• Nenhum resultado encontrado

JOSÉ MILTON ARANA DETERMINAÇÃO SIMULTÂNEA DA LATITUDE E. LONGITUDE ASTRONÔMICA (uma nova solução)

N/A
N/A
Protected

Academic year: 2021

Share "JOSÉ MILTON ARANA DETERMINAÇÃO SIMULTÂNEA DA LATITUDE E. LONGITUDE ASTRONÔMICA (uma nova solução)"

Copied!
17
0
0

Texto

(1)

DETERMINAÇÃO SIMULTÂNEA DA LATITUDE E

LONGITUDE ASTRONÔMICA (uma nova solução)

(2)

SUMÁRIO

1. INTRODUÇÃO ...3

2. APRESENTAÇÃO DA NOVA SOLUÇÃO...5

3. LISTA DE ESTRELAS ...7

4. OPERAÇÕES DE CAMPO...12

5. CORREÇÕES ...13

6. CÁLCULO DA LATITUDE E LONGITUDE ...16

(3)

DETERMINAÇÃO SIMULTÂNEA DA LATITUDE E LONGITUDE

1. INTRODUÇÃO

Neste seminário, procura-se tratar, fundamentalmente, da determinação simultânea da latitude e longitude astronômica, por observação à estrelas em um mesmo almicantarado.

Apresenta-se também a nova solução matemática, desenvolvida pelos pesquizadores L. A. Kivioja e J. A. Mihalko, pertencentes à School of Civil Engineering, Pordue University, West Lafayette, Indiana (USA). O trabalho desenvolvido por estes pesquizadores, foi apresentado com o título NEW METHOD FOR REDUCTION OF ASTROLABE OBSERVATIONS USING RECTANGULAR COORDINATES ON THE CELESTIAL SPHERE.

Analiticamente, a solução da determinação simultânea da latitude e longitude astronômica, pode ser obtida através de observação à três estrelas, podendo também ser obtida através de observações a mais de três estrelas.

Na determinação simultânea através de observação à mais de três estrelas, objeto do presente trabalho, é conhecido como método de Gauss Generalizado, a solução dá-se com uso do método dos mínimos quadrados.

No desenvolvimento deste, procurou-se abordar todas as etapas da determinação simultânea, ou seja, a elaboração da lista de estrelas, as operações de campo, as correções às observações, e finalmente o procedimento de cálculos.

(4)

2. APRESENTAÇÃO DA NOVA SOLUÇÃO

Definindo-se o sistema de coordenadas retangulares x, y e z, conforme segue:

figura 1 onde:

- 0 Origem do sistema, coincidente com o centro da es-fera celeste, que coincide com o centro de mas-sa da Terra.

- Eixo Z. Coincidente com o eixo de rotação da Terra. Orien-ta do positivamente para o polo norte.

- Eixo X. Formado pela interseção do plano que contém o me-ridiano de Greenwich com o plano que contém o equador celeste, orientado positivamente segundo o meridiano superior de Greenwich.

- Eixo Y. Completa o sistema dextrógiro.

Z = Polo Norte

Eixo de rotação instantâneo

Meridiano de Greenwich Equador Celeste E δ 360-H X L = 00 Y L = 900 E PS

(5)

Considerado o sistema de coordenadas retilíneas (acima), as coordenadas de uma estrela, em uma posição qualquer, pode ser determinada por: X = cos δ cos (360 - H) ¦ Y = cos δ sen (360 - H) ¦ 1 Z = sen δ ¦ Ou ainda: X = cos δ cos H ¦ Y = -cos δ sen H ¦ 2 Z = sen δ ¦

A geometria analítica nos ensina que a distância de um ponto(P1) de coordenadas x1, y1, e z1, de um sistema de coordenadas

ortogonal, à origem do sistema, pode ser calculada com a expressão: l1 = (x1 2 + y1 2 + z1 2 )1/2 3

Nos ensina também que o ângulo (Z) formado por dois segmentos de reta, na origem do sistema, é dado por:

(6)

Sendo um dos pontos 1 ou 2, o zênite, então conforme definido acima, o ângulo Z é então a distância zenital da estrela.

Estando os pontos (estrelas) na superfície da esfera celeste, cujo centro coincide com a origem do sistema de coordenadas rertilínea, a expressão 4 pode ser reescrita:

cos Z = x1xz + y1yz + z1zz 5

Caso tenhamos n estrelas, observadas com a mesma distância zenital, ter-se-á: x1xz + y1yz + z1zz = cos Z ¦ x2xz + y2yz + z2zz = cos Z ¦ x3xz + y3yz + z3zz = cos Z ¦ 6 . ¦ . ¦ xnxz + ynyz + znzz = cos Z ¦

A declinação do zênite é numericamente igual à latitude (ϕ) da estação de observação. O ângulo diedro formado pelo plano que contém o meridiano de Greenwich e o plano que contém o meridiano local é definida como longitude (L).

Pode-se obter as coordenadas retangulares do zênite através das seguintes expressões:

(7)

xz = cos ϕ cos L ¦

yz = cos ϕ sen L ¦ 7

zz = sen ϕ ¦

Assim, a latitude e a longitude astronômica de um ponto podem ser determinadas a partir das coordenadas retangulares do zenite, conforme segue:

ϕ

= arc tg(zz/(xz 2 +yz 2 )1/2) 8 L = arc tg(yz/xz) 9

3. LISTA DE ESTRELAS

Para a elaboração da lista de estrelas, sugere-se, que sejam feitas algumas considerações às estrelas a serem observadas, ou seja:

a. Ter brilho entre 3.0 e 7.0;

b. Azimute(A) de observação próximo à região central dos quadrantes; e

c. Período de observação, para cada grupo de estrelas, me-nor que duas horas.

(8)

Uma restrição imposta ao método, é que as estrelas devem ter declinação compreendida entre ϕ + Z e ϕ - Z. Isto para uma estação de observação de latitude, no almicantarado de distância zenital Z.

Dado o triângulo de posição,

figura 2 Onde:

Z - Distância Zenital da Estrela;

E - Estrela (em uma posição qualquer);

ϕ - Latitude da estação de observação; Pn- Polo norte;

h - Altura da estrela; A - Azimute da estrela; Q - Ângulo paralático;

H - Ângulo horário da estrela E; e

δ - Declinação da estrela. Z 900 - h E 1800-A 900 - ϕ PN 900 - δ H Q

(9)

Aplicando-se a fórmula dos quatros elementos, relativos a lados, da trigonometria esférica, no triângulo de posição (figura 2), tem-se:

cos(90- δ) = cos(90- ϕ) cos(90-h) + sen(90- ϕ) sen(90-h) cos (180-A) 10

ou,

sen δ = sen ϕ cosZ – cos ϕ senZ cosA . . . 11 ou ainda,

cosA = tg ϕ cotgZ – sec ϕ cosecZ sen δ . . . 12

Aplicando-se a analogia dos senos no triângulo de posição, tem-se:

sen H = sen(180-A) . . . . . . 13 sen(90-h) sen(90-δ)

ou,

sen H = senZ secδ senA. . . 14

Com auxílio da expressão 11, determina-se os limites de declinação, das estrelas a serem observadas, de maneira a atender o item b das recomendações.

Assim, atendendo-se esta recomendação, os limites de declinação das estrelas para observações, no almicantarado Z = 30o, em uma estação de latitude 22o07'18", no primeiro e quarto quadrantes,

(10)

-44o52'26" < δ < -36o17'05" ,

Para observações no segundo e terceiro quadrantes, -3o27'56" < δ < 3o03'20"

Então, para esses limites de declinação (acima), o ângulo horário das estrelas será menor que uma hora e quarenata minutos (1h40min), em valor absoluto. Assim, recomenda-se que a escolha das estrelas de um catálogo estrelas seja feita, conforme segue: a. Decidida a hora legal do início das observações, através

expressão 15, determina-se a hora sideral correspondente ao início dos trabalhos(Si);

Si = So + Lo + (Hl + F) 1.002737909265 15

Onde:

So - Hora sideral à zero hora TU;

Lo - Longitude aproximada da estação;

Hl - Hora legal do início das observações;

F - Fuso horário (positivo à oeste de Greenwich)

b. Através da expressão 14,determina-se o ângulo horário que a estrela cruzará o almicantarado;

c. O cálculo da hora sideral, que a estrela cruza o almican-tarado, dá-se através da expressão 16.

(11)

Onde, H será positivo para observações às estrelas de azimutes pertencentes ao primeiro e segundo quadrantes (0o

< A < 180o), negativo no terceiro e quarto quadrante (180o < A < 360o); e

d. A expressão 12,proporciona o cálculo do azimute da estre- la no almicantarado. Onde, o azimute será positivo para observações a oeste do meridiano local, e negativo para observações a leste.

Estrelas observáveis com angulo horário (H) positivo, terão correspondente azimute também positivo, ou seja, petencentes ao primeiro ou segundo quadrante. Estrelas abserváveis com ângulo horário negativo, terão correspondente azimute também negativo, ou seja, pertencentes ao terceiro e quarto quadrantes.

Então, para observação à estrelas a leste o ângulo horário mínimo das estrelas será de 1h40min. A equação 16, perminte o cálculo do limíte inferior da excensão reta( ) das estrelas,

α = Si - H . . . 16 ou,

(12)

Com desenvolvimento similar, estrelas observáveis a oeste, deve ter ascensão reta

α > Si - 1h40min.

O período de observação às estrelas, de um mesmo grupo, não deve ser superior a duas horas, esta recomendação, deve-se ao fato de as condições atmosféricas serem consideradas constantes, neste intervalo considerado.

Sempre que o período de observações for maior que duas horas, as estrelas devem ser tratadas como pertencentes a grupos diferente.

Um grupo de estrelas deve ser formado por estrelas pertencentes aos quatros quadrantes, ou seja, caso o grupo seja composto por quarenta (40) estrelas, a distribuição ideal será de dez estrelas por quadrantes. O recomendado, é que na formação de um grupo, a distribuição das estrelas, nos quadrantes, seja iguais, mesmo número de estrelas por quadrante.

4. OPERAÇÕES DE CAMPO

Estando o instrumento instalado e nivelado, na estação de observação, faz-se a orientação aproximada do mesmo. A orientação do instrumento pode ser aproximda, pois a finalidade desta orientação é apenas para que a estrela, contida na lista de estrela, possa ser observada.

(13)

Registra-se no círculo de leitura vertical do instrumento, a distância zenital do almicantarado, onde serão efetuadas as observações às estrelas.

Em um relógio auxiliar, registra-se a hora sideral local aproximada. A finalidade deste é de orientar o observador, para o instânte da passagem da estrela pelo almicantarado.

No início, meio e fim de cada período de observação (grupo de estrelas), faz-se a comparação rádio-cronômetro, e também a leitura de pressão e temperatura.

Registra-se, no círculo de leituras horizontal, o azimute da primeira estrela a ser observada.

A imagem da estrela, ao adentrar no campo visual da luneta do teodolito, nivela-se o nível de Horrebow do teodolito. Este procedimento deve ser tomado para todas as estrelas a serem observadas.

Determina-se o instante cronométrico da estrela, quando a mesma atinge o almicantarado.

5. CORREÇÕES

O método de determinação simultânea da latitude e longitude astronômica por observações de estrelas em um mesmo almicantarado, fundamentalmente, são observados os instantes cronométricos em que as estrelas cruzam o almicantarado. Assim, deve-se fazer correções aos instantes observados.

(14)

Sugere-se que sejam efetuadas as seguintes correções:

1. Refração atmosférica

O efeito da refração atmosférica é a elevação aparente dos astros. A correção desse efeito nas determinações dos ângulos zenitais dos astros é sempre positiva, ou seja, deve-se somar a correção ao ângulo zenital lido, e subraida quando a determinação for da altura do astro. A correção deste efeito pode ser calculada através da expressão 18.

R" = 16,276" (P/T) tan Z' 18 e,

Z = Z' + R 19 Onde,

R" - Correção da refração atmosférica, em segundos de arco; P - Pressão atmosférica em milibar;

T - Temperatura atmosférica, em graus Kelvins, (oK = oC + 273,16);

2. Tempo de propagação

Para observações de alta precisão, deve ser considerado o tempo dispendido pela onda de rádio para trafegar da emissora de rádio à antena do rádio receptor.

O tempo de propagação calculado (∆T), deve ser somado ao instante cronométrico das observações, ou então subtraído do estado do cronógrafo (determinado na comparação rádio-cronógrafo).

(15)

3. Correção de emissão

As emissoras de rádio retransmitem sinais horários no sistema de Tempo Universal Coordenado (TUC), no entanto, este sistema de tempo, geralmente, esta defasado em relação ao sistema de Tempo Universal (TU1), sistema de tempo fundamental da astronomia de posição.

DTU1 = TU1 - TUC 20

4. Marcha e Estado do Conógrafo

Entende-se por marcha de um marcador de tempo, como sendo a quantidade que este marcador adianta ou atrasa por unidade de tempo. Estado de um marcador de tempo é definido como sendo a quantidade de tempo que o marcador está adiantado ou atrasado em relação a um determinado sistema de tempo, sideral ou médio.

E = H - T 21

m = E - Eo/(T - To) 22

E = Eo + m(T - To) 23

Onde:

(16)

Eo - Estado inicial do marcador de tempo (obtido na

compara-ção rádio-cronômetro); T - Instante cronométrico;

To - Instante cronométrico, da comparação rádio-cronômetro;

H - Hora correspondente ao instante cronométrico; e m - Marcha do marcador de tempo.

6. PROCEDIMENTO PARA CÁLCULO

Tendo-se aplicado as correções, às observações, descritas no ítem 5. O cálculo simultâneo da latitude e longitude, pode-se dar, conforme segue:

a. Através da expressão 15, com Lo, calcula-se a hora

si-deral (S), correspondente ao instante observado (Hl);

b. Cálculo do ângulo horário da estrela, com uso da expres-são 16, no instante em que a mesma cruza o almicantarado; c. Cálculo das coordenadas retangulares das estrelas, com uso das

expressões 2;

d. Nas equações 6, com auxílio do método dos mínimos qua-drados, determina-se as coordenadas retangulares ajusta-das do zenite (xz, yz, zz). Estas coordenadas devem

sa-tisfazer a equação da esfera ( xz 2 + yz 2 + zz 2 )1/2 = r; e

e. Com as coordenadas do zenite ajustadas, na equação 8 e 9, determina-se a latitude e longitude, respectivamente.

(17)

REFERÊNCIAS BIBLIOGRÁFICAS.

¦1¦ COSTA, S. M. A. Projeto Pró-Astro. Curitiba. Disserta-ção de Mestrado. Universidade Federal do Paraná. 1988.

¦2¦ GEMAEL, C. Introdução à Astronomia Esférica. Curitiba. Diretório Acadêmico do Setor de Tecnologia. Univer-sidade Federal do Paraná. 1981.

¦3¦ HATSCHBACH, F. Determinações Astronômicas. Curitiba. Universidade Federal do Paraná. 1981.

¦4¦ __________. Tempo em Astronomia. Curitiba.Curso de Pós-Graduação em Ciências Geodésicas. Departamento de Geociências. Setor de Tecnologia. Universidade Fede-ral do Paraná. 1979.

¦5¦ KIVIOJA, L. A. and MIHALKO,J. A. New Method for Reduc-tion of Astrolabe ObservaReduc-tions Using Rectangular Co-ordinates in the Celestial Sphere. Bulletin Geo-désique. Paris, v. 59. n. 4. 1985.

¦6¦ MUELLER, I. I. Spherical and Pratical Astronomy as

Aplied to Geodesy. New York. Frederick Ungar Publi-shing CO. 1977.

¦7¦ ROBBINS, A. R. Fielda and Geodetic Astronomy, Military Engineering, n.13, v.9, 1976.

Referências

Documentos relacionados

Quanto aos mortos que tiveram espaço no Jornal da Band, nas seis edições observadas, foram enfocados: o caso da adolescente Eloá (SD19); a morte de Arthur Sendas (SD18); o garoto

Os Portos Late Bottled Vintage, Vinhos do Douro Tintos e Azeite poderão também ser adquiridos na Quinta do Pégo.. Quinta do Pégo owns today 30 hectares planted

Com isso, o objetivo desta revisão bibliográfica foi pesquisar sobre os resíduos resultantes do processamento de aveia ( ​Avena Sativa L.​) para potencial aplicação

Segundo Magalhães e Campos (2006, p.698), “o benchmarking é um instrumento valioso para os produtores, facilitando também o trabalho de pesquisa e da extensão rural, pois ao serem

A função de sujeito e núcleo de sujeito é basicamente desempenhada por substantivos, os quais podem, também, ser acompanhados por outras palavras (como artigo, pronomes etc.), o que

precisa, ou seja obedeça a sua lista de compras.. *Queremos dizer sobre o preço unitário dos produtos. Muitas marcas oferecem melhor preço em embalagens melhores, mas dependendo

Dessa maneira, sabendo as coordenadas geográficas, isto é, a latitude e a longitude de um lugar, podemos determinar a sua exata localização na superfície da Terra.

encontra. No estado e condições que se encontra. No estado e condições que se encontra. No estado e condições que se encontra. No estado e condições que se encontra.