• Nenhum resultado encontrado

New Contraction Mappings in Dislocated Quasi - Metric Spaces

N/A
N/A
Protected

Academic year: 2017

Share "New Contraction Mappings in Dislocated Quasi - Metric Spaces"

Copied!
6
0
0

Texto

(1)

New Contraction Mappings in Dislocated Quasi - Metric Spaces

A.Muraliraj

1

, T.Senthil Kumar

2

1P.G. And Research Department Of Mathematics, Urumu Dhanalakshmi College, Kattur, Tiruchirappalli-620

019, Tamilnadu, India.

2p.G. Department Of Mathematics,A.A.Government Arts College , Musiri- 621 211, Tamil Nadu, India.

ABSTRACT

In this paper the concept of new contraction mappings has been used in proving fixed point theorems. We establish some common fixed point theorems in complete dislocated quasi metric spaces using new contraction mappings.

Keywords:

Dislocated quasi-metric space; fixed point; dq-Cauchy sequence.

I.

INTRODUCTION

P.Hitzler , introduced the notation of dislocated metric spaces in which self distance of a point need not be equal to zero. They also generalized the famous Banach contraction principle. Since this principle has been extended and generalized in various ways by putting contractive conditions either on the mappings or on the spaces. Dislocated metric space plays very important role in topology, logical programming and in electronics engineering. Zeyada et al. (5) initiated the concept of dislocated quasi-metric space and generalized the result of Hitzler and Seda in dislocated qusi-metric spaces. Results on fixed points in dislocated and dislocated quasi-metric spaces followed by Isufati (1) and Aage and Salunke (4) , and recently by Shrivastava , Ansari and Sharma(8). Our result generalizes some results of fixed points.

II.

PRELIMINARIES

Definition 2.1: Let X be a nonempty set, let d : X x X → [0, ) be a function satisfying following conditions. (i) d ( x , y ) = d ( y , x) = 0 implies x = y .

(ii) d ( x , y ) ≤ d ( x , z ) + d ( z , y ) for all x, y , z  X . Then d is called a dislocated quasi metric spaces or dq - metric on X.

Definition 2.2: A sequence { x n } in dq-metric space ( X , d ) is said to be a Cauchy sequence if for given

0

 , there exists n0 ϵN such that for all m , n ≥ n0, implies dxm,xn .

Definition 2.3: A sequence { x n } in dq-metric space ( X , d ) is said to be a convergent to x if

. 0 ) , (

lim 

 

x n x d n

Definition 2.4 : A dq-metric space ( X , d ) is said to be a Complete if every Cauchy sequence in convergent in X .

Definition 2.5 : Let (X,d) be a dq-metric space . A mapping f : X → X is called contraction if there exists    

 ,   ,  , .

1

0 such that d f x f y d x y for all x yX

Lemma 2.6: dq-limits in a dq-metric space are unique.

Theorem 2.7: Let (X,d) be complete dq-metric space and let f : X→ X be a continuous contraction function then f has a unique fixed point.

III.

MAIN RESULTS

Theorem 3.1: Let ( X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X to X satisfying the following condition

   

 ,  ...(1) )

, ( 1

, ,

) , ( ) ) ,

( 

  

 

  

Tx y d Ty y d

Ty x d Tx y d y x d Ty Tx

d  

(2)

for all x,y X,, 0 and  2 1. Then T has a unique fixed point.

Proof: Let { x n} be a sequence in X , defined as follows

Let x0X , Tx0 = x1 , Tx1 = x2 ,……… , Txn = xn+1.

Consider

   

     

  

  

  

 

   

 

 

1 , ) , ( 1

, 1 1

, ,

1 , 1 1

,

n Tx n x d n Tx n x d

n Tx n x d n Tx n x d n

x n x d

n Tx n Tx d n x n x d

 

     

    

  

 

   

 

n x n x d n x n x d

n x n x d n x n x d n x n x d

, ) 1 , ( 1

1 , 1 ,

,

1 

1,   1, 1  d xn xnd xn xn

1 d xn,xn1  d xn1,xn

dxn xndxn 1,xn 1

1

, 

    

   

  

    1

1 )

2 ...( , 1 1

, 

    

   

 

  

h where n

x n x d h n x n x d

In the same way, we have dxn1,xn h dxn2,xn1.

By (2), we get dxn,xn1h2 dxn2,xn1 Continue this process, we get in general

xn,xn1hn dx1,x0. Since 0  h 1as n   , hn  0. d

Hence {xn } is a dq– cauchy sequence in X . Thus { x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n )

= lim xn+1 = u .Thus u is a fixed point T.

Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*.

Now,    

 *, * ...(3) *)

*, ( 1

* *, * *, *)

*, ( *) , *

( 

  

 

 

Tx y d Ty y d

Ty x d Tx y d y

x d Ty Tx

d  

   

    

  

 

* *, *) *, ( 1

* *, * *, *)

*, ( *) , * (

x y d y y d

y x d x y d y

x d y x

d  

 2  ( *, *) *)

, * (

*) *, ( 2 *) *, ( *) , * (

y x d y

x d

y x d y x d y

x d

 

 

 

 

This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*)= d(y*, x*)=0 and so x* = y* . Hence T has a unique fixed point.

Theorem 3.2: Let ( X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X to X satisfying the following condition

y,Tx

d(x,y) ...( 4)

d ) Ty , y ( d 1

Ty , x d Tx , y d

) y , x ( d 1

) Tx , x ( d 1 ) Ty , y ( d ) ) Ty , Tx (

d  

  

 

 

 

 

for all x,y X,,, 0 and  2 1. Then T has a unique fixed point.

Proof: Let { x n} be a sequence in X , defined as follows

Let x0X , Tx0 = x1 , Tx1 = x2 ,……… , Txn = xn+1.

Consider

   

   

 

   

  dxn xn

n Tx n x d n Tx n x d

n Tx n x d n Tx n x d

n x n x d

n Tx n x d n Tx n x d

n Tx n Tx d n x n x d

, 1 1

, ) , ( 1

, 1 1

,

, 1 1

1 , 1 1

, , 1 1

,

 

    

  

 

   

 

   

 

 

   

 

   

  dxn xn

n x n x d n x n x d

n x n x d n x n x d

n x n x d

n x n x d n

x n x d

, 1 ,

) 1 , ( 1

1 , 1 ,

, 1 1

, 1 1

1 ,

 

    

  

 

   

 

  

(3)

xn xndxn xndxn xn

d , 11, 11,

  

1 d xn,xn1  d xn1,xn

dxn xndxn 1,xn 1

1

, 

  

 

 

  

 

 

1

1 h where )

5 ...( x , x d h x

, x

d n n 1 n 1 n 

  

 

   

   

In the same way, we have dxn1,xnh dxn2,xn1.

By (5), we get dxn,xn1h2 dxn2,xn1 Continue this process , we get in general

xn,xn1hn dx1,x0. Since 0  h 1as n   , hn  0. d

Hence {xn } is a dq– cauchy sequence in X . Thus {x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n )

= lim xn+1 = u .Thus u is a fixed point T.

Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*. Now,

   

y*,Tx * d(x*,y*) ...( 6)

d *) Ty *, y ( d 1

* Ty *, x d * Tx *, y d

*) y *, x ( d 1

*) Tx *, x ( d 1 *) Ty *, y ( d *) Ty , * Tx (

d  

  

 

 

 

 

     

 *, * ( *, *)

*) *, ( 1

* *, * *,

*) *, ( 1

*) *, ( 1 *) *, ( *) , *

( d x y

x y d y y d

y x d x y d y

x d

x x d y y d y x

d    

  

  

 

  

2  ( *, *) *)

, * (

*) *, ( *) *, ( 2 *) , * (

y x d y

x d

y x d y x d y

x d

 

 

 

 

This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*)= d(y*, x*)=0 and so x* = y* . Hence T has a unique fixed point.

Theorem 3.3: Let (X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X to X satisfying the following condition

   

y,Tx  d(x,y) ...( 7)

d ) Ty , y ( d 1

Ty , x d Tx , y d

) y , x ( d

) Tx , x ( d ) Ty , y ( d ) ) Ty , Tx (

d  

  

 

 

 

for all x,y X,,, 0 and  2 1. Then T has a unique fixed point.

Proof: Let { x n} be a sequence in X , defined as follows

Let x0X, Tx0 = x1 , Tx1 = x2 ,……… , Txn = xn+1.

Consider

   

   

 

   

  dxn xn

n Tx n x d n Tx n x d

n Tx n x d n Tx n x d

n x n x d

n Tx n x d n Tx n x d

n Tx n Tx d n x n x d

, 1 1

, ) , ( 1

, 1 1

,

, 1

1 , 1 ,

, 1 1

,

 

    

  

 

   

  

 

 

   

 

   

  dxn xn

n x n x d n x n x d

n x n x d n x n x d

n x n x d

n x n x d n x n x d

, 1 ,

) 1 , ( 1

1 , 1 ,

, 1

, 1 1 ,

 

    

  

 

   

  

   

dxn,xn1dxn1,xn1 dxn1,xn

1 d xn,xn1  d xn1,xn

dxn xndxn 1,xn 1

1

, 

  

 

 

  

 

 

1

1 h where )

8 ...( x , x d h x , x

d n n 1 n 1 n 

  

 

   

   

(4)

By (8), we get dxn,xn1h2 dxn2,xn1 Continue this process , we get in general

xn,xn1hn dx1,x0. Since 0  h 1as n   , hn  0. d

Hence {xn } is a dq– cauchy sequence in X . Thus { x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n )

= lim xn+1 = u .Thus u is a fixed point T.

Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*.

Now,    

y*,Tx * d(x*,y*) ...( 9)

d *) Ty *, y ( d 1 * Ty *, x d * Tx *, y d *) y *, x ( d *) Tx *, x ( d *) Ty *, y ( d *) Ty , * Tx (

d 

                 *, * ( *, *) *) *, ( 1 * *, * *, *) *, ( *) *, ( *) *, ( *) , *

( d x y

x y d y y d y x d x y d y x d x x d y y d y x

d    

         

2  ( *, *) *) , * ( *) *, ( *) *, ( 2 *) , * ( y x d y x d y x d y x d y x d        

This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*)= d(y*, x*)=0 and so x* = y* . Hence T has a unique fixed point.

Theorem 3.4: Let (X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X to X satisfying the following condition

   

   

   

y,Tx  d(x,y) ...(10)

d ) Ty , y ( d 1 Ty , x d Tx , y d Ty , y d Ty , y d ) y , x ( d Ty , x d Tx , y d ) ) Ty , Tx (

d 

                  

for all x,y X,,, 0 and  2 1. Then T has a unique fixed point.

Proof: Let { x n} be a sequence in X , defined as follows

Let x0X , Tx0 = x1 , Tx1 = x2 ,……… , Txn = xn+1.

Consider

   

   

   

   

  dxn xn

n Tx n x d n Tx n x d n Tx n x d n Tx n x d n Tx n x d n Tx n x d n x n x d n Tx n x d n Tx n x d n Tx n Tx d n x n x d , 1 1 , ) , ( 1 , 1 1 , , , ) , 1 ( , 1 1 , , 1 1 ,                                                

  dxn xn

n x n x d n x n x d n x n x d n x n x d n x n x d n x n x d n x n x d n x n x d n x n x d , 1 , ) 1 , ( 1 1 , 1 , 1 , 1 , ) , 1 ( 1 , 1 ,                                  

dxn,xn1dxn1,xn1 dxn1,xn

1 d xn,xn1  d xn1,xn

dxn xndxn 1,xn 1 1 ,               

1

1 h where ) 11 ...( x , x d h x , x

d n n 1 n 1 n 

             

In the same way, we have dxn1,xnh dxn2,xn1.

By (11), we get dxn,xn1h2 dxn2,xn1 Continue this process , we get in general

xn,xn1hn dx1,x0. Since 0  h 1as n   , hn  0. d

Hence {xn } is a dq– cauchy sequence in X . Thus { x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n )

= lim xn+1 = u .Thus u is a fixed point T.

Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*. Now,

   

   

   

y*,Tx * d(x*,y*) ...(12)

d *) Ty *, y ( d 1 * Ty *, x d * Tx *, y d * Ty *, y d * Ty *, y d *) y *, x ( d * Ty *, x d * Tx *, y d *) Ty , * Tx (

d  

                                *, * ( *, *) *) *, ( 1 * *, * *, * *, * *, *) *, ( * *, * *, *) , *

( d x y

x y d y y d y x d x y d y y d y y d y x d y x d x y d y x

d    

(5)

( *, *) 2  ( *, *)

*) *, ( *) *, ( 2 *) , * (

y x d y

x d

y x d y x d y

x d

 

 

 

 

This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*) = d(y*, x*)=0 and so x* = y* . Hence T has a unique fixed point.

Theorem 3.5: Let (X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X to X satisfying the following condition

   

 

   

y,Tx  d(x,y) ...(13)

d ) Ty , y ( d 1

Ty , x d Tx , y d

Ty , y d ) y , x ( d

Ty , y d Ty , x d )

) Ty , Tx (

d  

  

 

 

    

 

 

for all x,y X,,, 0 and  2 1. Then T has a unique fixed point.

Proof: Let {x n} be a sequence in X , defined as follows

Let x0X, Tx0 = x1 , Tx1 = x2 ,……… , Txn = xn+1.

Consider

   

   

 

   

  dxn xn

n Tx n x d n Tx n x d

n Tx n x d n Tx n x d

n Tx n x d n x n x d

n Tx n x d n Tx n x d

n Tx n Tx d n x n x d

, 1 1

, ) , ( 1

, 1 1

,

, ) , 1 (

, ,

1 , 1 1

,

 

    

  

 

   

    

  

 

 

 

 

   

 

   

  dxn xn

n x n x d n x n x d

n x n x d n x n x d

n x n x d n x n x d

n x n x d n x n x d

, 1 ,

) 1 , ( 1

1 , 1 ,

1 , ) , 1 (

1 , 1 , 1

 

    

  

 

   

    

  

 

 

  

dxn,xn1dxn1,xn1 dxn1,xn

1 d xn,xn1  d xn1,xn

dxn xndxn 1,xn 1

1

, 

  

 

 

  

 

 

1

1 h where )

14 ...( x , x d h x

, x

d n n 1 n 1 n 

  

 

   

   

In the same way, we have dxn1,xnh dxn2,xn1.

By (14), we get dxn,xn1h2 dxn2,xn1 Continue this process, we get in general

xn,xn1hn dx1,x0. Since 0  h 1as n   , hn  0. d

Hence {xn } is a dq– cauchy sequence in X . Thus {x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n )

= lim xn+1 = u .Thus u is a fixed point T.

Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*. Now,

   

 

   

y*,Tx * d(x*,y*) ...(15) d

*) Ty *, y ( d 1

* Ty *, x d * Tx *, y d

* Ty *, y d *) y *, x ( d

* Ty *, y d * Ty *, x d *)

Ty , * Tx (

d 

  

 

 

    

 

 

   

 

   

 *, * ( *, *)

*) *, ( 1

* *, * *,

* *, *) *, (

* *, * *, *)

, *

( d x y

x y d y y d

y x d x y d

y y d y x d

y y d y x d y

x

d    

  

  

 

   

 

 

( *, *) 2  ( *, *)

*) *, ( *) *, ( 2 *) , * (

y x d y

x d

y x d y x d y

x d

 

 

 

 

This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*)= d(y*, x*)=0 and so x* = y* . Hence T has a unique fixed point.

REFERENCES

[1]. A.Isufati. Fixed point theorems in dislocated quasi-metric space. Appl. Math. Sci. 4(5): 217-223 , 2010. [2]. B.E.Rhoades , A Comparison of various definition of contractive mappings , Trans. Amer.Math.Soc.,

226(1977),257-290.

(6)

[4]. D.S.Jaggi.Some unique fixed point theorems. Indian J. Pure Appl. Math., 8(2):223-230, 1977.

[5]. F.M.Zeyada, G.H.Hassan, and M.A.Ahmed. A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces. The Arabian J. for Sci. and Eng. , 31(1A) : 111: 114, 2005. [6]. P.Hitzler. Generalized Metrics and Topology in Logic Programming semantics. Ph.d. thesis , National

University of Ireland , University College Cork, 2001.

[7]. P.Hitzler and A.K.Seda , Dislocated topologies. J.electr. Engin., 51(12/S):3:7,2000.

[8]. R.Shrivastava, Z.K.Ansari and M.Sharma. Some results on fixed points in Dislocated and Dislocated quasi-metric spaces. Journal of Advanced Studies in Topology; Vol.3, No.1, 2012.

[9]. H. Aydi, Some fixed point results in ordered partial metric spaces, J. Nonlinear Sciences. Appl, 4 (3) (2011) 210-217.

Referências

Documentos relacionados

Recently in 2011, Sintunavarat and Kumam [25] introduced the concept of the common limit in the range property and also established existence of a common fixed point theorems

Recently, Kumar and Pant [14] have given a common fixed point theorem for two pairs of compatible mappings satisfying expansion type condition in probabilistic

Sastry et al.[18] dealt with fixed point results in generalized metric spaces, extended Ciric theorem [7] in generalized metric spaces with less stringent conditions

Guran, A multivalued Perov-type theorems in generalized metric spaces - accepted for publication in Creative Mathematics and Informatics, Baia-Mare, Romˆania.... Perov, On

of multi-valued and single-valued maps in complete metric spaces, and used coincidence and common fixed points, to establish a theorem on fixed points for pairs of

Further, it is shown that a quasi contraction and closed multivalued map on a topological vector space has a unique fixed point if it is bounded value.. Keywords: : Topological

The aim of this paper is to establish the existence and uniqueness of coincidence and common fixed point of two pairs of weakly compatible maps using a new type of contraction,

Além do mais, ê sugerido que esta característica espacial das fontes de informação pode ser útil para explicar certas propriedades funcionais do