respectively.Oneisolateofeachmolecularprofile wasidentifiedbysequencingoftherRNAgene.LABwereprevalentthroughouttheentire process.Lactobacillusbrevis(21.5%),whichproducedthehighestvaluesofacidity,and Lac-tobacillusplantarum(13.9%)wereamongthemostfrequentspecies.Pichiascutulata(52.2%) wastheprevalentyeastandshowedamylolyticactivity.Theaforementionedspecieswere testedassingleandmixedstarterculturesinapilot-scalefermentationprocessfor28days.

L.plantarumexhibitedbetterperformanceasastarterculture,whichsuggestsitspotential fortheproductionofsourcassavastarch.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:fclpenido@gmail.com(F.C.Penido).

https://doi.org/10.1016/j.bjm.2018.02.001

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

Becausecassava(ManihotesculentaCRANTZ)hasahighstarch content (approximately 80%), it is an important source of carbohydratesthatcanbesoldfreshorprocessedintoa vari-ety ofvalue-added products; cassava ischaracterized as a multipurposecrop.1In2014,theestimatedBraziliancassava

productionwas23milliontons.2Althoughwidelyconsumed,

cassavahaslimitationsduetoitsperishability,toxicityand lowproteincontent.3Therootofcassavacontainscyanogenic

glycosidesthatactasdefencesubstancesthroughtherelease ofhydrogencyanide,whichisresponsibleforitstoxicity.The traditional fermentations of cassava are quite suitable for thedetoxification,preservationanddevelopmentofproducts withdesirableviscoelastictexture.4Lacticfermentationnot

onlyextendstheshelflifeofthisrootbutalsodecreasesits toxicity.5

Naturalfermentationofwetstarchextractedfromcassava rootisatraditionaltechnologywidelyusedinLatin Amer-ica.Sweet cassava starchand sour cassavastarch undergo thesameprocessofstarchextraction,butdifferin fermen-tationtime(fromtwotosevendaysandfrom20to70days, respectively) and therefore have different levels of acidity, maximum of1% ofacidity and 5% ofacidity, respectively. Sourcassavastarchstandsoutfromsweetcassavastarchand otherflourinthepreparationofbakeryproductsforitsunique expansioncapacity,withouttheadditionofbakingsodaand in the absence of gluten. Sour cassava starch is a typical Brazilianfoodgenerallyproducedbysmallandmedium-sized ruralindustries.6Assourcassavastarchisessentially

hand-crafted,eventhoughitisproducedinmoderncassavaflour manufacturers, it still has heterogeneous physicochemical andsensoryquality.Thesuccessionofmicroorganismsfrom rawmaterialsandfermentationtanksoccursnaturally dur-ingcassavafermentationandresultsinamicrobiotawitha prevalenceoflacticacidbacteria(LAB),suchasLactobacillus plantarum,Lactobacillusfermentum,Lactobacillusbrevisand Leu-conostocmesenteroides.7–10 Inthe productionofsourcassava

starchinBrazil,Lactobacillusoccursinassociationwithyeasts, suchasGalactomycesgeothricumandIssatchenkia(nowPichia)

sp.6,11

Thewiderange andcomplexity ofcassavaspontaneous fermentationmicrobiotaarethemainfactorsresponsiblefor thelackofhomogeneityandlowproductquality.Theuseof selectedstrainsisanimportantalternativebecauseitprovides lessvariationinthecontentofchemicalcompounds,shorter fermentationtime,higheryieldandsensorialquality.12,13The

LAB,whichareusedasnaturalorselectedstarterculturesin fermentedfoods,areabletoacidifyandenhancetheflavor. Furthermore, the LAB can protect food from the develop-ment of pathogens due to the formation of antimicrobial compounds.14,15

AlthoughsourcassavastarchiswidelyconsumedinLatin Americaandgained prominenceinthe preparationof bak-eryproductswithalowlevelortheabsenceofgluten,there are fewstudieson itsfermentationprocess.Therefore, the studyofstarterculturescontributessignificantlytothe under-standingandoptimizationofsourcassavastarchproduction. Thepresentworkaimedtoselectthestartercultureswiththe

appropriatecharacteristicsfortheproductionofsourcassava starchinapilot-scalefermentationprocess.

Materials

and

methods

Collectionofsamplesfromcassavaflourmanufacturer

Atotalof16samplesof100geachwerecollectedfroma cas-savaflourmanufacturerinthemunicipalityofFormiga,Minas Gerais(MG)state,Brazil,ondays0,5,12,19,26,33and40of a56-dayspontaneousfermentationfromafermentationtank withusablecapacityof16,000L.Thesesampleswere trans-portedtothelaboratoriesofFoodMicrobiologyandIndustrial Microbiology and Biocatalysis(Faculdadede Farmácia, Uni-versidade Federal de Minas Gerais, MG,Brazil) on ice and processedwithin24h.Theprocessingconsistedofweighing twenty-fivegramsofeachsampleinsterileflasks,dilutedin 225mLof1gL−1peptonewater,andpreparingserialdecimal dilutions.16

Identificationoflacticacidbacteriafoundonsamplesfrom cassavaflourmanufacturer

AppropriatedecimaldilutionswerespreadondeMan,Rogosa andSharpe(MRS;Acumedia,Lansing,MI,USA)agar contain-ing0.1gL−1cycloheximide16andincubatedinanaerobicjars

of 2.5L (Permution, Curitiba, Brazil)at 37◦C for 48h. After growth,onecolonyofeachmorphotypewascountedand puri-fiedforlateridentification.EachisolatewasGramstainedand thensubjectedtothecatalasetest.17

DNA was extracted with an adaptation of the method described by Hoffman and Winston.18 The colonies

previ-ously grown on MRS agar were resuspended in 100␮L of Tris–EDTA (TE).Then, 100␮Lofphenol–chloroform–isoamyl alcohol(25:24:1) and0.3gofglassbeadswere addedtothe suspension. Tubes containing this mixture were homoge-nized by a vortex shaker (QL-901, Biomixer, Santa Clara, CA, USA) for three to4min and centrifuged at 13,000rpm for 5min(Eppendorf, Hamburg, Hamburg, Germany).After that,thesupernatantwastransferredtoanothertube.Then, a volume of 960mLL−1 ethanol corresponding to the vol-ume ofthe supernatant recovered was added to the tube. Thetubes were homogenizedbyinversionand centrifuged at 13,000rpm for 2min. The liquid phase was discarded, the tubes were driedovernight,and the DNA resuspended in 50␮LofTE. TheDNA concentration wasdetermined by NanoDropND1000Spectrophotometer(NanoDropProducts, Wilmington, DE,USA). TheDNA oflactic acid bacteriawas subjectedtoPCRamplificationofthe16SrRNAgeneusingthe primers27F(5-AGAGTTTGATCCTGGCTCAG-3)and1492R(5 -GGTTACCTTGTTACGACTT-3).19AllLABisolatesweregrouped

byRestrictionFragmentLengthPolymorphism(RFLP)by diges-tionwithrestrictionenzymesMspI,HinfIandHaeIII(Promega Corporation, Madison, WI, USA) according to the modified methodology of Brightwell et al.20 For the digestion

reac-tion,2␮Lof10×buffer,2␮Lofbovineserumalbumin(BSA) onlyfortheMspIenzyme,1␮Lofenzyme,DNA≤1500ng/␮L and water q.s.p. 20␮L. Thetubes were incubated at 37◦C for 3h. Therestriction fragments obtainedwere separated

(3)

by2%agarosegelelectrophoresis(Pronadisa,Spain)in0.5% TBE buffer at 100V. Thegels were stained withGelRedTM solution(Biotium,USA)andvisualizedunderultravioletlight (UV)byanimagecapturesystem(VilberLourmat,France).An isolateofeachdifferentmolecularRFLPprofilewasselected andsubjectedto16SrRNAsequenceanalysis.19Sampleswere

sequencedbycapillaryelectrophoresisinABI3130equipment usingPOP7polymerandBigDyev3.1(MyleusBiotechnology, BeloHorizonte,MG,Brazil).Thesequenceswereassembled, editedandalignedwiththeprogramMEGA6.21Thesequences

obtainedwerecomparedwiththoseincludedintheGenBank databaseusingtheBasicLocalAlignmentSearchTool(BLAST

athttp://www.ncbi.nlm.nih.gov).

DifferentiationofspeciesoftheL.plantarumgroup

Alltheisolatesthatwerepresumablyidentifiedby16SrRNA sequenceanalysisasbelongingtotheL.plantarumgroupwere subjected to Multiplex PCR Assay with recA Gene-Derived Primers. This analysis allows the separation of the three closelyrelatedspeciesfromtheL.plantarumgroupby com-parisonofthesizeoftheiramplicons:318bpforL.plantarum,

218bpforLactobacilluspentosus and 107bpforLactobacillus paraplantarum.22 L. plantarum ATCC1 4917, L. paraplantarum

DSM10667andL.pentosusATCC8041wereusedascontrols.

Identificationofyeastsfoundonsamplesfromcassava flourmanufacturer

Portionsofappropriatedecimaldilutionswere spread onto yeastextract–maltextract(YM;Acumedia,Lansing,MI,USA) agarcontaining0.2gL−1chloramphenicolandincubatedfor 48hat25◦Cunderaerobicconditions.6 Onecolonyofeach

differentmorphotypewascountedandpurifiedforlater iden-tification.

ThetotalDNA ofeach yeast isolatewas extracted with an adaptation of the method described by da Silva-Filho et al.23 The colonies previously grown on YM agar were resuspendedin100␮Loflysisbuffer(Tris–HCl– trishydrox-ymethylaminomethane–0.05M,0.05MEDTA,0.1MNaCland 10gL−1 SDS –sodium dodecyl sulfate). Thetubes contain-ingthesuspensionwereincubatedinawaterbathat65◦C for35min.Then,100␮Lofphenol–chloroform–isoamyl alco-hol(25:24:1)wereaddedtothesuspension.Tubescontaining thismixturewerehomogenizedbyavortexshaker(QL-901, Biomixer,SantaClara,CA,USA)for3minandcentrifugedfor 15min(Eppendorf,Hamburg,Hamburg,Germany).Afterthat, thesupernatant wastransferredto anothertube, towhich wasadded100␮Lofcold700mLL−1ethanol.Thetubeswere homogenizedbyinversionandcentrifugedat13,000rpmfor 3min(Eppendorf,Hamburg,Hamburg,Germany).Theliquid phasewasdiscardedandthetubesweredriedovernight.The DNAwasresuspendedin100␮LofTE,andstoredinafreezerat −20◦C.TheDNAconcentrationwasdeterminedbyNanoDrop

ND1000Spectrophotometer(NanoDrop Products, Wilming-ton,DE,USA).

Allyeastisolatesweregroupedbytheirmolecularprofiles usingthePCRfingerprintingtechniquewiththemicrosatellite primer (GTG)5 (5-GTGGTGGTGGTGGTG-3).24 The PCR

mix-ture contained2.5␮Lof 10× buffer, 1␮Lof dNTPs0.1mM,

1.5␮LofMgCl2,2␮Loftheprimer(GTG)510␮mol−1

(Invitro-gen,Carlsbad,CA, USA),0.2␮LofTaqDNA polymerase1U and 1␮LofDNAina totalvolume of25␮L.ThePCR reac-tionwasperformedontheMastercycler®Proandshowedthe followingconditions:initialdenaturationat94◦C for2min, 40cyclesofdenaturationat95◦Cfor45s,annealingat50◦C for1minandextensionat72◦Cfor1min,followedbyfinal extensionat72◦Cfor6min.Onerepresentativeofeach dif-ferentmolecularprofilewasidentifiedbysequencingofthe D1/D2 domains of the large subunit of rRNA gene using theprimersNL1(5-GCATATCAATAAGCGGAGGAAAAG-3)and NL4(5-GGTCCGTGTTTCAAGACGG-3)accordingtoLachance etal.25ThePCRmixturecontained5␮Lof10×buffer,1␮Lof

dNTPs0.05mM,3␮LofMgCl21.5mM,1␮LoftheprimerNL1

10␮mol−1(Invitrogen,Carlsbad,CA,USA),1␮Loftheprimer

NL410␮mol−1(Invitrogen,Carlsbad,CA,USA),0.2␮LofTaq DNApolymerase1Uand1␮LofDNAinatotalvolumeof50␮L. Thereaction was performedon theMastercycler® Pro and showedthefollowingconditions:initialdenaturationat95◦C for2min,35cyclesofdenaturationat95◦Cfor15s,annealing at54◦Cfor25s,andextensionat72◦Cfor20s,followedbyfinal extensionat72◦Cfor10min.Thesamplesweresequenced bycapillaryelectrophoresisinABI3130equipmentusingPOP7 polymerandBigDyev3.1.Sequenceanalyseswereperformed asdescribedabove.

Evaluationofsamplesfromcassavaflourmanufacturer

Total titratable acidity (TTA) and pH of samples were determined.26Thefinalproductfromthefermentationtank

was submitted to microbiological analyses to search for

Bacillus cereus,thermotolerantcoliforms andSalmonellaspp. accordingtoBrazilianlegislation.27

Screeningforselectionofstrainstobetestedassingleor mixedstarterculture

All thestrainsofLABspeciesisolatedwere testedin tripli-cateforstarchdegradationonplateswithMRSagarcontaining 20gL−1 solublestarch28 andallthe strainsofyeastspecies

isolated,onplateswithYMagarcontaining20gL−1 soluble starch.29 After growth, the revelation was performed with

iodinesolutioninordertoviewstarchhydrolysishalos.Total acid productionwas evaluated in100mLofbroth contain-ing20gL−1(non-fermented)cassavastarch,10gL−1 glucose and5gL−1ofbeefextractwith24and48h.Aliquotsof10mL ofbrothwereusedforTTAmeasurement.26Thestrainsthat

showed starchdegradation halosandhighervaluesofTTA weresubsequentlytestedasstartercultures.

Useofstarterculturesinapilot-scalefermentationprocess

Single culturesofselected LAB strains and mixedcultures oftheseinassociationwiththe yeastwere inoculatedinto 100mLofculturemediumcontaining20gL−1(non-fermented) cassavastarch,10gL−1 glucoseand5gL−1 beefextractand thenincubatedatroomtemperaturefor24–48h.Theentire fermentedbrothwasusedtoinoculate500mLofthesame mediumfor24–48h.Theresultingbrothwas usedto inoc-ulate 5Lof a mediumcontaining 100gL−1 cassava starch,

(4)

for 28 days. The 5-L fermentations were inoculated with 8log10CFU/mLofLABand/or6log10CFU/mLofyeasts.Assays

wereperformedwithoutaeration.

Sampleswereweekly collectedintriplicatefor determi-nation of pH and TTA26 as well as for verification of the

viabilityofcultures.Themonitoringofstartercultureswas donebyisolationandpurificationofthreecoloniesperweek ofeachLABoryeastthatresembledmorphologicallytothe starterculturesselectedandperformedwithmolecular meth-odsdescribedabove,andconductedbycomparisonofprofiles obtainedwithprofilesalready known.Afterthe endof fer-mentation,thematerialwasdriedatroomtemperaturefor 5days,packedandstoredunderrefrigerationuntil comple-tionofmeasurementsofpHandTTA26;expansioncapacity30;

andmicrobiologicalanalysis,asdescribedabove.The expan-sioncapacityassaywascarriedoutaccordingtotheprocedure proposed byTropicalRoots Center.Fortymilliliters of boil-ingdistilledwaterwereaddedto50gofcassavastarch.Each masswasmodeledformakingroundcookiesofapproximately 10geach.Thediametersofthecookiesweremeasuredwith auniversalpachymeter(Series530,Mitutoyo)beforeandafter takingthemtotheovenforaperiodof20minat220◦C.The expansioncapacitywas calculatedbythe ratio ofaverages ofthe finaldiameter(afterbaking)and theinitialdiameter (beforebaking).

Dataanalysis

The data obtained were subjected to analysis of variance (ANOVA) and significant differences between means were determinedbyTukey’stestwitha0.05significancelevel.

Results

Identificationofmicroorganismsfromcassavaflour manufacturer

LAB were present in all samples during a 56-day cassava fermentation with higher counts (5.8–7.9log10CFU/g) than

those obtained for yeasts (1.7–7.8log10CFU/g), which were

found from day 0 to 26. The 79 isolates of LAB identi-fiedwereGram-positive, catalasenegativeandmostly rods (83%).ThebacterialisolateswereefficientlygroupedbyRFLP

(Figs.1and 2)intwelvedifferent species.Sevenspeciesof

Lactobacilluswereisolated:L.brevis (n=17,21.5%),L. fermen-tum (n=12, 15.2%), L. plantarum (n=11, 13.9%), Lactobacillus casei/Lactobacillusparacasei(n=7,8.9%),Lactobacillusharbinensis

(n=5, 6.3%), Lactobacillus parabuchneri (n=4, 5.0%) and Lac-tobacillus ghanensis (n=1, 1.3%). Enterococcus faecium (n=13, 16.5%)wasalsoisolatedand,inminorproportions,Weisella cibaria(n=3,3.8%),Lactococcusgarvieae(n=3,3.8%),Lactococcus lactissubsp.lactis(n=2,2.5%)andL.mesenteroides(n=1,1.3%). ThemostfrequentisolateswereL.brevis,isolatedfromsixout ofsevensamplecollections(5.8–7.5log10CFU/g),andL.

plan-tarum,isolatedinfivesamplecollections(5.4–6.4log10CFU/g).

Alloftheelevenisolatesthatwerepresumablyidentified by16SrRNAsequenceanalysisasbelongingtotheL.plantarum

groupwereposteriorlyconfirmedasspeciesofL.plantarumby MultiplexPCRAssayusingrecAGene-DerivedPrimers.

The23yeastisolateswereefficientlygroupedbyanalysisof theirmolecularprofilesobtainedbyPCRfingerprinting(Fig.3). ThemostcommonlyisolatedyeastspecieswerePichia scutu-lata(n=12,52.2%)andKazachstaniaexigua(n=4,17.4%),both foundfromday0to12(>4log10CFU/g).Candidahumilis(n=3,

13.0%),Geotrichumfragrans(n=3,13.0%)andCandidaethanolica

(n=1,4.4%)werealsoisolated.

Evaluationofsamplesfromcassavaflourmanufacturer

The pH values decreased and there was a consequent increase in TTA (Table 1). Bacillus spp. were found in the finalproductsample,withcountsof9.33×102CFU/g,which

is a valuelower than the tolerancepermitted byBrazilian law(3.00×103CFU/g).31Neitherthermotolerantcoliformsnor

Salmonellaspp.weredetected.

Screeningforselectionofstrainstobetestedassingleor mixedstarterculture

Noneofthe82LABstrainsisolatedexhibitedamylolytic activ-ity.However,outofthe33yeaststrainsisolatedalltheones belongingtothespeciesP.scutulata,C.humilisandC.ethanolica

showedpositiveresults(datanotshown)forstarch degrada-tion (indicatedbyaclearzone ofinhibition>1mmaround colonies).TTAvaluesevaluatedforthepredominant micro-biotaweregreaterat48hthanat24hoffermentationformost oftheLAB.ThebacteriawithhigheracidityvalueswereL. bre-visandL.garvieae.Tables2and3showtheresultsofTTAfor thebeststrainisolatedofeachspecies.

OneisolateofL.brevisandoneisolateofL.plantarumwere selectedtobetestedasthestarterculturesbecausetheywere amongthepredominantLABthathadhighervaluesofacidity. Theisolateofyeastchosentobetestedasstarterculturewas onestrainofP.scutulata,thepredominantyeastspecies,which exhibitedamylolyticactivity.Moreover,P.scutulataferments glucose,whichisimportantfortheproductionofsecondary metabolitessuchasvolatilecompoundsresponsibleforthe characteristicaromaofsour cassavastarch.In the present study,wetestedfourstartercultures:L.brevis;L.plantarum; L.brevisinamixedculturewithP.scutulata;andL.plantarum

inamixedculturewithP.scutulata.

Useofstarterculturesforsourcassavastarchprocessing

MonitoringofTTAandpHduringthepilot-scalefermentation processrevealedthatvaluesobtainedfordifferentstarter cul-turesdidnotdiffer(Fig.4).TTArangedfrom0.14%to0.71%. The pHrangedfrom 5.69to 3.29.ANOVA showed that the extentoffermentationsignificantlychangedtheTTAandpH ofcassavastarch.

The starter cultures used were able to prevail during cassava pilot-scale fermentation; therefore, all the isolates selectedforidentificationdidcorrespondtothestarter cul-turesinoculated.TheLABwasobservedtoremainin fermen-tationduring28days.ItwasobservedthatP.scutulatashowed amaximumcount,approximately7log10CFU/g,within7days

offermentation,andthegrowthdecreasedreachingcounts between3and4log10CFU/gwith14days.Thenumberofviable

(5)

10000 bp

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1000 bp 500 bp 250 bp

Fig.1–Digestionprofileoflacticacidbacteriaisolatedfromcassavafermentationinacassavaflourmanufacturer.Lanes:1: 1kbDNAladder;2–4:Lactobacillusbrevisprofile(2-MspI,3-HaeIII,4-HinfI);5–7:Lactobacillusfermentumprofile(5-MspI, 6-HaeIII,7-HinfI);8–10:Lactobacillusplantarumprofile(8-MspI,9-HaeIII,10-HinfI);11–13:Lactobacilluscasei/L.paracaseiprofile (11-MspI,12-HaeIII,13-HinfI);14–16:Lactobacillusharbinensis(14-MspI,15-HaeIII,16-HinfI);17–19:Lactobacillusparabuchneri profile(17-MspI,18-HaeIII,19-HinfI).

10000 bp

500 bp 1000 bp

250 bp

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fig.2–Digestionprofileoflacticacidbacteriaisolatedfromcassavafermentationinacassavaflourmanufacturer.Lanes:1: 1kbDNAladder;2–4:Lactobacillusghanensisprofile(2-MspI,3-HaeIII,4-HinfI);5–7:Enterococcusfaeciumprofile(5-MspI, 6-HaeIII,7-HinfI);8–10:Weisellacibariaprofile(8-MspI,9-HaeIII,10-HinfI);11–13:Lactococcusgarvieaeprofile(11-MspI, 12-HaeIII,13-HinfI);14–16:Lactobacilluslactisprofile(14-MspI,15-HaeIII,16-HinfI);17–19:Leuconostocmesenteroidesprofile (17-MspI,18-HaeIII,19-HinfI).

1 10000 bp 1500 bp 1000 bp 750 bp 2 3 4 5 6 7 8 9 10 11 12

Fig.3–PCRfingerprintingprofileofyeastsisolatedfrom cassavafermentationinacassavaflourmanufacturerin Formiga(MG,Brazil).Lanes:1:1kbDNAladder;2,5–7:

Kazachstaniaexigua;3,4and8:Candidahumilis;9and10:

Pichiascutulata;11:Candidaethanolica;12:Geotrichum

fragrans.

L.plantarumwheninassociationwiththeyeast.Onthe21st day,thepresenceoftheyeastwasnolongerobserved(Fig.5). Cassavastarch,thedriedfinalproduct,obtainedwithL. plantarumexhibitedthehighestTTAvalueamongthesamples.

Table1–TTAandpHofsamplesfromacassavaflour

manufacturerinthemunicipalityofFormiga,Minas

Gerais(MG)state,Brazil.

Time TTA pH

19 3.31 ±0.17 c 4.01 ±0.01 a

26 6.83 ±0.25 b 3.75 ±0.02 b

33 9.36 ±0.20 a 3.53 ±0.07 cd

40 9.77 ±0.23 a 3.46 ±0.02 d

Meanvalues±standarddeviationinthesamecolumnfollowedby differentsuperscriptlettersaresignificantlydifferent(p<0.001).

Althoughthisvaluewasnotclosetothevalueofcommercial product, it waswithinthe establishedlimits oflegislation,

whichmandates amaximumacidityof1.0%forsweet

cas-savastarchandamaximumacidityof5.0%forsourcassava starch.32Hence,theproductobtainedwithL.plantarum

sin-gleculturecouldbecalledsourcassavastarch.Finalproducts obtainedwith other starter culturesmightbe calledsweet cassavastarch.ThepHvalueofstarchobtainedwithL. plan-tarum singleculturewas the onlyvaluethat didnotdiffer fromthepHvalueofthecommercialproduct.Theexpansion capacitiesforthecassavastarchesobtainedwiththestarter

(6)

Table2–TTAafter24and48hoffermentationwith

lacticacidbacteriaisolatedfromacassavaflour

manufacturerinthemunicipalityofFormiga,Minas

Gerais(MG)state,Brazil.

Species TTA(%)

24h 48h

Lb.brevis 3.47 ±0.06 ay 5.28 ±0.07 ax

Lc.garvieae 3.37 ±0.20 ay 5.28 ±0.14 ax

Lb.plantarum 2.96 ±0.08 ay 4.97 ±0.19 abx

Lc.lactissubsp.lactis 1.63 ±0.09 ay 4.47 ±0.24 abx

E.faecium 2.79 ±0.15 ay 4.35 ±0.10 abx Ln.mesenteroides 2.74 ±0.44 ay 3.77 ±0.03 abx Lb.parabuchneri 2.07 ±0.08 ay 3.51 ±0.10 abx Lb.fermentum 2.57 ±0.09 ay 3.50 ±0.03 abx W.cibaria 0.97 ±0.16 ay 3.11 ±0.05 abx Lb.ghanensis 0.62 ±0.13 ay 2.68 ±0.14 abx Lb.harbinensis 2.59 ±0.04 ax 2.55 ±0.10 abx Lb.casei/Lb.paracasei 1.26 ±0.04 ay 2.33 ±0.20 bx

Meanvalues±standarddeviationinthesamelinefollowedby dif-ferentsuperscriptletters(x,y)aresignificantlydifferent(p<0.001). Meanvalues±standarddeviationinthesamecolumnfollowedby differentsuperscriptletter(a,b)aresignificantlydifferent(p<0.001).

Table3–TTAafter24and48hoffermentationwith

yeastsisolatedfromacassavaflourmanufacturerinthe

municipalityofFormiga,MinasGerais(MG)state,Brazil.

Species TTA(%) 24h 48h Geotrichumfragrans 1.27 ±0.00 ay 1.60 ±0.10 ax Pichiascutulata 0.48 ±0.10 ay 0.78 ±0.05 ax Candidaethanolica 0.39 ±0.05 ax 0.45 ±0.00 ax Candidahumilis 1.03 ±0.14 ax 0.81 ±0.00 ay Kazachstaniaexigua 1.18 ±0.09 ax 0.94 ±0.05 ay

Meanvalues±standarddeviationinthesamelinefollowedby dif-ferentsuperscriptletters(x,y)aresignificantlydifferent(p<0.001). Meanvalues±standarddeviationinthe samecolumn followed bydifferent superscriptletter(a) arenot significantly different (p>0.05).

culturesandforcommercialproductdidnotdiffer(Table4). Cassavastarchesproducedviaapilot-scalefermentation pro-cessprovedtobewithinthemicrobiologicallimits31andwere

thereforesuitableforhumanconsumption.

Discussion

DuringtheisolationofLABandyeastsfromcassava fermen-tation,LABwerepresentinallsamplescollectedwithhigher counts than those obtained foryeasts. Many authors also reportedthepresenceofLABasprevalentmicroorganismsin cassavafermentations.33–35HighLABcountsareevidenceof

theimportanceofthesemicroorganismsincassava fermen-tation.

AmongtheLABoftenfoundintraditionalcassava fermen-tations,manyauthorsreportthepresenceofL.brevisandL. plantarum,7,9,10,34,36,37 whichwere amongthemostfrequent

isolatesinthepresentstudy.Lacerdaetal.6reportedL.

plan-tarumandL.fermentumasthepredominantLABduringsour

cassavastarchfermentationisolatedfromtwocassavaflour manufacturerslocatedinthemunicipalityofConceic¸ãodos Ouros(MG,Brazil).L.breviswasisolatedinminorproportions. Thecountsofthesebacteriaweresimilartothosefoundin thisstudy.Themicrobiotafromcassavafermentationhas dif-ferentoriginsandmaycomefromrawmaterials,utensilsand equipmentusedinitsproduction.Insectsorhandlerscanalso carrythesemicroorganisms.

Themostcommonlyisolatedyeastspecies,P.scutulata,K. exigua,C.humilis,G.fragransandC.ethanolicawerealsofound inothercassavafermentationstudies.Lacerdaetal.6collected

samplesfromsourcassavastarchfermentationandidentified thefollowingyeastspecies:Pichiasp.,genusthatwasformerly knownasIssatchenkiasp.,wasfoundincountsof5log10CFU/g;

C.humilisandC.ethanolicawerealsofrequentlyisolated. Wil-fridPadanou10foundaprevalenceofSaccharomycescerevisiae

(22%)and P.scutulata(20%)inthe fermentationoflafun,an Africanproductobtainedfromcassavasubmerged fermenta-tion.Theoccurrenceoftheseyeastssuggeststhattheycould contributetothe sensorialquality. Severalstudies revealed thepresenceofthegenusCandidaincassavafermentationsto obtaindifferentproducts.6,7,10,38,39Inthepresentstudy,one

speciesofthegenusPichiaandtwospeciesofthegenus Can-didawereisolated,showingthatspeciesofthesegeneracan growinacidicconditionsfoundincassavafermentationtanks. TheacidicenvironmentcreatedbyLABfavorsthe prolif-erationofyeastsinfoods.Simultaneously,thegrowthofLAB isstimulatedbythepresenceofyeasts,whichprovidegrowth factorssuchasvitaminsandnitrogencompounds.40The

asso-ciationofLABandyeastsduringfermentationhasasignificant impactonfoodqualityparameterssuchastexture,flavorand nutritional values.41 Even though the complex interactions

between LABand yeastsare not yetfully understood,it is knownthatLABandyeastshavetheabilitytoadapttomany differentsubstrates.42

Thedecrease ofpHvaluesand theconsequent increase in TTA of samples from cassava flour manufacturer were expectedresultsbecause,duringfermentation,thesynthesis oforganicacidsoccurs,leadingtoacidificationofthemedium. Itispossiblethatyeastshaveasmallcontributionordonot contributetoacidification,especiallybecausemostyeastsare not resistant to extreme acidic conditions. The pH values foundinthepresentstudyarelowerthanthosedetermined byCoulinetal.7inattiéké,afermentedcassavaproduct.The

averagepHofthisfoodduringthetraditionalfermentationin smallscalewas5.0.

According to the microbiological analyses, sour cassava starch from the fermentation tank studied would be con-sideredsuitableforhumanconsumption.Verificationofthe presenceofB.cereusisimportantbecauseitproducestoxins andmaycausefoodpoisoningwhenconsumedinnumbers higherthan105CFU/g.Besidestheabilitytoproduceorganic

acids,LABalsocontributetoinhibitionofpathogensdueto productionofantimicrobialcompoundssuchashydrogen per-oxide,diacetylandbacteriocins.43,44LABacidificationpoweris knowntobeeffectiveincontrollinggrowthofmicroorganisms infoodandextendingitsshelflife.45

The microorganisms considered as predominant in the presentstudyweretheoneswithhighercountsandthemost frequentlyisolatedduringcassavafermentationprocess.The

(7)

1,20 6,00 5,00 4,00 3,00 2,00 1,00 0,00 1,00 0,80 0,60 0,40 0,20 0,00 0 7

Time (days) Time (days)

TT

A (%) pH

14 21 28 0 7 14 21 28

Fig.4–MonitoringofTTAandpHduringcassavapilot-scalefermentationwithselectedstartercultures.

8 7 6 5 4 3 2 1 0 0 7 14

Time (days) Time (days)

Time (days) Time (days)

Count (log 10 CFU/g) 8 7 6 5 4 3 2 1 0 Count (log 10 CFU/g) 8 7 6 5 4 3 2 1 0 Count (log 10 CFU/g) 8 7 6 5 4 3 2 1 0 Count (log 10 CFU/g) 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

Fig.5–Counts(log10CFU/g)oftheselectedstarterculturesduringcassavapilot-scalefermentation.

Table4–TTA,pHandexpansioncapacityforcassavastarches(driedfinalproducts)obtainedinapilotscale

fermentationcomparedwithacommercialproduct.

Cassavastarches TTA(%) pH Expansioncapacity

Lactobacillusbrevis 0.57 ±0.06 cd 6.07 ±0.04 a 1.04 ±0.00 a

Lactobacillusplantarum 1.41 ±0.00 b 3.64 ±0.03 d 0.98 ±0.04 a

L.brevis+Pichiascutulata 0.71 ±0.10 c 4.34 ±0.06 c 1.10 ±0.08 a

L.plantarum+P.scutulata 0.40 ±0.00 d 4.84 ±0.02 b 1.05 ±0.02 a

Commercialproduct 6.75 ±0.20 a 3.62 ±0.04 d 1.06 ±0.05 a

Meanvalues±standarddeviationinthesamecolumnfollowedbydifferentsuperscriptlettersaresignificantlydifferent(p<0.001).

resultsare inagreementwith the findingsofpredominant

microorganismsintraditionalcassavafermentations,

includ-ing sourcassava starchfermentation, asreported inmany

previousstudies.6–11,33–38,46–48Therefore,themicroorganisms

isolated and identified inthe present study are a suitable

sourceofmicroorganismsforuseintestsfortheselectionof startercultures.

Selection of starter cultures showed that some yeast species exhibitedamylolytic activity. Thisobservation sug-gests that yeasts possibly play an important role at the

(8)

beginning of fermentation, degrading starch and releasing sugarsforthe growthofLABandtheir own.Ialsoshowed that TTA values obtained by LAB were higher than those obtainedbyyeasts,whichindicatesthattheformeraremainly responsible for acidification, which was also confirmed by OguntoyinboandDodd.35

L.plantarum,selectedasastarterculturefortheproduction ofsourcassavastarchinpilot-scalefermentationprocess,has alreadybeen evaluatedasastartercultureforthe fermen-tationofothertraditionalcassavaproduct.Kostineketal.33

assessedthe technological properties ofthe prevalent LAB inthefermentationofgari,anAfrican productobtainedby cassavasolid-statefermentation,andnotedthatL.plantarum

exhibitedbetterand fasteracid productionamongthe iso-latedbacteriaandwasrecommendedasthestarterculture. Huchetal.49testedL.plantarumandconcludedthatitssuccess

to predominatein cassava fermentation demonstrates the potentialforitsdevelopmentasastartercultureforgari indus-trialization.Edwardetal.50investigatedtheuseoflyophilized

LABstrainsasstarterculturesforgariproductionandfound thatL.plantarumcouldbeproducedatlowcost.

MonitoringofTTArevealed valueshigherthanthe ones determinedbyVogelmannetal.42whenstudyingcassava

fer-mentedbyanassociationofLABandyeastsusedasstarter cultures.Thevaluesfoundbytheauthorsrangedfrom10.3to 11.5SH(DegreesSoxhlet-Henkel),whichcorrespondsto0.23% and0.26%,respectively.MonitoringofpHrevealedvalues simi-lartotheonesdeterminedbyVogelmannetal.,42whichvaried from4.1to4.2duringthe12daysoffermentation.

Themonitoringoftheviabilityofstarterculturesshowed that the culturesused were able toprevail duringcassava pilot-scale fermentation. This result may suggest a strong associationbetweenLABandyeastsatthebeginningof fer-mentation and indicates that LAB play an important role duringthe entireprocess,especiallyconcerningthequality andsafetyofthefinalproduct.Besidesthat,theuseofstarter culturesmay optimizethefermentationprocessdecreasing thefermentationtime.Huchetal.49testedL.plantarumand

L.fermentumasstarterculturesfortheproductionofgari.The molecularmonitoringbyRandomAmplifiedPolymorphicDNA (RAPD)-PCRand typingtechniquesbyPulsedFieldGel Elec-trophoresis(PFGE)indicatedthatL.plantarumwassuccessful inassertingitselfasapredominantstrain,whichdidnot hap-penwithL.fermentum.

L.plantarumshowedbetterperformanceasastarterculture forsourcassavastarchproductioninapilot-scale fermenta-tionprocess.Cassavastarchproducedbythisstrainwasfound tohavethehighestvalueofTTAwhencomparedwiththe otherstartercultures;the pHandexpansioncapacitywere not different from the valuesobtained by the commercial product;also,therewasnoevidenceofpathogens.Therefore, furtherstudiesarerequiredfortheestablishmentofastarter culturethatwillcontributetothestandardizationofthe cas-savafermentationconditions,therebyensuringhigherquality productsandconsumeracceptability.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

1.HowelerR,LutaladioN,ThomasG.TitleofSubordinate Document.SaveandGrow:Cassava:AGuidetoSustainable ProductionIntensification.Rome:FoodandAgriculture OrganizationoftheUnitedNations;2013.

http://www.fao.org/docrep/018/i3278e/i3278e.pdf.

2.IBGE,ftp://ftp.ibge.gov.br/ProducaoAgricola/

Levantamento SistematicodaProducaoAgricola

[mensal/Comentarios/lspa201403comentarios.pdf]Titleof

subordinatedocument.Indicadores:produc¸ãoagrícola: levantamentosistemáticodaproduc¸ãoagrícola:marc¸ode2014;

2014.

3.CookeRD,CourseyDG.Cassava:AMajorCyanide-Containing

FoodCrop.CyanideinBiology.NewYork:AcademicPress; 1981:93–114.

4.NoutMJR,SarkarPK.Lacticacidfoodfermentationin

tropicalclimates.AntonievanLeeuwenhoek.

1999;76(1–4):395–401.

5.FranzCMAP,HuchM,MatharaJM,etal.Africanfermented

foodsandprobiotics.IntJFoodMicrobiol.2014;190:84–96.

6.LacerdaICA,MirandaRL,BorelliBM,etal.Lacticacid

bacteriaandyeastsassociatedwithspontaneous

fermentationsduringtheproductionofsourcassavastarch

inBrazil.IntJFoodMicrobiol.2005;105(2):213–219.

7.CoulinP,FarahZ,AssanvoJ,SpillmannH,PuhanZ.

Characterisationofthemicrofloraofattiéké,afermented

cassavaproduct,duringtraditionalsmall-scalepreparation.

IntJFoodMicrobiol.2006;106(2):131–136.

8.CrispimSM,NascimentoAMA,CostaPS,etal.Molecular

identificationofLactobacillusspp.associatedwithpuba,a

Brazilianfermentedcassavafood.BrazJMicrobiol.

2013;44(1):15–21.

9.KostinekM,SpechtI,EdwardVA,etal.Characterisationand

biochemicalpropertiesofpredominantlacticacidbacteria

fromfermentingcassavaforselectionasstartercultures.Int

JFoodMicrobiol.2007;114(3):342–351.

10.WilfridPadonouS,NielsenDS,HounhouiganJD,ThorsenL,

NagoMC,JakobsenM.ThemicrobiotaofLafun,anAfrican

traditionalcassavafoodproduct.IntJFoodMicrobiol.

2009;133(1–2):22–30.

11.LacerdaICA,GomesFCO,BorelliBM,etal.Identificationof

thebacterialcommunityresponsiblefortraditional

fermentationduringsourcassavastarch,cachac¸aandminas

cheeseproductionusingculture-independent16srRNAgene

sequenceanalysis.BrazJMicrobiol.2011;42:650–657.

12.AidooKE,NoutMJ,SarkarPK.Occurrenceandfunctionof

yeastsinAsianindigenousfermentedfoods.FEMSYeastRes.

2006;6(1):30–39.

13.CapliceE,FitzgeraldGF.Foodfermentations:roleof

microorganismsinfoodproductionandpreservation.IntJ

FoodMicrobiol.1999;50(1):131–149.

14.AtrihA,RekhifN,MoirAJG,LebrihiA,LefebvreG.Modeof

action,purificationandaminoacidsequenceofplantaricin

C19,ananti-ListeriabacteriocinproducedbyLactobacillus

plantarumC19.IntJFoodMicrobiol.2001;68(1):93–104.

15.MessensW,DeVuystL.Inhibitorysubstancesproducedby

Lactobacilliisolatedfromsourdoughs—areview.IntJFood

Microbiol.2002;72(1–2):31–43.

16.MiduraTF,BryantRG.Samplingplans,samplecollection,

shipment,andprepartionsforanalysis.In:DownesFP,ItoK,

eds.CompendiumofMethodsfortheMicrobiologicalExamination ofFoods.4thed.Washington:AmericanPublicHealth

Association(APHA);2001:13–23.Chapter2.

17.NorrisJR,BerkeleyRCW,LoganNA,O’donnellAG.Thegenera

BacillusandSporolactobacillus.In:StarrMP,StolpH,Truper

(9)

onHabitats,IsolationandIdentificationofBacteria.

1981:1711–1742.

18.HoffmanCS,WinstonF.Aten-minuteDNApreparationfrom

yeastefficientlyreleasesautonomousplasmidsfor

transformaionofEscherichiacoli.Gene.1987;57(2–3):267–272.

19.LaneDJ.16S/23SrRNAsequencing.In:StackebrandtE,

GoodfellowM,eds.NucleicAcidTechniquesinBacterial

Systematics.NewYork:Wiley;1991:115–175.

20.BrightwellG,BoeremaJ,MillsJ,MowatE,PulfordD.

Identifyingthebacterialcommunityonthesurfaceof

IntraloxTMbeltinginameatboningroomby

culture-dependentandculture-independent16SrDNA

sequenceanalysis.IntJFoodMicrobiol.2006;109(1):47–53.

21.TamuraK,StecherG,PetersonD,FilipskiA,KumarS.MEGA6:

molecularevolutionarygeneticsanalysisversion6.0.MolBiol

Evol.2013;30(12):2725–2729.

22.TorrianiS,FelisGE,DellaglioF.DifferentiationofLactobacillus

plantarum,L.pentosus,andL.paraplantarumbyrecAgene

sequenceanalysisandmultiplexPCRassaywithrecA

gene-derivedprimers.ApplEnvironMicrobiol.

2001;67:3450–3454.

23.daSilva-FilhoEA,DosSantosSKB,doMonteResendeA,de

MoraisJOF,deMoraisMAJr,SimõesDA.Yeastpopulation

dynamicsofindustrialfuel-ethanolfermentationprocess

assessedbyPCR-fingerprinting.AntonievanLeeuwenhoek.

2005;88(1):13–23.

24.LieckfeldtE,MeyerW,BörnerT.Rapididentificationand

differentiationofyeastsbyDNAandPCRfingerprinting.J

BasicMicrob.1993;33(6):413–425.

25.LachanceM-A,BowlesJM,StarmerWT,BarkerJSF.

KodamaeakakaduensisandCandidatolerans,twonew

ascomycetousyeastspeciesfromAustralianHibiscus

flowers.CanJMicrobiol.1999;45(2):172–177.

26.OfficialMethodsofAnalysisofAOACINTERNATIONAL.20thEd. Gaithersburg,MD,USA:AOACINTERNATIONAL;2016.

www.eoma.aoac.org.

27.BennettRW,BelayN.Bacilluscereus.In:DownesFP,ItoK,

eds.CompendiumofMethodsfortheMicrobiologicalExamination ofFoods.Washington,DC:AmericanPublicHealth

Association;2001:311–316.

28.SanniAI,Morlon-GuyotJ,GuyotJP.Newefficient

amylase-producingstrainsofLactobacillusplantarumandL.

fermentumisolatedfromdifferentNigeriantraditional

fermentedfoods.IntJFoodMicrobiol.2002;72(1–2):53–62.

29.YarrowD.Methodsfortheisolation,maintenance

classificationandidentificationofyeasts.In:KurtzmanCP,

FellJW,eds.TheYeasts:ATaxonomicStudy.Amsterdam:

Elsevier;1998:77–100.

30.MaedaKC,CeredaMP.Avaliac¸ãodeduasmetodologiasde

expansãoaofornodopolvilhoazedo.FoodSciTechnol.

2001;21(2):139–143.

31.Brazil.MinistériodaSaúde.Resoluc¸ãoRDCn12,de02de

janeirode2001.Aprovaoregulamentotécnicosobreospadrões microbiológicosparaalimentos.DiárioOficialdaUnião,sec¸ão1;

2001.

32.Brazil.Decreton◦12.486,de20deoutubrode1978.Aprova

normastécnicasespeciaisrelativasaalimentosebebidas.Diário

OficialdoEstadodeSãoPaulo;1978:3–25.

33.KostinekM,SpechtI,EdwardVA,etal.Diversityand

technologicalpropertiesofpredominantlacticacidbacteria

fromfermentedcassavausedforthepreparationofGari,a

traditionalAfricanfood.SystApplMicrobiol.

2005;28(6):527–540.

34.ObilieEM,Tano-DebrahK,Amoa-AwuaWK.Souringand

breakdownofcyanogenicglucosidesduringtheprocessing

ofcassavaintoakyeke.IntJFoodMicrobiol.2004;93(1):115–121.

35.OguntoyinboFA,DoddCER.Bacterialdynamicsduringthe

spontaneousfermentationofcassavadoughingari

production.FoodControl.2010;21(3):306–312.

36.KimaryoVM,MassaweGA,OlasupoNA,HolzapfelWH.The

useofastartercultureinthefermentationofcassavaforthe

productionof“kivunde”,atraditionalTanzanianfood

product.IntJFoodMicrobiol.2000;56(2–3):179–190.

37.OmarNB,AmpeF,RaimbaultM,GuyotJ-P,TailliezP.

MoleculardiversityoflacticacidbacteriafromCassavasour

starch(Colombia).SystApplMicrobiol.2000;23(2):285–291.

38.OguntoyinboFA.EvaluationofdiversityofCandidaspecies

isolatedfromfermentedcassavaduringtraditionalsmall

scalegariproductioninNigeria.FoodControl.

2008;19(5):465–469.

39.OyewoleOB.Characteristicsandsignificanceofyeasts’

involvementincassavafermentationfor‘fufu’production.

IntJFoodMicrobiol.2001;65(3):213–218.

40.NoutMJR.Ecologyofacceleratednaturallacticfermentation

ofsorghum-basedinfantfoodformulas.IntJFoodMicrobiol.

1991;12(2):217–224.

41.BoonnopK,WanapatM,NontasoN,WanapatS.Enriching

nutritivevalueofcassavarootbyyeastfermentation.Sci

Agric.2009;66(5):629–633.

42.VogelmannSA,SeitterM,SingerU,BrandtMJ,HertelC.

Adaptabilityoflacticacidbacteriaandyeaststosourdoughs

preparedfromcereals,pseudocerealsandcassavaanduseof

competitivestrainsasstarters.IntJFoodMicrobiol.

2009;130(3):205–212.

43.GálvezA,AbriouelH,LópezRL,OmarNB.Bacteriocin-based

strategiesforfoodbiopreservation.IntJFoodMicrobiol.

2007;120(1–2):51–70.

44.NardiRMD,SantoroMM,OliveiraJS,etal.Purificationand

molecularcharacterizationofantibacterialcompounds

producedbyLactobacillusmurinusstrainL1.JApplMicrobiol.

2005;99(3):649–656.

45.BealesN.Adaptationofmicroorganismstocold

temperatures,weakacidpreservatives,lowpH,andosmotic

stress:areview.ComprRevFoodSciFoodSaf.2004;3(1):1–20.

46.ManteES,Sakyi-DawsonE,Amoa-AwuaWK.Antimicrobial

interactionsofmicrobialspeciesinvolvedinthe

fermentationofcassavadoughintoagbelimawithparticular

referencetotheinhibitoryeffectoflacticacidbacteriaon

entericpathogens.IntJFoodMicrobiol.2003;89(1):41–50.

47.MugulaJK,NarvhusJA,SørhaugT.Useofstarterculturesof

lacticacidbacteriaandyeastsinthepreparationoftogwa,a

Tanzanianfermentedfood.IntJFoodMicrobiol.

2003;83(3):307–318.

48.ObadinaAO,OyewoleOB,SanniLO,TomlinsKI.

Bio-preservativeactivitiesofLactobacillusplantarumstrainsin

fermentingCasssava‘fufu’.AfrJBiotechnol.2006;5:620–623.

49.HuchM,HanakA,SpechtI,etal.UseofLactobacillusstrains

tostartcassavafermentationsforGariproduction.IntJFood

Microbiol.2008;128(2):258–267.

50.EdwardVA,HuchM,DortuC,etal.Biomassproductionand

small-scaletestingoffreeze-driedlacticacidbacteriastarter

strainsforcassavafermentations.FoodControl.

Referências

Documentos relacionados

In order to characterize the cassava genes involved in resistance to this disease, a genomic clone of a cationic peroxidase gene, MEPX1, was isolated by PCR from cassava cultivar

Results showed that the improved process of cassava starch production did not harm starch expansion, physicochemical properties or sensorial acceptability; it also produced

um material (betão pintado) a todos os polígonos presentes no modelo da Anta (lado esquerdo da Ilustração 44), é feito o processamento da voxelização do modelo

When analyzing the viscographic patterns together with the other parameters, it is possible to confirm that for these samples - the most heat stable the pastes, the lower

The aim of this study was to evaluate the use of lactic acid bacteria selected from the native microbiota of sausages produced by spontaneous fermentation as starter cultures for

Considering the importance of resistant starch to health, the consumption of cassava products by Brazilians, especially those who have little access to high-value products, as

The sludge of an anaerobic biodigester was used as inoculum, which is applied to the treatment of wastewater from cassava starch production, being the same effluent

Uma vez que para além do extrato ser rico em hidroxitirosol, apresenta quantidades significativas de compostos não desejados, entre eles alguns compostos voláteis,