• Nenhum resultado encontrado

Treat MDR-TB and XDR-TB Reducing pill burden Lower dosing frequency Drug-drug interactions Available in low price

N/A
N/A
Protected

Academic year: 2019

Share "Treat MDR-TB and XDR-TB Reducing pill burden Lower dosing frequency Drug-drug interactions Available in low price"

Copied!
8
0
0

Texto

(1)

The

Brazilian

Journal

of

INFECTIOUS

DISEASES

w w w .e l s e v i e r . c o m / l o c a t e / b j i d

Review

article

Challenges

in

the

development

of

drugs

for

the

treatment

of

tuberculosis

Adeeb

Shehzad

a

,

Gauhar

Rehman

a

,

Mazhar

Ul-Islam

b

,

Waleed

Ahmad

Khattak

b

,

Young

Sup

Lee

a,∗

aSchoolofLifeSciences,CollegeofNaturalSciences,KyungpookNationalUniversity,Daegu,RepublicofKorea

bDepartmentofChemicalEngineering,KyungpookNationalUniversity,Daegu,RepublicofKorea

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13June2012 Accepted3October2012 Availableonline1January2013

Keywords:

Antibiotics Drugresistance Tuberculosis Pathogen

a

b

s

t

r

a

c

t

Tuberculosisinfectionisaserioushumanhealththreatandtheearly21stcenturyhasseen aremarkableincreaseinglobaltuberculosisactivity.Thepathogenresponsiblefor tuber-culosisisMycobacteriumtuberculosis,whichadoptsdiversestrategiesinordertosurvivein avarietyofhostlesions.Thesesurvivalmechanismsmakethepathogenresistantto cur-rentlyavailabledrugs,amajorcontributingfactorinthefailuretocontrolthespreadof tuberculosis.Multipledrugsareavailableforclinicaluseandseveralpotentialcompounds arebeingscreened,synthesized,orevaluatedinpreclinicalorclinicalstudies.Lastingand effectiveachievementsinthedevelopmentofanti-tuberculosisdrugswilldependlargelyon theproperunderstandingofthecomplexinteractionsbetweenthepathogenanditshuman host.Ampleevidenceexiststoexplainthecharacteristicsoftuberculosis.Inthisstudy, wehighlightedthechallengesforthedevelopmentofnoveldrugswithpotent bacterio-staticorbactericidalactivity,whichreducetheminimumtimerequiredtocuretuberculosis infection.

©2013ElsevierEditoraLtda.Allrightsreserved.

Introduction

The pathogen responsible for tuberculosis (TB) infection,

Mycobacteriumtuberculosis,wasfirstidentifiedbyRobertKoch

in1882.However,theglobalTBepidemicremains undimin-ishedandisexpectedtoreach9,8millionnewcasesin2010, morecasesthaninanypreviousyearinhistory.About80%of thesenewTBcaseswillbefoundinthe20–25highest-burden countries, withmorethan one-third inIndiaand China. A reviewoftheTBcasesreportedby134countriesbetween1998 and2007foundthatonly35hadpercapitaratesofdecline

Correspondingauthor.

E-mailaddress:yselee@knu.ac.kr(Y.S.Lee).

exceeding5%peryear.1However,surveillanceand

mathemat-icalmodelingsuggeststhatthetotalTBincidencepercapita isfallingatanestimated1%peryear,afindingthatindicates thattheglobalincidenceratewilldecreaseby2015.However, theworld’spopulationisgrowingatabout2%peryear,and thusthetotalnumberofnewTBcasesremainsontherise.2

Thisfindingrevealstherelativefailureoftheexisting man-agementstrategiesforTBandtheinadequateeffectivenessof publichealthsystems,mainlyinunderdeveloped countries. Inspiteoftheavailabilityofanti-TBdrugsdevelopedoverthe lastfivedecades,one-thirdoftheworld’spopulationretainsa

(2)

Shorten treatment time Treat MDR-TB and XDR-TB

Reducing pill burden

Lower dosing frequency Drug-drug interactions

Available in low price

Strong potent safe drugs with bactericidal activity on latent or dormant or heterogenous populations

New class of chemicals with broadmechanism of action as well as with low toxicity, such as hepatotoxicity

Combination of potent drugs to reduce the number of pills taken as well as child friendly

Enhance bioavailability with longer retention potency and adopt novel formulation and delivery technologies Minimal drug-drug interactions

particularly with different antivirals or oral diabetics

Tuberculosis Easily available through out the

world with low price appropriate to the community

Fig.1–Aschematicrepresentationfornewtuberculosis(TB)drugs.Thedesiredprofileofeachproductisenlightenedby thebiologicalcharacteristicspreferredtoachievetherespectivefeatures.

dormantorlatentformofM.tuberculosis.Thesepopulations are generally asymptomatic but remain at lifelong risk of diseasereactivationandrepresentahighriskfactorforthe spreadofthedisease(Fig.1).

Currently,the TBepidemicisfurtherexacerbatedbythe existenceofmultidrugresistant-TB(MDR-TB)andextremely drugresistant-TB(XDR-TB)strainsand decliningtreatment optionsasleastthreeeffectivedrugsarerequiredtobeused incombinationinordertosuccessfullytreatthediseasewhile preventingthedevelopmentoffurtherdrugresistance.3The

lastdrugtherapy discoveredandapproved, whichemploys anewmechanism ofactionfortreatmentofTB,was com-bination dosing using isoniazid (INH) and rifampicin (RIF). However,MDR-TBisresistanttoINHandRIF.Casesof MDR-TB and XDR-TB result from either primary infection with a drug-resistant bacteria strain or non-optimal treatment durationsorregimens.Inspiteoftheintroduction through-out the world many years ago of concomitant chemicals foruseinTBtreatment,lower cureratesforMDR-TB have been observed, ranging from 50 to 70%.4 XDR-TB is

resis-tanttoINHandRIF,allfluoroquinolones,andatleastoneof thesecond-lineanti-TBinjectabledrugsincludingamikacin, kanamycin and/or capreomycin. These types of resistance TB infections produce very high mortality rates.3

Further-more,theoccurrenceofdrug–druginteractionsexcludesthe co-administrationofsomeexistingTBdrugswithother medi-cationsusedinchronicdiseases.5Multipleeffectivetherapies

needtobedevelopedthatproducemultiplefunctionssuch asshorteningoftreatmenttime,efficacyagainstMDR-TBand XDR-TBstrains,simplertreatmentregimensincludinglower dosingfrequencies,andtherapiesthatcanbeco-administered withmedications usedinother chronicdiseases.The chal-lengeofmeetingthespectrumofexpectationsforthisdesired targetproductprofilecomplicatesdrugdiscovery efforts as manyoftheforthcomingcompoundsare eitherderivatives ofpresentlyusedcompounds ormodulate the same cellu-larprocesses as drugs currently in use.5,6 In addition, the

analoguesandderivativesindevelopmentarefarfrom trans-lationintotheclinic,maybesubjecttocross-resistance,and maybehamperedbytheunfavorableeconomicssurrounding TBdrugdevelopmentandlackofproperpolicyincentives.

Theaimofthisstudy wastodeterminewhether ornot thereareasufficientnumberofpromisingcompoundsinthe TBpipelinenecessaryinordertoachieveglobalcontrolofthis epidemic. Wepresenteda mechanismofactionagainstTB infection,providedaperspectivewiththegoalofimproving thefocusofdiscoveryanddevelopmentefforts,andidentified theunderlyingknowledgegapsandscientificobstaclesinTB drugdevelopment.

Drug

resistance

mechanisms

in

Mycobacterium

tuberculosis

Theexistingsituationsurroundingthegrowingdrug-resistant TBpatientpopulationissignificantlydisquietingand repre-sentsasignificantweaknessintheabilitytocontroldiseaseon aglobalscale.5,6Anyviralinfectioncausinghumanimmune

systemdeficiencycanreactivatetheTBinfection5 and

gen-erate the potential of producing new TB cases. In recent reports, the percentageof MDRcasesdemonstrating resis-tancetovariousclassesofantibioticsrangedfrom0to22.3%.6

Around40.000casesofXDR-TBareprojectedtoemerge world-wide each year.5,7 It isofutmost importance tofigureout

themechanismsthroughwhichthemycobacterialcellsresist anti-tuberculosisdrugs.Understandingthemechanismwill enablethedesignofnewanti-tuberculosisdrugsaswellas methods for interfering with the expression of such drug resistance.7

(3)

regimenliesinthefactthatthechromosomallociresponsible forresistancetovariousdrugsarenotlinked.Thus,the pos-sibilityofdevelopingresistancetothreedrugsadministered simultaneouslybecomes10−18 to10−20,anoutcomewhose probabilityisextremelyloworalmostnegligible.8Enormous

effortshavebeenmadetoidentifythemolecularbasisofdrug actionandresistanceintheTBpathogen.Thedrugactionand thebacterialresistancemechanismofafewcommonlyused drugshave been briefly summarizedto highlight the need fornoveldrugdesignthatcouldreducetreatmenttimeand avoidtheoccurrenceofdrugresistanceinthetreatmentofTB infections.

Resistance

to

anti-TB

drugs

Isoniazid(INH)

Sinceits introduction asan anti-TBdrug in1951,INH has beenthe mostwidelyusedtreatmentforTBandits latent infections.9,10INHpenetratesintothecellasapro-drug

acti-vated bykatG, the gene encodingcatalase-peroxidase. The peroxidaseactivityofthis enzymeisessentialinactivating INHandenablingitsinteractionswithvarioustoxicreactive speciesinthebacterialcell.11Thereactivespeciesusually

con-sist ofoxides, hydroxylradicals,and organic moieties that deterioratecomponentsofthecellwallwhichresultsinthe lossof cellularintegrity, and finally, bacterialdeath.12 The

resistancefrequency of 105,6 for INH ismuch higher than

thatformostanti-tuberculosisdrugs.13InhAenzyme

(enoyl-acylcarrierproteinreductase),involvedintheelongationof fattyacids inmycolicacid synthesis,isconsideredthe pri-marytargetofINHinhibition.14Thereplacementofanamino

acid in the NADH bindingsite of Inh A apparently results inINHresistance,preventingtheinhibitionofmycolicacid biosynthesis.Variousgeneticmutationshavebeenobserved tooccurusuallybetweencodons138and328;theSer315Thr mutationismostfrequentandfoundinabout40%ofall INH-resistant strains.15–17 ThemutationatSer315Thrresults in

anenzymelackingtheabilitytoactivateINH,butpreserves approximately50%ofitscatalase-peroxidaseactivity.18Thus,

themodifiedcatalase-peroxidaseoffershigh-levelresistance toINHwhilemaintainingahighlevelofoxidativeprotection sufficienttofacilitatetheorganisminsustainingits detoxify-ingactivityagainsthostantibacterialfreeradicals.

Rifampicin(RIF)

Rifampin, rifapentine, and rifabutin have been commonly usedasfirst-linetherapiesincombinationwithotherdrugs forthetreatmentofTBinfections.TheuseofRIFin combina-tionwithPZA/INHledtotheestablishmentofshorttherapy courses,whichreducedroutineTBtreatmentfrom1yearto 6months.RIFisbelievedtoinhibitbacterialDNA-dependent RNApolymerase.RNApolymeraseiscomposedoffour differ-entsubunits(␣,␤,␤′,and),andthegeneticlocicodingfor thesesubunitsincludetherpoA,rpoB,rpoC,andrpoDgenes, respectively.RMPinterfereswith RNAsynthesisbybinding tothe␤subunitoftheRNApolymerase,hindering transcrip-tionandtherebykillingtheorganism.ResistancetoRIFarises

due to missense mutationsin the gene. In M. tuberculosis, resistancetoRIFoccursatafrequencyof10−7to10−8,5The resistance in RIF develops due to mutations in a distinct, 81-base-pair(bp) (27-codon)centralregion ofthe genethat encodes the ␤-subunit ofRNApolymerase.19 About 96%of

allmutationsarefoundinthe81-bpcoreregionofthegene betweencodons507and533,withthemostcommonchanges occurringincodonsSer531Leu,His526Tyr,andAsp516Val.20

Pyrazinamide(PZA)

PZA isavitalfirst-linedrugforthetreatmentof tuberculo-sis. PZAhasanexcellent sterilizingeffecton semidormant tubercle bacilli. By killing semidormantbacilli inan acidic environment, PZA,along with INHand RIF, formsthe cor-nerstone ofmodern TBtreatmenttherapy. PZA hasplayed an important role in reducing the duration of TB treat-ment from the previous 9–12 months to the current 6 months.21 PZA is a prodrugthat is converted to its active

form pyrazinoic acid (POA) by the mycobacterial enzyme pyrazinamidase/nicotinamidase. PZA, produced intracellu-larly, diffuses into the tuberculosis pathogen in a passive manner,andisconvertedintoPOAbypyrazinamidasewithin thecell.Theinefficienteffluxsystemofthemycobacterialcell enablesmassiveaccumulationofPOAinthebacterial cyto-plasm,leadingtodisruptionofthemembranepotential.22,23

TheexactmechanismofPZAresistanceremainsunknown. However, it is known that PZA-resistant bacterial strains usually lose their pyrazinamidase activity.24 Cloning and

sequencingstudiesofthegenethatencodespyrazinamidase revealed that 72–97%ofallPZA-resistant clinicallyisolated specimenscarryamutationeitherinthestructuralgeneor intheputativepromoterregionofthegene.25

Ethambutol(EMB)

EMB is a first-line drug that is used in combination with INH, RIF, and PZA in order to prevent the emergence of drugresistancespecifictomycobacterium.EMBisanactive bacteriostatic agent for bacilli that are growing but has no effect on non-replicating bacilli. EMB interferes with themycobacterialcellwallthroughasyntheticmechanism andinhibitsarabinosyl-transferase,whichisinvolvedincell wall biosynthesis.26 Encoded byarabinosyl-transferase and

involved in the synthesis of arabinogalactan, arabinosyl-transferase hasbeen proposed asthe target ofEMBaction withinthetuberculosisorganism.27Studieshaveshownthat

resistance to EMB is due to random spontaneous genetic mutations occurring at a rate of approximately 1 in 107

organisms; mutations most commonly result in increased productionoftheenzymearabinosyl-transferase,which over-whelmstheinhibitoryeffectsofEMB.Studieshaveidentified five mutationsin codon306 including ATG-GTG,ATG-CTG, ATG-ATA,ATG-ATC,andATG-ATTthatresultinthreedifferent aminoacidsubstitutions(Val,Leu,andIle)inEMB-resistant strains.28,29Thesefivemutationsareassociatedwith70–90%

(4)

Current

challenges

in

the

TB

treatment

Thecurrentanti-TBdrugs,discoveredprimarilyinthe1950s to1970s, were developedthrough aseries ofclinical trials that extended into the 1980s.30 The subsequent 30 years,

untilapproximately2000,representedafallowperiodinTB drugresearchanddevelopment,avoidcontributinggreatlyto thesignificantchallengescurrentlyfacedbythecommunity of drug developers focused on markedly improving treat-mentsforactiveMDR-TBand XDR-TB.Atpresent,MDR-TB istreatedusingacombination ofdifferentdrugswith ther-apieslasting 18–24 months,with only four of thesedrugs developedforthepurposeoftreatingTB.31Suboptimal

ther-apy leadsto almost 30% ofMDR-TB patients experiencing treatment failure.32 The treatment options forXDR-TB are

verylimitedbecauseXDR-TBbacilliareresistant,notonlyto INHandRIF,butalsotofluoroquinolonesincludinginjectable drugssuchas aminoglycosides.In addition, thereare seri-ous side effects observed with most MDR-TB and XDR-TB drugs,includingnephrotoxicityandototoxicitywiththeuseof aminoglycosides,hepatotoxicitywiththeuseofethionamide, anddysglycemiawiththeuseofgatifloxacin.33

Thevast majorityofTBcasesanddeathsoccur inpoor countriesandaboutoneinfourofthedeathsoccuramong HIV-positive people. It has been reported that 9,4 million patientsdiagnosedwithTBin2009(11–13%)were alsoHIV positivewith approximately 80% ofthese morbidities con-finedtothe Africanregion.34 Thisisdue tolimited health

careaccessaswellasdiminishedcompliancewith therapeu-ticregimensassociatedwithincreasedpillburden,drug–drug interactions,andoverlappingtoxicsideeffects.Theprimary interactionbetweenHIVandanti-TBtreatmentagentsis RIF-inducedoverexpressionofthehepaticcytochrome(CYPP450) oxidasesystem.35StudieshaveshownthatCYPincreasedthe

pharmacokineticrateand decreased theefficacy ofseveral concomitantmedicationsincludingHIVproteaseinhibitors.36

Itisnotedthat withthe use ofCYP450 inhibitors,such as ritonavir,normaltrenchlevelsofvariousclassesofprotease inhibitorscannot beregained. Accordingly,they havebeen showntocompetewithrifampicininintracellular phosphor-ylation. Thus, these drugs should not be co-administered. However, the presence of ritonavir in a protease cock-tailincreasestheserum concentrationofrifabutin,thereby increasingitsaccompanyingtoxicity.37Multipledrug

interac-tionstudiesare fewformostsecond-lineTBdrugssuchas ethionamide,cycloserine,kanamycin,amikacin,capreomycin andpara-aminosalicylate,whichhavebeeninusesincethe lastdecade fortreating HIVpatientswithMDR-or XDR-TB strainco-infections.38 Therefore,specificactivecase-finding

strategiesareneededtotargetHIV-infectedindividualsaswell astheinteractionofanti-retroviralswithcurrentlyavailable second-line TBdrugs, aswell asthose currentlyinclinical development.

Like HIV, diabetes is also associated with the suppres-sionofcell-mediatedimmunityandisknowntoincreasethe riskofdevelopingactiveTBbythree-fold.39Studiesin2000

revealedthatapproximately20%ofsmear-positiveTBcases wereattributedtoconcurrentdiabetesinIndia.40Inthe

mean-time,iftheprojectedrisefrom25milliondiabetescasesin

2000to80millionin2030comestofruition,andtheriskratio remains the same,then42% ofsmear-positiveTBcasesin India willbeattributabletodiabetesby2030.EachTBcase causedbydiabeteswouldalsopotentiallyleadtothe infec-tionofotherpeople,addingtotheoverallTBburdeninthe community.41 Thebiological basisforthe limitedresponse

ofdiabeticstoanti-TBagentsandfortheirincreasedriskof developingMDR-TBispoorlyunderstood.But,itisbelieved that cell-mediatedimmunityissuppressedindiabetes and fostershigherTBinfectionrates.

Future

clinical

TB

drugs

to

overcome

drug

resistance

Development of drugs for the treatment of TB and other epidemicdiseaseshasbeenlackingfordecades.The conven-tionalapproachtoTBdrugdevelopmentrequiressubstituting each approveddrug inthe currentmulti-drugregimen,but onlyafterthenewdrughasbeenapprovedfortreatmentas asingleagent.TBcontrolinitiativeprogramforthetestingof newcompoundssimultaneouslycoulddrasticallyshortenthe developmenttimeline,butethicalimplicationsshouldbe con-sideredintheidentificationofapracticalwaytoimplement suchclinicaltrialdesigns.5,6

Adenosinetriphosphate(ATP)synthaseinhibitors

TheselectionofnewTBdrugtargets hasbeendetermined mainly by accessibility to the genome sequence ofthe TB pathogen. But studies dealing with the invention of new drugs have shown that genome-derived and target-based approachesgenerallyhavemodesttherapeuticeffectsinthe areaofantibacterials.42Studieshavealsoshownthat

chang-ingtheselectionapproachfromsingle-enzymetargetstothe wholebacterialcelllevelgreatly improvestheeffectsofTB drugs. However,the whole-cell screening approach is hin-deredbyalackofunderstandingofthemechanismofaction aswell asidentificationoftherelevantligandsforinternal infections.43 Current achievements utilizing the whole-cell

approacharehighlightedbytheidentificationofnewTBdrug agentssuchasTMC207,adiarylquinolinethatinhibitsATP synthesis, and BTZ043, a benzothiazine that blocks arabi-nansynthesis.44,45 TMC207(R207910orthe‘J’compound)is

activeagainstdrug-sensitiveanddrug-resistantM. tuberculo-sisisolates.46,47Alongwithbactericidalcharacteristicagainst

dormant (non-replicating) tubercle bacilli, it also has the potentialtominimizethetreatmentduration.48TMC207has

shownsameinhibitoryeffectsinmurinemodelof tubercu-losislikelyshownbyisoniazid, rifampin,andpyrazinamide inacombination.However,asignificantincreaseintherate of bacilli clearance was reported by using TMC207 along withtriple-drugregimenandthesynergisticinteractionwith pyrazinamide.49Moreover,ithasbeenreportedthatTMC207

incaseofmurinemodelofdrug-sensitiveenhancesthe effec-tivenessofsecond-linedrugcombination.50TMC207hasalso

(5)

onsetofresponse.Thistreatmentwasassociatedwith accept-able adverse-events.51 Additionally, controlled trial having

consistingofan(8 weeks) followed byaseparate proof-of-efficacystage(24weeks),wasconductedtoevaluateTMC207 efficacy in patients with newly diagnosed, smear-positive pulmonaryinfectioncausedbymultidrug-resistantM.

tuber-culosis.TMC207reducedthetimeintervaltoconversiontoa

negativesputumculture.51Theseexamplesdemonstratethat

multi-dimensionalsignalingpathwayinhibitioncanbeused asthebasisfortheidentificationofnewTBtreatment scaf-folds.

Proteinsynthesisinhibitors

Remodelingofpresentregimensisalsoaviablestrategyfor fuelingmomentumintheantibioticdevelopmentpipelineand discoveringnewtreatmentscaffoldsforuseagainstresistant bacterialstrains. Differentmembersofeachantibioticclass shareacommoncorestructure,anduponsynthetic modifica-tion,thecoreoftheantibioticisleftintactbutitsfunctional groupsarerearrangedtopotentiatethedrug’sactivity.

The tailored forms of oxazolidinones (linezolid against Gram-positiveinfections)haveprovidedaplatformfornew structuressuch as PNU-100480 and AZD-5847, which have been found to enhance antibiotic activity.44 For the very

firsttime,4-amino-1,2-oxazolidin-3-one(cycloserine),anew classofantibacterialagent,wasused.Cycloserineisa broad-spectrum antibiotic that has been used as a second-line antituberculosisdrugsince1955.52,53Inthemodernerawhen

severalbacterialstrainsarebecomingresistantagainst antibi-otics,linezolid (Zyvox)is theonly agentapprovedbyFood andDrugAdministration(FDA)intheclassandreleasedin 2000byUpjohnforthetreatmentofnosocomialpneumonia andskinandsofttissueinfectionscausedbyGram-positive bacteria.52AgainstMDR-TB,linezolidwasthefirst

oxazolidi-nonethathasbeenusedoff-label,However,itslong-termuse hasnotbeenprescribedbecauseofcertainsideeffects asso-ciatedwith its continuous use, suchas thrombocytopenia, anemia,andperipheralandopticneuropathy.54ForM.

tubercu-losis,minimuminhibitoryconcentration(MIC)isintherange

of0,125–1,0␮g/mL;because ofits severeside effectsitwas replacedbyPNU-100480(Sutezolid),ananalogueoflinezolid developedbyPizerwithsimilarMICsforM. tuberculosis,for betterinvivo activityand lesstoxicity.52,55,56 Ina

compari-sonstudyofthemurinemodelofTB,PNU-100480hasshown more potent bactericidal activity compared with linezolid, evenatlowerdrugexposures.44Additionally,theintroduction

ofPNU-100480 enhanced the bactericidal activitiesof regi-menscontainingsomefirst-linedrugstocertainfolds,giving aclue thatitmaybeeffectiveatminimizingthetreatment durationfordrug-susceptibleTBby1–2months.57Anearlier

study investigatedits safety,tolerability,pharmacokinetics, andpharmacodynamicsinhumansbygivingdifferentdoses, i.e.,100,300,or600mgtwicedailyor1200mgoncedailyfor 14days,or600mgtwicedailyfor28days,towhichPZAwas addedondays27and28.Asixthcohortwasgivenlinezolid at300mgdailyfor4days.Noneofthedosesgivenshowed anylethaleffectandwerewelltolerated.58C

maxlevelwas0,94

or2,01␮g/mL,andhalf-lifewas2,92or3,38h,respectively,in healthyvolunteersreceivingtwice-daily600mgoronce-daily

1200mgofPNU.Troughconcentrationswere maintainedat orabovetheMIC.AnEBAanalysissuggestsdailytestingof 600mgand1200mgfor14days.AZD-5847(posizolid)isa lead-containingcompoundthatisusedtocureTBbyAstraZeneca. ItpossessesanMICanalogoustothatoflinezolidand PNU-100480 for curing M. tuberculosis, and has shown profound effectinmousemodelexperimentofTB.53At600mgoral

dos-ing,Cmax is2,60␮g/mLinfastingsubjectsand5,66␮g/mLin fedsubjects, with ahalf-life closeto 8h but it hascaused nauseainthetestorganism.53Adailyoraldoseof800,1600

and2400mgfor14daysinhealthyvolunteerswaswell tol-erated, and hascaused anincreased Cmax up to 10␮g/mL; however, the increasewas notinproportiontothe dose.53

Similarly,cephalosporinssuchascefaclorandceftazidimeare moreimpervioustodestructionbytheresistanceenzyme␤ -lactamase,andenterthebacterialmembranemoreefficiently. Furthermore,new␤-lactamasescancleavethird-generation cephalosporins. Thus,fourth-generation moleculessuchas cefepimeweredevelopedthatarelesssusceptibletocleavage by␤-lactamase.45 Cephalosporins andother semi-synthetic

antibioticsharbor64%ofthenewchemicalscaffoldsthatwere filedbetween1981and2005.59

Nitromidazole(PA-824),Delaminid(OPC67683)

PA-824 is a prodrug derived from metronidazole that has shownstrongactivityagainstanaerobicbacteriaand proto-zoa (trichomoniasis, amoebiasis).PA-824has demonstrated significant sterilizingandanti-tuberculosisactivity,withan MIC90of0,125␮g/mLagainstboth drug-resistantand non-drug-resistant strains ofM. tuberculosis.60 It is bactericidal

against actively replicating and latent (non-replicating or slowly replicating) TB bacteria. Itsbactericidal mechanism againstreplicatingaerobicspeciesinvolvestheinhibitionof synthesisofcertainproteinsandcellwalllipidcomponents requiredforthesurvivalandreplicationofbacterialspecies. Thelatentbacteriaarekilledbyreleasingnitricoxidegas dur-ing enzymatic nitro-reduction that poisons the respiratory machinery.61InmurinemodelsofTB,PA-824demonstrated

bactericidalactivitynotonlyduringinitialphasebutalsoin thecontinuationphasewhereitkilledthebacteriathathad survivedforinitialtwomonths.62Theindividual

administra-tion ofPA-824hasshownbactericidal activitiescomparable tothatofmoxifloxacinandisoniazid.63Theevaluationof

PA-824incombinedtherapieswithfirst-linedrugstoshortenthe treatmenttimeproducedencouragingresults.Itsdailyintake incombinationwithmoxifloxacinand PZAhascontributed toanimpressivesterilizingregimen,signifyingthepotential toshorten the treatmenttime.64 Astudy compiledby

sub-stitutingisoniazidwithPA-824remarkablylowerlungsCFU after2monthstreatmentaswellasledtoarapid culture-negativeconversionwhencomparedfirst-linecombinationof rifampin, INHand PZA.65 Itssubstitution withrifampin in

first-line drug during intensivephase therapy issuggested to drastically reduce the treatment of multidrug-resistant tuberculosis.66DifferentamountsoforaldosesofPA-824were

(6)

beincludedinregimenforquickandeffectivetreatmentof drug-susceptibleanddrug-resistantTB.67

DNAgyraseinhibitors

Fluoroquinolonesare agroup ofantimicrobialsthatkill M.

tuberculosisviadouble-strandedbreaksinDNA,bybindingto

DNAgyrase.DNAgyraseconsistsoftwoAandtwoBsubunits encodedbythe gyraseA (gyrA)and gyrase B(gyrB)genes, respectively.68 Previouslydrugs suchasofloxacinand

levo-floxacinwereinuseratherthanthenalidixicacidderivatives moxifloxacinandgatifloxacin,whicharebeingdeveloped cur-rentlyforDS-TB.ThegatifloxacinbytheOflotubConsortium (NCT00216385)andmoxifloxacinbyBayerandtheTBAlliance (NCT00864383)havebeenevaluatedinPhaseIIItrial, substi-tutedwiththefirst-lineregimenforethambutol(gatifloxacin, moxifloxacin)andisoniazid(moxifloxacin)toshorten treat-mentofDS-TB.69Severalstudieshaveshownthepotentialof

moxifloxacinandgatifloxacininvitroandinmousemodels

ofTB70,71 aswellasinhumans.72,69Additionally,the

poten-tial toxicitiesof thesedrugs are mostly group related, but amongthem,gatifloxacinhasbeenreportedtodisturbglucose metabolicstateindiabeticandagedindividuals.73Incontrast,

thistypeofdrawbackwasnotassociatedwithmoxifloxacin treatment.74Studieshavealsoshownthereduceddrug–drug

interaction of gatifloxacinand moxifloxacin because these drugsarenotstronginhibitorsorinducersoftheCYPenzyme systemandalsonotmetabolizedtoagreatextent.75 RIF is

firstlineTBdrug,whichreducedapproximately30%plasma concentrations of moxifloxacin but according to the phar-macokinetic and dynamic condition of moxifloxacin, RIF induceglucuronidationorsulphation whichreduced moxi-floxacinplasmalevel in18 outof19patients.76,77 Wehope

that the Phase III trials will elaborate the safety and effi-cacyofa4-month,fluoroquinolone-basedtreatmentfordrug susceptible-TB,whichcouldbetranslatedtotheclinicforthe treatmentofTBby2015.

Conclusion

InthisreportweprovidedexamplesofpersistentTB trans-missionandofenhancedsusceptibilityoflargepopulations toinfectionanddisease.Itisclearthatallcurrentlyapproved TBdrugsarefacingacertainlevelofresistancegovernedby specific geneticmutations in the disease-causing

Mycobac-terium. Long-termuse ofaspecific drugresults inthe loss

ofitsefficiencywithincreasinglevelsofbacterialresistance. Therefore,the rightdrugshouldbetakenattherighttime inordertoavoiddevelopmentofseverebacterialresistance problems.Thisstudyalsohighlightedsomepromising bacte-ricidalagentsforquickpreventionandeffectivetreatmentof drug-susceptibleanddrug-resistantTB.

Anothersuggestion byWHO istochange thedrug dos-ingatregularintervalswithinaprescribedformat.78Besides

theseapproaches,itisimportanttodevelopnoveldrugsthat avoidthemanifestationofdrugresistanceinbacterialcells. Weconcludethatcontrolprogramshavebeenlesseffective thanexpectedinreducingtheoccurrenceofTBtransmission, mainlybecausepatientsarenotdiagnosedandcuredquickly

enough.Wedohopethatenhancingfeaturesofantibioticswill helpindevelopingimprovedtoolsforTBcontrol.TheseTB controleffortswillneedtobereinforcedandredoubledifTB istobeeliminatedasaglobalpublichealthcrisis.Thepriority nowshouldbetomaintainthebasicprinciplesoftreatment usingchemotherapysuchasgatifloxacinandmoxifloxacinbut implementtheseeffortswithgreatervigor.

Conflict

of

interest

Allauthorsdeclaretohavenoconflictofinterest.

r

e

f

e

r

e

n

c

e

s

1. LönnrothK,JaramilloE,WilliamsBG,etal.Driversof tuberculosisepidemics:theroleofriskfactorsandsocial determinants.SocSciMed.2009;68:2240–6.

2.Globaltuberculosiscontrol:ashortupdatetothe2009report. Geneva,WorldHealthOrganization2009,

WHO/HTM/TB/2009.426.

3.ZhangY,YewWW.Mechanismsofdrugresistancein

Mycobacteriumtuberculosis.IntJTubercLungDis.

2009;13:1320–30.

4.WrightA,ZignolM,VanDeunA,etal.Epidemiologyof antituberculosisdrugresistance2002–07:anupdatedanalysis oftheGlobalProjectonAnti-TuberculosisDrugResistance Surveillance.Lancet.2009;373:1861–73.

5.DyeC,WilliamsBG.Thepopulationdynamicsandcontrolof tuberculosis.Science.2010;328:856–61.

6.SharmaSK,MohanA.Multidrug-resistanttuberculosis. IndianJMedRes.2004;120:354–76.

7.JohnsonR,StreicherEM,LouwGE,etal.Drugresistancein

Mycobacteriumtuberculosis.CurrIssuesMolBiol.2006;8:97–111.

8.SlaydenRA,BarryCE.Thegeneticsandbiochemistryof isoniazidresistanceinMycobacteriumtuberculosis.Microbes Infect.2000;2:659–69.

9.HeymB,Saint-JoanisB,ColeST.Themolecularbasisof isoniazidresistanceinMycobacteriumtuberculosis.TuberLung Dis.1999;79:267–71.

10.ZhangY,HeymB,AllenB,etal.Thecatalase-peroxidasegene andisoniazidresistanceofMycobacteriumtuberculosis.Nature. 1992;358:591–3.

11.BarryCE,LeeRE,MdluliK,etal.Mycolicacids:structure, biosynthesisandphysiologicalfunctions.ProgLipidRes. 1998;37:143–79.

12.WinderF.Modeofactionoftheantimycobacterialagentsand associatedaspectsofthemolecularbiologyofmycobacteria. In:RatledgeC,StanfordJ,editors.Thebiologyof

mycobacteria,vol.1.NewYork:AcademicPress;1982.p. 354–438.

13.BanerjeeA,DubnauE,QuemardA,etal.inhA,agene encodingatargetforisoniazidandethionamidein

Mycobacteriumtuberculosis.Science.1994;263:227–30.

14.ZhangY,TelentiA.Geneticsofdrugresistancein

Mycobacteriumtuberculosis.In:HatfulGF,JacobsJrWR,editors.

Moleculargeneticsofmycobacteria.WashingtonDC:ASM Press;2000.p.235–54.

15.RamaswamyS,MusserJM.Moleculargeneticbasisof antimicrobialagentresistanceinMycobacteriumtuberculosis: 1998update.TuberLungDis.1998;79:3–29.

(7)

originatingfromtheSt.PetersburgareainRussia.Antimicrob AgentsChemother.1998;42:2443–5.

17.RouseDA,DeVitoJA,LiZ,etal.Site-directedmutagenesisof

thekatGgeneofMycobacteriumtuberculosis:effectson

catalase-peroxidaseactivitiesandisoniazidresistance.Mol Microbiol.1996;22:583–92.

18.TelentiA,ImbodenP,MarchesiF,etal.Detectionof

rifampicin-resistancemutationsinMycobacteriumtuberculosis. Lancet.1993;341:647–50.

19. HerreraL,JiménezS,ValverdeA,etal.Molecularanalysisof rifampicin-resistantMycobacteriumtuberculosisisolatedin Spain(1996–2001).DescriptionofnewmutationsintherpoB geneandreviewoftheliterature.IntJAntimicrobAgents. 2003;21:403–8.

20.ZhangY,WadeMM,ScorpioA,etal.Modeofactionof pyrazinamide:disruptionofMycobacteriumtuberculosis

membranetransportandenergeticsbypyrazinoicacid.J AntimicrobChemother.2003;52:790–5.

21.SalfingerM,CrowleAJ,RellerLB.Pyrazinamideand pyrazinoicacidactivityagainsttuberclebacilliincultured humanmacrophagesandintheBACTECsystem.JInfectDis. 1990;162:201–7.

22.ZhangY,ScorpioA,NikaidoH,etal.RoleofacidpHand deficienteffluxofpyrazinoicacidinuniquesusceptibilityof

Mycobacteriumtuberculosistopyrazinamide.JBacteriol.

1999;181:2044–9.

23. SheenP,FerrerP,GilmanRH,etal.Effectofpyrazinamidase activityonpyrazinamideresistanceinMycobacterium

tuberculosis.Tuberculosis(Edinb).2009;89:109–13.

24.ScorpioA,ZhangY.MutationsinpncA,ageneencoding pyrazinamidase/nicotinamidase,causeresistancetothe antituberculousdrugpyrazinamideintuberclebacillus.Nat Med.1996;2:662–7.

25.TakayamaK,KilburnJO.Inhibitionofsynthesisof

arabinogalactanbyethambutolinMycobacteriumsmegmatis. AntimicrobAgentsChemother.1989;33:1493–9.

26.TelentiA,PhilippWJ,SreevatsanS,etal.Theemboperon,a geneclusterofMycobacteriumtuberculosisinvolvedin resistancetoethambutol.NatMed.1997;3:567–70. 27.LeeHY,MyoungHJ,BangHE,etal.MutationsintheembB

locusamongKoreanclinicalisolatesofMycobacterium

tuberculosisresistanttoethambutol.YonseiMedJ.

2002;43:59–64.

28.RamaswamySV,AminAG,GökselS,etal.Moleculargenetic analysisofnucleotidepolymorphismsassociatedwith ethambutolresistanceinhumanisolatesofMycobacterium

tuberculosis.AntimicrobAgentsChemother.2000;44:326–36.

29.VanNiekerkC,GinsbergA.Assessmentofglobalcapacityto conducttuberculosisdrugdevelopmenttrials:dowehave whatittakes?IntJTubercLungDis.2009;13:1367–72. 30.MitnickC,BayonaJ,PalaciosE,etal.Community-based

therapyformultidrug-resistanttuberculosisinLima,Peru.N EnglJMed.2003;348:119–28.

31.MaZ,LienhardtC,McIlleronH,etal.Globaltuberculosisdrug developmentpipeline:theneedandthereality.Lancet. 2010;375:2100–9.

32.WorldHealthOrganization.TheglobalplantostopTB 2011–2015:transformingthefighttowardseliminationof tuberculosis.WorldHealthOrganization;2010.

33.NiemiM,BackmanJT,FrommMF,etal.Pharmacokinetic interactionswithrifampicin:clinicalrelevance.Clin Pharmacokinet.2003;42:819–50.

34.L’hommeRF,NijlandHM,GrasL,etal.Clinicalexperience withthecombineduseoflopinavir/ritonavirandrifampicin. AIDS.2009;23:863–5.

35. KhachiH,O’ConnellR,LadenheimD,etal.Pharmacokinetic interactionsbetweenrifabutinandlopinavir/ritonavirin

HIV-infectedpatientswithmycobacterialco-infection.J AntimicrobChemother.2009;64:871–3.

36.BurmanWJ,GallicanoK,PeloquinC.Therapeutic

implicationsofdruginteractionsinthetreatmentofhuman immunodeficiencyvirus-relatedtuberculosis.ClinInfectDis. 1999;28:419–29.

37.DooleyKE,ChaissonRE.Tuberculosisanddiabetesmellitus: convergenceoftwoepidemics.LancetInfectDis.

2009;9:737–46.

38. StevensonCR,CritchleyJA,ForouhiNG,etal.Diabetesand theriskoftuberculosis:aneglectedthreattopublichealth? ChronicIlln.2007;3:228–45.

39.LönnrothK,WilliamsBG,CegielskiP,etal.Aconsistent log-linearrelationshipbetweentuberculosisincidenceand bodymassindex.IntJEpidemiol.2010;39:149–55.

40.PayneDJ,GwynnMN,HolmesDJ,etal.Drugsforbadbugs: confrontingthechallengesofantibacterialdiscovery.NatRev DrugDiscov.2007;6:29–40.

41.PetheK,SequeiraPC,AgarwallaS,etal.Achemicalgenetic screeninMycobacteriumtuberculosisidentifies

carbon-source-dependentgrowthinhibitorsdevoidofinvivo efficacy.NatCommun.2010;1:57.

42.KoulA,DendougaN,VergauwenK,etal.Diarylquinolines targetsubunitcofmycobacterialATPsynthase.NatChem Biol.2007;3:323–4.

43. MakarovV,ManinaG,MikusovaK,etal.Benzothiazinoneskill

Mycobacteriumtuberculosisbyblockingarabinansynthesis.

Science.2009;324:801–4.

44.WilliamsKN,StoverCK,ZhuT,etal.Promising

antituberculosisactivityoftheoxazolidinonePNU-100480 relativetothatoflinezolidinamurinemodel.Antimicrob AgentsChemother.2009;53:1314–9.

45.CharestMG,LernerCD,BrubakerJD,etal.Aconvergent enantioselectiveroutetostructurallydiverse

6-deoxytetracyclineantibiotics.Science.2005;308:395–8. 46.AndriesK,VerhasseltP,GuillemontJ,etal.Adiarylquinoline

drugactiveontheATPsynthaseofMycobacteriumtuberculosis. Science.2005;307:223–7.

47.HuitricE,VerhasseltP,AndriesK,HoffnerSE.Invitro antimycobacterialspectrumofadiarylquinolineATP synthaseinhibitor.AntimicrobAgentsChemother. 2007;51:4202–4.

48.HaagsmaAC,Abdillahi-IbrahimR,WagnerMJ,etal. SelectivityofTMC207towardsmycobacterialATPsynthase comparedwiththattowardstheeukaryotichomologue. AntimicrobAgentsChemother.2009;53:1290–2.

49.KoulA,VranckxL,DendougaN,etal.Diarylquinolinesare bactericidalfordormantmycobacteriaasaresultofdisturbed ATPhomeostasis.JBiolChem.2008;283:25273–80.

50.IbrahimM,AndriesK,LounisN,etal.Synergisticactivityof R207910combinedwithpyrazinamideagainstmurine tuberculosis.AntimicrobAgentsChemother.2007;51:1011–5. 51.LounisN,VezirisN,ChauffourA,Truffot-PernotC,AndriesK,

JarlierV.CombinationsofR207910withdrugsusedtotreat multidrug-resistanttuberculosishavethepotentialto shortentreatmentduration.AntimicrobAgentsChemother. 2006;50:3543–7.

52.KeshavjeeS,FarmerPE.Tuberculosis,drugresistance,andthe historyofmodernmedicine.NEnglJMed.2012;367:931–6. 53.GlobalAllianceforTBDrugDevelopment.Evaluationofearly

bactericidalactivityinpulmonarytuberculosis.USNational InstitutesofHealth,ClinicalTrials.gov.

http://www.clinicaltrials.gov[ClinicalTrials.govidentifier NCT00944021].

(8)

55.MiglioriGB,EkerB,RichardsonMD,etal.Aretrospective TBNETassessmentoflinezolidsafety,tolerabilityandefficacy inmultidrug-resistanttuberculosis.EurRespirJ.

2009;34:387–93.

56.DiaconAH,DawsonR,HanekomM,etal.Thesafety, tolerabilityandearlybactericidalactivityand pharmacokineticsofPA824inpreviouslyuntreated, uncomplicated,sputumsmear-positivepulmonary tuberculosispatients.AntimicrobAgentsChemother. 2010;54:3402–7.

57.WilliamsKN,BricknerSJ,StoverCK,etal.Additionof PNU-100480tofirst-linedrugsshortensthetimeneededto curemurinetuberculosis.AmJRespirCritCareMed. 2009;180:371–6.

58.WallisRS,JakubiecWM,KumarV,etal.Biomarker-assisted doseselectionforsafetyandefficacyinearlydevelopmentof PNU-100480fortuberculosis.AntimicrobAgentsChemother. 2011;55:567–74.

59.FischbachMA,WalshCT.Antibioticsforemergingpathogens. Science.2009;325:1089–93.

60.VandenBoogaardJ,KibikiGS,KisangaER,BoereeMJ, AarnoutseRE.Newdrugsagainsttuberculosis:problems, progress,andevaluationofagentsinclinicaldevelopment. AntimicrobAgentsChemother.2009;53:849–62.

61. LienhardtC,RaviglioneM,SpigelmanM,etal.Newdrugsfor thetreatmentoftuberculosis:needs,challenges,promise, andprospectsforthefuture.JInfectDis.2012;205: S241–9.

62.TyagiS,NuermbergerE,YoshimatsuT,etal.Bactericidal activityofthenitroimidazopyranPA-824inamurinemodel oftuberculosis.AntimicrobAgentsChemother.2005;49: 2289–93.

63.LenaertsAJ,GruppoV,MariettaKS,etal.Preclinicaltestingof thenitroimidazopyranPA-824foractivityagainst

Mycobacteriumtuberculosisinaseriesofinvitroandinvivo

models.AntimicrobAgentsChemother.2005;49:2294–301. 64.GinsbergAM.Drugsindevelopmentfortuberculosis.Drugs.

2010;70:2201–14.

65.NuermbergerE,RosenthalI,TyagiS,etal.Combination chemotherapywiththenitroimidazopyranPA-824and first-linedrugsinamurinemodeloftuberculosis.Antimicrob AgentsChemother.2006;50:2621–5.

66.NuermbergerE,TyagiS,TasneenR,etal.Powerfulbactericidal andsterilizingactivityofaregimencontainingPA-824, moxifloxacin,andpyrazinamideinamurinemodelof tuberculosis.AntimicrobAgentsChemother.2008;52:1522–4. 67.DiaconAH,DawsonR,HanekomM,etal.Earlybactericidal

activityandpharmacokineticsofPA-824insmear-positive tuberculosispatients.AntimicrobAgentsChemother. 2010;54:3402–7.

68.CollinF,KarkareS,MaxwellA.ExploitingbacterialDNA gyraseasadrugtarget:currentstateandperspectives.Appl MicrobiolBiotechnol.2011;92:479–97.

69. RustomjeeR,LienhardtC,KanyokT,etal.AphaseIIstudyof thesterilisingactivitiesofofloxacin,gatifloxacinand moxifloxacininpulmonarytuberculosis.IntJTubercLungDis. 2008;12:128–38.

70.RodríguezJC,RuizM,LópezM,etal.Invitroactivityof moxifloxacin,levofloxacin,gatifloxacinandlinezolidagainst

Mycobacteriumtuberculosis.IntJAntimicrobAgents.

2002;20:464–7.

71.CynamonM,SklaneyMR.Gatifloxacinandethionamideas thefoundationfortherapyoftuberculosis.AntimicrobAgents Chemother.2003;47:2442–4.

72.JohnsonJL,HadadDJ,BoomWH,etal.Earlyandextended earlybactericidalactivityoflevofloxacin,gatifloxacinand moxifloxacininpulmonarytuberculosis.IntJTubercLung Dis.2006;10:605–12.

73. Park-WyllieLY,JuurlinkDN,KoppA,etal.Outpatient gatifloxacintherapyanddysglycemiainolderadults.NEnglJ Med.2006;354:1352–61.

74.GavinIIIJR,KubinR,ChoudhriS,etal.Moxifloxacinand glucosehomeostasis:apooled-analysisoftheevidencefrom clinicalandpostmarketingstudies.DrugSaf.2004;27:671–86. 75.HooperDC,Rubinstein3rdE,editors.Quinoloneantimicrobial

agents.3rded.Washington,DC:ASMPress;2003.

76.WeinerM,BurmanW,LuoCC,etal.Effectsofrifampinand multidrugresistancegenepolymorphismonconcentrations ofmoxifloxacin.AntimicrobAgentsChemother.

2007;51:2861–71.

77.NijlandHM,RuslamiR,SurotoAJ,etal.Rifampicinreduces plasmaconcentrationsofmoxifloxacininpatientswith tuberculosis.ClinInfectDis.2007;45:1001–7.

Imagem

Fig. 1 – A schematic representation for new tuberculosis (TB) drugs. The desired profile of each product is enlightened by the biological characteristics preferred to achieve the respective features.

Referências

Documentos relacionados

There are similarities in the mechanism of action of memantine, an anti-glutamatergic drug, and lamotrigine, the latest drug associated with antidepressant and mood stabilizing

The advances in the understanding of the pathogenesis of multiple myeloma and the mechanism of drug resistance have led to the development of novel targeted therapies that are able

To gain insight into the epidemiology of childhood drug resistant tuberculosis (DR-TB) in China that has the second largest burden of TB and the largest number of multidrug resis-

Ref- ugees certified as having Class A-TB accounted for about 2 per cent of all entering refugees and 57 per cent of the tuberculosis cases among refugees;

Overall, the studies indicated that the most commonly used illicit drug was marijuana, that the bulk of the drug users (excluding alcohol and tobacco users)

Currently available evidence about the role of beda- quiline in MDR-TB has low quality, but the available re- sults of phase II clinical trials suggest that this drug might

risk of presenting adverse reactions, drug-disease interactions, drug-drug interactions, inappropriate drug for age or clinical condition, medication duplicity, unnecessary

In the present study, MDR-TB, defined as resistance to at least isoniazid and rifampicin was responsible for 14% of the overall number of TB cases and 69% of the drug-resistant