• Nenhum resultado encontrado

Física Geral I - F-128

N/A
N/A
Protected

Academic year: 2021

Share "Física Geral I - F-128"

Copied!
31
0
0

Texto

(1)

Física Geral I - F-128

Segundo Semestre, 2010

Segundo Semestre, 2010

(2)

Aula -1

Introdução, Generalidades.

Introdução, Generalidades.

(3)

Introdução

• Relação da Física com outras ciências

• O método científico

• Quantidades Físicas

– Experimentador – Experimentador • Relógio • Régua • Balança

• Importância da Física.

(4)

A Natureza e seus fenômenos

• Entender a regularidade da Natureza tem estimulado a

curiosidade humana há milênios.

• Desde os primórdios, também tem sido clara a

importância prática desse saber: prever as cheias do Nilo, por exemplo.

• Percepção de ordem, periodicidade: o mundo é previsível

– Movimento de rotação da Terra: dia e noite.

– Movimento da Lua em torno da Terra: mês.

– Movimento da Terra ao redor do Sol: ciclo de 365 dias, estações.

– Fenômenos biológicos, meteorológicos

“O que a natureza tem de mais incompreensível é o fato de ser

(5)

Metas da Ciência

• Observar, descrever e entender a regularidade

dos fenômenos naturais.

• Encontrar as

leis gerais

por trás das

regularidades.

regularidades.

• Século XVI (Galileu Galilei):

O Método

Científico.

(6)

Relação com outras ciências

• A matemática é a linguagem da Física:

• Os fenômenos são descritos matematicamente.

• As leis físicas são formuladas como equações matemáticas.

• A Física é a ciência mais fundamental: os fenômenos químicos, biológicos, ...

podem “em princípio” ser explicados pelas leis da Física: Atenção, isso quase nunca pode ser feito na prática, pois as equações a serem resolvidas são complexas demais.

• Aplicações de avanços básicos da Física têm grande impacto em outras • Aplicações de avanços básicos da Física têm grande impacto em outras atividades: • Engenharia • Tecnologia • Medicina • Computação • Matemática

• Infelizmente, também aplicações militares.

(7)

O Método Científico

• Observação e experimentação (reprodutibilidade): teste crucial na formulação das leis naturais

• A Física parte de dados experimentais

• Acordo com a experiência é o juiz supremo da validade de qualquer teoria: não vale autoridade, hierarquia,

de qualquer teoria: não vale autoridade, hierarquia, iluminação divina.

• Abstração e indução: simplificar para entender, construir modelos.

• Leis e teorias (novas previsões)

• Arma mais poderosa contra as pseudo-ciências, o charlatanismo, a enganação.

(8)

O Método Científico

OBSERVAÇÃO EXPERIMENTAÇÃO MODELAGEM

Física Experimental

Experimentador Relógio Régua Balança Tempo Espaço Massa PREVISÃO

(9)

• Relógio: qualquer movimento periódico

– Nascer do sol: intervalo de um dia

– Sucessão das estações: intervalo de um ano. – Outros movimentos celestes.

– Galileu usou suas pulsações como relógio.

O tempo

– Galileu usou suas pulsações como relógio. – Movimento de um pêndulo.

– Frequência da luz emitida por átomos.

• Decaimento radioativo, usado para medir tempo em escala geológica.

• Irreversibilidade (nascimento → morte): o tempo parece ter um sentido! (entropia).

(10)

Relógios precisos

• Determinação da longitude : fundamental para a navegação • Comparar hora local (posição do

Sol) com hora de Greenwich • Terra gira 360o em 24 horas,

variação de uma hora → desvio variação de uma hora → desvio de 15o de longitude.

• John Harrison, carpinteiro, século XVIII: melhora na metalurgia,

melhores molas para relógios, 1 parte em 105.

(11)

Padrão do tempo

• Até 1956, 1 s =1/86400 do dia solar médio (média sobre o ano de um dia)

• 1956: padrão baseado no ano solar.

• 1967: 13a Conferência Geral sobre Pesos e Medidas definiu 1s como 9.162.631.770 períodos da radiação

definiu 1s como 9.162.631.770 períodos da radiação de uma transição atômica do Césio 133 (definição do relógio atômico).

(12)

História da medição do tempo

Relógio de Sol

Século 16 AC no Egito

Hora no verão diferente da hora no inverno

Em 263 AC, relógio trazido da Catânia para Roma apresentou

Clepsidra (relógio de água) Século 15 AC

Catânia para Roma apresentou tempo errado aos romanos por 100 anos.

O pinga-pinga foi o precursor do tic-tac dos relógios

(13)

História da medição do tempo

Ampulheta

Século 14 na Europa

Usado para marcar tempo de eventos como sermões, aulas...

Relógio de pêndulo

1656 astrônomo holandês Cristiaan Huygens.

Galileu, em 1580, foi o

primeiro a ver a importância do pêndulo.

(14)

História da medição do tempo

Relógio de mola

Século 15 na Europa Impreciso inicialmente

Tornou o relógio miniaturizável.

Tecnologia que reinou até o advento do relógio de quartzo.

do relógio de quartzo.

Relógio de quartzo

1927 J.W.Horton e W.A.Morrison Tinha o tamanho de uma sala

Preciso: mostrou que o segundo como 1/86.400 do ano médio era impreciso.

(15)

História

da medição

do tempo

Relógio Atômico

Átomos de Césio 133 têm uma transição numa frequência de 9.192.631.770 ciclos /s (Hz)

Os átomos absorvem energia na cavidade de microondas e ficam em ressonância. Átomos de Césio sempre emitem nesta Átomos de Césio sempre emitem nesta mesma frequência: bom padrão de medida de tempo.

Em 1967, na 13a. Conferência Geral de Pesos e Medidas, foi definido como

padrão de tempo:

1s→→ 9.192.631.770 ciclos de uma

(16)

Relógio atômico

• 1945: Idéia: Isidor Rabi (Univ. Columbia) baseado na Ressonância Magnética de Feixe Atômico (de 1930)

• 1949: primeiro relógio, molécula de amônia

• 1952: Relógio de Césio 133 (NBS-1)

• 1967: Definido padrão mundial de tempo

• 1967: Definido padrão mundial de tempo

• 1968: Relógio de Césio 133 (NBS-4)

• 1999: NIST-F1, precisão de 1,7 partes em 1015 ou 1 segundo em 20 milhões de anos

(17)
(18)

História do tempo

• 1999 - NIST-F1 Cesium Fountain Clock • Padrão mundial de tempo Esquema do NIST-F1 NIST-F1 e seus construtores

(19)

Uma Aplicação: GPS

• O Global Positioning System (GPS) consiste de uma rede de mais de 24 satélites orbitando a 20.000 km de altitude • Cada satélite tem um

relógio atômico.

• Cada receptor tem apenas um relógio de quartzo.

• Precisão de poucos metros.

(20)
(21)

Medida de tempos longos:

datação com

14

C.

• Meia vida do 14C: T1/2 = 5.730 anos

• Equilíbrio dinâmico na atmosfera 14N ⇔ 14C (raios cósmicos),

• A fração de 14C (1 átomo para cada 7,8 x1011 de 12C) é constante em organismos vivos pela constante troca de CO2 com o ambiente (fotossíntese).

de CO2 com o ambiente (fotossíntese).

• A fração de 12C não muda após a morte, porém existe desintegração do 14C.

• Comparando a relação 14C/12C em fósseis determina-se a sua idade.

• Espécimes da ordem de 20.000 anos podem ser datados.

(22)

O metro Padrão

• 1791- International System (SI) Metro, 1 m = 10 -7 da distância do polo norte ao equador (meridiano de Paris)

• 1797- Barra de platina

• 1859- Maxwell propõe o comprimento de onda da linha espectral amarela do sódio.

• 1875- Tratado do metro. IBWM • 1875- Tratado do metro. IBWM • 1960- CGPM: 1.650.763,73

comprimentos de onda da transição 2p10 - 5d5 do kriptônio (massa 86)

• 1983- Distância percorrida pela luz no vácuo em 1/299.792.458 de segundo. A velocidade da luz é definida como c = 299.792.458 m/s.

(23)

Medidas de comprimento

• Pequenas distâncias:

• Microscópios: ótico, eletrônico, de força atômica, de tunelamento (escala atômica).

Limitação natural na medida de comprimento: Difração da luz (ótico) e Princípio da incerteza de Heisenberg

(eletrônico). (eletrônico).

(24)

Medidas de comprimento

• Grandes distâncias (astronômicas): • Método de triangulação (até » 10 anos-luz).

• Luminosidade aparente X luminosidade intrínseca: a

luminosidade aparente cai com o luminosidade aparente cai com o inverso do quadrado da distância. • Velas padrão:

•Cefeidas variáveis: relação entre o período e a luminosidade absoluta. •Supernovas de tipo IA (pico

(25)

Alguns comprimentos

característicos

Métodos indiretos Luminosidade Microscopia ótica Microscopia eletrônica Métodos diretos

(26)

O Quilograma Padrão

• 1889: a 1a Conferência Geral sobre Pesos e

Medidas definiu o

protótipo do quilograma como uma peça de

como uma peça de

Platina-Irídio colocada no IBWM.

(27)
(28)

Unidades SI

UNIDADES SI

Nome Símbolo Grandeza

metro m Comprimento

kilograma kg Massa

kilograma kg Massa

segundo s Tempo

ampere A Corrente elétrica

kelvin K Temperatura termodinâmica

mole mol Quantidade de substância

(29)
(30)

Análise Dimensional

A análise dimensional é a área da Física que se interessa pelas

unidades de medida das grandezas físicas. Ela tem grande utilidade na previsão, verificação e resolução de equações que relacionam as

grandezas físicas, garantindo sua correção e homogeneidade. A análise dimensional usa o fato de que as dimensões podem ser tratadas como grandezas algébricas, isto é, podemos somar ou subtrair grandezas nas equações somente quando elas possuem as mesmas dimensões.

equações somente quando elas possuem as mesmas dimensões.

Em análise dimensional utilizamos apenas três grandezas: massa,

comprimento e tempo, que são representadas pelas letras M, L e T

respectivamente. Podemos, a partir dessas grandezas, determinar uma série de outras.

Uma equação só pode ser fisicamente verdadeira se ela for dimensionalmente homogênea.

(31)

Exemplo:

Num movimento oscilatório, a abscissa (x) de uma partícula é dada em função do tempo (t) por:

onde A, B e C são parâmetros constantes não nulos. Adotando

como fundamentais as dimensões M (massa), L (comprimento) e T (tempo), obtenha as fórmulas dimensionais de A, B e C.

, ) ( cos C t B A x = +

Resolução: Levando-se em conta o princípio da homogeneidade

dimensional, deve-se ter:

=>

(tempo), obtenha as fórmulas dimensionais de A, B e C.

0 0 0L T M M0L0 T −1 0 0LT M 0 0LT M [ ] [ ]A = x = L ⇒[ ]A = [ ] [ ]C t = [ ]C = [ ][B cos(Ct)] [ ]= x =L⇒[ ] [ ]B = x =

Referências

Documentos relacionados

§ 2º Em uniformização de jurisprudência, por proposição de súmula ou por incidente de resolução de demandas repetitivas e nos casos de assunção ou de dúvida de competência,

Cotidiano e trabalho pedagógico: a educação de crianças pequenas e a formação de pedagogos. Graziela Escandiel de Lima O trabalho pedagógico e a investigação etnográfica

Dicionário de linguística...

49 SOLICITANDO VER UMA MÃO: Qualquer competidor que chegar até o showdown pode pedir para ver as cartas dos outros competidores, desde que ainda tenha suas cartas em

As forças de interação entre duas partículas que colidem são forças muito intensas e agem durante um intervalo de tempo extremamente curto. O que interessa saber é como se

A Correção Monetária refere-se a ajustes periódicos de valores na economia, tendo como base a correção do custo histórico das contas que compõem o ativo permanente e

É ESSENCIALMENTE CARACTERIZADO POR COMPREENDER UM MATERIAL CINTILADOR (2); UMA GUIA DE LUZ (4) TENDO A PRIMEIRA EXTREMIDADE ACOPLADA OTICAMENTE AO CINTILADOR; DOIS

Mas, uma vez que Cristo esta em nos, que toma sobre si toda a vingan~a de Deus, que foi atingido pela vingan~a de Deus em nosso lugar, que desta forma - vitima da vingan~a de Deus -