• Nenhum resultado encontrado

G-STRUCTURE PRESERVING AFFINE AND ISOMETRIC IMMERSIONS

N/A
N/A
Protected

Academic year: 2022

Share "G-STRUCTURE PRESERVING AFFINE AND ISOMETRIC IMMERSIONS"

Copied!
180
0
0

Texto

(1)

G-STRUCTURE PRESERVING AFFINE AND ISOMETRIC IMMERSIONS

Joint work with Daniel V. Tausk, USP

Paolo Piccione

Departamento de Matemática Instituto de Matemática e Estatística

Universidade de São Paulo

Workshop on Differential Geometry and PDEs

(2)

Outline.

1 G-structures

2 Principal spaces

3 Principal fiber bundles

4 Connections

5 Inner torsion of aG-structure

6 Infinitesimally homogeneous affine manifolds withG-structure

7 Immersion theorems

(3)

Outline.

1 G-structures

2 Principal spaces

3 Principal fiber bundles

4 Connections

5 Inner torsion of aG-structure

6 Infinitesimally homogeneous affine manifolds withG-structure

7 Immersion theorems

(4)

Outline.

1 G-structures

2 Principal spaces

3 Principal fiber bundles

4 Connections

5 Inner torsion of aG-structure

6 Infinitesimally homogeneous affine manifolds withG-structure

7 Immersion theorems

(5)

Outline.

1 G-structures

2 Principal spaces

3 Principal fiber bundles

4 Connections

5 Inner torsion of aG-structure

6 Infinitesimally homogeneous affine manifolds withG-structure

7 Immersion theorems

(6)

Outline.

1 G-structures

2 Principal spaces

3 Principal fiber bundles

4 Connections

5 Inner torsion of aG-structure

6 Infinitesimally homogeneous affine manifolds withG-structure

7 Immersion theorems

(7)

Outline.

1 G-structures

2 Principal spaces

3 Principal fiber bundles

4 Connections

5 Inner torsion of aG-structure

6 Infinitesimally homogeneous affine manifolds withG-structure

7 Immersion theorems

(8)

Outline.

1 G-structures

2 Principal spaces

3 Principal fiber bundles

4 Connections

5 Inner torsion of aG-structure

6 Infinitesimally homogeneous affine manifolds withG-structure

7 Immersion theorems

(9)

Outline

1 G-structures

2 Principal spaces

3 Principal fiber bundles

4 Connections

5 Inner torsion of aG-structure

6 Infinitesimally homogeneous affine manifolds withG-structure

7 Immersion theorems

(10)

G-structure on sets

X0set,Bij(X0)group of bijectionsf :X0→X0.

X another set, withBij(X0,X)6=∅.

Bij(X0)acts transitively onBij(X0,X)by composition on the right. G⊂Bij(X0)subgroup

Definition

AG-structureonX modeled onX0is a subsetP ofBij(X0,X)which is aG-orbit.

(a) p−1◦q :X0→X0is inG, for allp,q ∈P;

(b) p◦g :X0→X is inP, for allp∈P and allg∈G.

Given aG-structurePonX and aG-structureQonY, a map f :X →Y isG-structure preservingiff ◦p∈Qfor allp∈P.

(11)

G-structure on sets

X0set,Bij(X0)group of bijectionsf :X0→X0. X another set, withBij(X0,X)6=∅.

Bij(X0)acts transitively onBij(X0,X)by composition on the right. G⊂Bij(X0)subgroup

Definition

AG-structureonX modeled onX0is a subsetP ofBij(X0,X)which is aG-orbit.

(a) p−1◦q :X0→X0is inG, for allp,q ∈P;

(b) p◦g :X0→X is inP, for allp∈P and allg∈G.

Given aG-structurePonX and aG-structureQonY, a map f :X →Y isG-structure preservingiff ◦p∈Qfor allp∈P.

(12)

G-structure on sets

X0set,Bij(X0)group of bijectionsf :X0→X0. X another set, withBij(X0,X)6=∅.

Bij(X0)acts transitively onBij(X0,X)by composition on the right.

G⊂Bij(X0)subgroup

Definition

AG-structureonX modeled onX0is a subsetP ofBij(X0,X)which is aG-orbit.

(a) p−1◦q :X0→X0is inG, for allp,q ∈P;

(b) p◦g :X0→X is inP, for allp∈P and allg∈G.

Given aG-structurePonX and aG-structureQonY, a map f :X →Y isG-structure preservingiff ◦p∈Qfor allp∈P.

(13)

G-structure on sets

X0set,Bij(X0)group of bijectionsf :X0→X0. X another set, withBij(X0,X)6=∅.

Bij(X0)acts transitively onBij(X0,X)by composition on the right.

G⊂Bij(X0)subgroup

Definition

AG-structureonX modeled onX0is a subsetP ofBij(X0,X)which is aG-orbit.

(a) p−1◦q :X0→X0is inG, for allp,q ∈P;

(b) p◦g :X0→X is inP, for allp∈P and allg∈G.

Given aG-structurePonX and aG-structureQonY, a map f :X →Y isG-structure preservingiff ◦p∈Qfor allp∈P.

(14)

G-structure on sets

X0set,Bij(X0)group of bijectionsf :X0→X0. X another set, withBij(X0,X)6=∅.

Bij(X0)acts transitively onBij(X0,X)by composition on the right.

G⊂Bij(X0)subgroup Definition

AG-structureonX modeled onX0is a subsetP ofBij(X0,X)which is aG-orbit.

(a) p−1◦q :X0→X0is inG, for allp,q ∈P;

(b) p◦g :X0→X is inP, for allp∈P and allg∈G.

Given aG-structurePonX and aG-structureQonY, a map f :X →Y isG-structure preservingiff ◦p∈Qfor allp∈P.

(15)

G-structure on sets

X0set,Bij(X0)group of bijectionsf :X0→X0. X another set, withBij(X0,X)6=∅.

Bij(X0)acts transitively onBij(X0,X)by composition on the right.

G⊂Bij(X0)subgroup Definition

AG-structureonX modeled onX0is a subsetP ofBij(X0,X)which is aG-orbit.

(a) p−1◦q :X0→X0is inG, for allp,q ∈P;

(b) p◦g :X0→X is inP, for allp∈P and allg∈G.

Given aG-structurePonX and aG-structureQonY, a map f :X →Y isG-structure preservingiff ◦p∈Qfor allp∈P.

(16)

G-structure on sets

X0set,Bij(X0)group of bijectionsf :X0→X0. X another set, withBij(X0,X)6=∅.

Bij(X0)acts transitively onBij(X0,X)by composition on the right.

G⊂Bij(X0)subgroup Definition

AG-structureonX modeled onX0is a subsetP ofBij(X0,X)which is aG-orbit.

(a) p−1◦q :X0→X0is inG, for allp,q ∈P;

(b) p◦g :X0→X is inP, for allp∈P and allg∈G.

Given aG-structurePonX and aG-structureQonY, a map f :X →Y isG-structure preservingiff ◦p∈Qfor allp∈P.

(17)

G-structure on sets

X0set,Bij(X0)group of bijectionsf :X0→X0. X another set, withBij(X0,X)6=∅.

Bij(X0)acts transitively onBij(X0,X)by composition on the right.

G⊂Bij(X0)subgroup Definition

AG-structureonX modeled onX0is a subsetP ofBij(X0,X)which is aG-orbit.

(a) p−1◦q :X0→X0is inG, for allp,q ∈P;

(b) p◦g :X0→X is inP, for allp∈P and allg∈G.

Given aG-structurePonX and aG-structureQonY, a map f :X →Y isG-structure preservingiff ◦p∈Qfor allp∈P.

(18)

Examples of G-structure

Example (1)

V n-dimensional vector space

Aframeis an isop:Rn→V,FR(V)⊂Bij(Rn,V)

GL(n)acts on the right transitively onFR(V), henceFR(V)is a GL(n)-structure onV.

Conversely, given aGL(n)-structureP⊂Bij(Rn,V)on a setV, there exists a unique vector space structure onV such thatP =FR(V). More generally,FRV0(V)is aGL(V0)-structure onV.

Example (2)

M0,M diffeomorphic differentiable manifolds

Diff(M0,M)⊂Bij(M0,M)is a Diff(M0)-structure onM.

Conversely, given aDiff(M0)-structureP ⊂Bij(M0,M)on a setM, there exists a unique differentiable structure onMsuch that P =Diff(M0,M).

(19)

Examples of G-structure

Example (1)

V n-dimensional vector space

Aframeis an isop:Rn→V,FR(V)⊂Bij(Rn,V)

GL(n)acts on the right transitively onFR(V), henceFR(V)is a GL(n)-structure onV.

Conversely, given aGL(n)-structureP⊂Bij(Rn,V)on a setV, there exists a unique vector space structure onV such thatP =FR(V). More generally,FRV0(V)is aGL(V0)-structure onV.

Example (2)

M0,M diffeomorphic differentiable manifolds

Diff(M0,M)⊂Bij(M0,M)is a Diff(M0)-structure onM.

Conversely, given aDiff(M0)-structureP ⊂Bij(M0,M)on a setM, there exists a unique differentiable structure onMsuch that P =Diff(M0,M).

(20)

Examples of G-structure

Example (1)

V n-dimensional vector space

Aframeis an isop:Rn→V,FR(V)⊂Bij(Rn,V)

GL(n)acts on the right transitively onFR(V), henceFR(V)is a GL(n)-structure onV.

Conversely, given aGL(n)-structureP⊂Bij(Rn,V)on a setV, there exists a unique vector space structure onV such thatP =FR(V). More generally,FRV0(V)is aGL(V0)-structure onV.

Example (2)

M0,M diffeomorphic differentiable manifolds

Diff(M0,M)⊂Bij(M0,M)is a Diff(M0)-structure onM.

Conversely, given aDiff(M0)-structureP ⊂Bij(M0,M)on a setM, there exists a unique differentiable structure onMsuch that P =Diff(M0,M).

(21)

Examples of G-structure

Example (1)

V n-dimensional vector space

Aframeis an isop:Rn→V,FR(V)⊂Bij(Rn,V)

GL(n)acts on the right transitively onFR(V), henceFR(V)is a GL(n)-structure onV.

Conversely, given aGL(n)-structureP⊂Bij(Rn,V)on a setV, there exists a unique vector space structure onV such thatP =FR(V).

More generally,FRV0(V)is aGL(V0)-structure onV.

Example (2)

M0,M diffeomorphic differentiable manifolds

Diff(M0,M)⊂Bij(M0,M)is a Diff(M0)-structure onM.

Conversely, given aDiff(M0)-structureP ⊂Bij(M0,M)on a setM, there exists a unique differentiable structure onMsuch that P =Diff(M0,M).

(22)

Examples of G-structure

Example (1)

V n-dimensional vector space

Aframeis an isop:Rn→V,FR(V)⊂Bij(Rn,V)

GL(n)acts on the right transitively onFR(V), henceFR(V)is a GL(n)-structure onV.

Conversely, given aGL(n)-structureP⊂Bij(Rn,V)on a setV, there exists a unique vector space structure onV such thatP =FR(V).

More generally,FRV0(V)is aGL(V0)-structure onV.

Example (2)

M0,M diffeomorphic differentiable manifolds

Diff(M0,M)⊂Bij(M0,M)is a Diff(M0)-structure onM.

Conversely, given aDiff(M0)-structureP ⊂Bij(M0,M)on a setM, there exists a unique differentiable structure onMsuch that P =Diff(M0,M).

(23)

Examples of G-structure

Example (1)

V n-dimensional vector space

Aframeis an isop:Rn→V,FR(V)⊂Bij(Rn,V)

GL(n)acts on the right transitively onFR(V), henceFR(V)is a GL(n)-structure onV.

Conversely, given aGL(n)-structureP⊂Bij(Rn,V)on a setV, there exists a unique vector space structure onV such thatP =FR(V).

More generally,FRV0(V)is aGL(V0)-structure onV.

Example (2)

M0,M diffeomorphic differentiable manifolds

Diff(M0,M)⊂Bij(M0,M)is a Diff(M0)-structure onM.

Conversely, given aDiff(M0)-structureP ⊂Bij(M0,M)on a setM, there exists a unique differentiable structure onMsuch that P =Diff(M0,M).

(24)

Examples of G-structure

Example (1)

V n-dimensional vector space

Aframeis an isop:Rn→V,FR(V)⊂Bij(Rn,V)

GL(n)acts on the right transitively onFR(V), henceFR(V)is a GL(n)-structure onV.

Conversely, given aGL(n)-structureP⊂Bij(Rn,V)on a setV, there exists a unique vector space structure onV such thatP =FR(V).

More generally,FRV0(V)is aGL(V0)-structure onV.

Example (2)

M0,M diffeomorphic differentiable manifolds

Diff(M0,M)⊂Bij(M0,M)is aDiff(M0)-structure onM.

Conversely, given aDiff(M0)-structureP ⊂Bij(M0,M)on a setM, there exists a unique differentiable structure onMsuch that P =Diff(M0,M).

(25)

Examples of G-structure

Example (1)

V n-dimensional vector space

Aframeis an isop:Rn→V,FR(V)⊂Bij(Rn,V)

GL(n)acts on the right transitively onFR(V), henceFR(V)is a GL(n)-structure onV.

Conversely, given aGL(n)-structureP⊂Bij(Rn,V)on a setV, there exists a unique vector space structure onV such thatP =FR(V).

More generally,FRV0(V)is aGL(V0)-structure onV.

Example (2)

M0,M diffeomorphic differentiable manifolds

Diff(M0,M)⊂Bij(M0,M)is aDiff(M0)-structure onM.

Conversely, given aDiff(M0)-structureP ⊂Bij(M0,M)on a setM, there exists a unique differentiable structure onMsuch that P =Diff(M0,M).

(26)

Strengthening G-structures

Given aG-structureP⊂Bij(X0,X)onX and a subgroupH⊂G.

AnH-structureQ⊂P is astrengtheningofP. Example

Giving anO(n)-structureQ⊂FR(V)is the same as giving a positive definite inner product onV.

SO(n)-structureQ⊂FR(V)⇐⇒inner product + orientation onV Ifn=2m,U(m)-structureQ⊂FR(V)⇐⇒real positive definite inner product onV and an orthogonal complex structure onV SL(n)-structureQ⊂FR(V)⇐⇒a volume form onV

A 1-structureQ ⊂FR(V)is an identification ofV withRn.

Given aG-structureP⊂Bij(X0,X)and a subgroupH⊂G, there are [G:H]strengtheningH-structures ofP.

(27)

Strengthening G-structures

Given aG-structureP⊂Bij(X0,X)onX and a subgroupH⊂G.

AnH-structureQ⊂P is astrengtheningofP.

Example

Giving anO(n)-structureQ⊂FR(V)is the same as giving a positive definite inner product onV.

SO(n)-structureQ⊂FR(V)⇐⇒inner product + orientation onV Ifn=2m,U(m)-structureQ⊂FR(V)⇐⇒real positive definite inner product onV and an orthogonal complex structure onV SL(n)-structureQ⊂FR(V)⇐⇒a volume form onV

A 1-structureQ ⊂FR(V)is an identification ofV withRn.

Given aG-structureP⊂Bij(X0,X)and a subgroupH⊂G, there are [G:H]strengtheningH-structures ofP.

(28)

Strengthening G-structures

Given aG-structureP⊂Bij(X0,X)onX and a subgroupH⊂G.

AnH-structureQ⊂P is astrengtheningofP.

Example

Giving anO(n)-structureQ ⊂FR(V)is the same as giving a positive definite inner product onV.

SO(n)-structureQ⊂FR(V)⇐⇒inner product + orientation onV Ifn=2m,U(m)-structureQ⊂FR(V)⇐⇒real positive definite inner product onV and an orthogonal complex structure onV SL(n)-structureQ⊂FR(V)⇐⇒a volume form onV

A 1-structureQ ⊂FR(V)is an identification ofV withRn.

Given aG-structureP⊂Bij(X0,X)and a subgroupH⊂G, there are [G:H]strengtheningH-structures ofP.

(29)

Strengthening G-structures

Given aG-structureP⊂Bij(X0,X)onX and a subgroupH⊂G.

AnH-structureQ⊂P is astrengtheningofP.

Example

Giving anO(n)-structureQ ⊂FR(V)is the same as giving a positive definite inner product onV.

SO(n)-structureQ⊂FR(V)⇐⇒inner product + orientation onV

Ifn=2m,U(m)-structureQ⊂FR(V)⇐⇒real positive definite inner product onV and an orthogonal complex structure onV SL(n)-structureQ⊂FR(V)⇐⇒a volume form onV

A 1-structureQ ⊂FR(V)is an identification ofV withRn.

Given aG-structureP⊂Bij(X0,X)and a subgroupH⊂G, there are [G:H]strengtheningH-structures ofP.

(30)

Strengthening G-structures

Given aG-structureP⊂Bij(X0,X)onX and a subgroupH⊂G.

AnH-structureQ⊂P is astrengtheningofP.

Example

Giving anO(n)-structureQ ⊂FR(V)is the same as giving a positive definite inner product onV.

SO(n)-structureQ⊂FR(V)⇐⇒inner product + orientation onV Ifn=2m,U(m)-structureQ⊂FR(V)⇐⇒real positive definite inner product onV and an orthogonal complex structure onV

SL(n)-structureQ⊂FR(V)⇐⇒a volume form onV A 1-structureQ ⊂FR(V)is an identification ofV withRn.

Given aG-structureP⊂Bij(X0,X)and a subgroupH⊂G, there are [G:H]strengtheningH-structures ofP.

(31)

Strengthening G-structures

Given aG-structureP⊂Bij(X0,X)onX and a subgroupH⊂G.

AnH-structureQ⊂P is astrengtheningofP.

Example

Giving anO(n)-structureQ ⊂FR(V)is the same as giving a positive definite inner product onV.

SO(n)-structureQ⊂FR(V)⇐⇒inner product + orientation onV Ifn=2m,U(m)-structureQ⊂FR(V)⇐⇒real positive definite inner product onV and an orthogonal complex structure onV SL(n)-structureQ⊂FR(V)⇐⇒a volume form onV

A 1-structureQ ⊂FR(V)is an identification ofV withRn.

Given aG-structureP⊂Bij(X0,X)and a subgroupH⊂G, there are [G:H]strengtheningH-structures ofP.

(32)

Strengthening G-structures

Given aG-structureP⊂Bij(X0,X)onX and a subgroupH⊂G.

AnH-structureQ⊂P is astrengtheningofP.

Example

Giving anO(n)-structureQ ⊂FR(V)is the same as giving a positive definite inner product onV.

SO(n)-structureQ⊂FR(V)⇐⇒inner product + orientation onV Ifn=2m,U(m)-structureQ⊂FR(V)⇐⇒real positive definite inner product onV and an orthogonal complex structure onV SL(n)-structureQ⊂FR(V)⇐⇒a volume form onV

A 1-structureQ ⊂FR(V)is an identification ofV withRn.

Given aG-structureP⊂Bij(X0,X)and a subgroupH⊂G, there are [G:H]strengtheningH-structures ofP.

(33)

Strengthening G-structures

Given aG-structureP⊂Bij(X0,X)onX and a subgroupH⊂G.

AnH-structureQ⊂P is astrengtheningofP.

Example

Giving anO(n)-structureQ ⊂FR(V)is the same as giving a positive definite inner product onV.

SO(n)-structureQ⊂FR(V)⇐⇒inner product + orientation onV Ifn=2m,U(m)-structureQ⊂FR(V)⇐⇒real positive definite inner product onV and an orthogonal complex structure onV SL(n)-structureQ⊂FR(V)⇐⇒a volume form onV

A 1-structureQ ⊂FR(V)is an identification ofV withRn.

Given aG-structureP⊂Bij(X0,X)and a subgroupH⊂G, there are [G:H]strengtheningH-structures ofP.

(34)

Outline

1 G-structures

2 Principal spaces

3 Principal fiber bundles

4 Connections

5 Inner torsion of aG-structure

6 Infinitesimally homogeneous affine manifolds withG-structure

7 Immersion theorems

(35)

Principal spaces

Definition

A principal space consists of a setP6=∅, a groupG(structural group) and a free and transitive right action ofGonP.

Eachp∈Pgives abijectionβp:G→P, βp(g) =p·g Example

G=V vector space, a principal space with structural groupGis anaffine spaceparallel toV.

Any group is a principal space with structural groupG(right multiplication)

Given a subgroupH ⊂G, for allg ∈Gthe left cosetgH is a principal space with structural groupH.

FRV0(V)is a principal space with structural groupGL(V0).

(36)

Principal spaces

Definition

A principal space consists of a setP6=∅, a groupG(structural group) and a free and transitive right action ofGonP.

Eachp∈Pgives abijectionβp:G→P, βp(g) =p·g

Example

G=V vector space, a principal space with structural groupGis anaffine spaceparallel toV.

Any group is a principal space with structural groupG(right multiplication)

Given a subgroupH ⊂G, for allg ∈Gthe left cosetgH is a principal space with structural groupH.

FRV0(V)is a principal space with structural groupGL(V0).

(37)

Principal spaces

Definition

A principal space consists of a setP6=∅, a groupG(structural group) and a free and transitive right action ofGonP.

Eachp∈Pgives abijectionβp:G→P, βp(g) =p·g Example

G=V vector space, a principal space with structural groupGis anaffine spaceparallel toV.

Any group is a principal space with structural groupG(right multiplication)

Given a subgroupH ⊂G, for allg ∈Gthe left cosetgH is a principal space with structural groupH.

FRV0(V)is a principal space with structural groupGL(V0).

(38)

Principal spaces

Definition

A principal space consists of a setP6=∅, a groupG(structural group) and a free and transitive right action ofGonP.

Eachp∈Pgives abijectionβp:G→P, βp(g) =p·g Example

G=V vector space, a principal space with structural groupGis anaffine spaceparallel toV.

Any group is a principal space with structural groupG(right multiplication)

Given a subgroupH ⊂G, for allg ∈Gthe left cosetgH is a principal space with structural groupH.

FRV0(V)is a principal space with structural groupGL(V0).

(39)

Principal spaces

Definition

A principal space consists of a setP6=∅, a groupG(structural group) and a free and transitive right action ofGonP.

Eachp∈Pgives abijectionβp:G→P, βp(g) =p·g Example

G=V vector space, a principal space with structural groupGis anaffine spaceparallel toV.

Any group is a principal space with structural groupG(right multiplication)

Given a subgroupH ⊂G, for allg ∈Gthe left cosetgH is a principal space with structural groupH.

FRV0(V)is a principal space with structural groupGL(V0).

(40)

Principal spaces

Definition

A principal space consists of a setP6=∅, a groupG(structural group) and a free and transitive right action ofGonP.

Eachp∈Pgives abijectionβp:G→P, βp(g) =p·g Example

G=V vector space, a principal space with structural groupGis anaffine spaceparallel toV.

Any group is a principal space with structural groupG(right multiplication)

Given a subgroupH ⊂G, for allg ∈Gthe left cosetgH is a principal space with structural groupH.

(41)

Outline

1 G-structures

2 Principal spaces

3 Principal fiber bundles

4 Connections

5 Inner torsion of aG-structure

6 Infinitesimally homogeneous affine manifolds withG-structure

7 Immersion theorems

(42)

Principal fiber bundles

a setP (total space)

a differentiable manifoldM(base space) a mapΠ :P →M(projection)

a Lie groupG(structural group)

a right action ofGonP that makes thefiber Px = Π−1(x)a principal space, for allx ∈m

a maximal atlas ofadmissiblelocal sections ofΠ.

Lemma

There exists a unique differentiable structure on P that makes the action of G on P smooth,Πa smooth submersion, Px a smooth submanifold, every admissible local section s :U⊂M→P smooth,.

Verp=Ker dΠp

⊂TpP vertical space; canonical isomorphismdβp(1) :g−→= VerpP.

(43)

Principal fiber bundles

a setP (total space)

a differentiable manifoldM(base space)

a mapΠ :P →M(projection) a Lie groupG(structural group)

a right action ofGonP that makes thefiber Px = Π−1(x)a principal space, for allx ∈m

a maximal atlas ofadmissiblelocal sections ofΠ.

Lemma

There exists a unique differentiable structure on P that makes the action of G on P smooth,Πa smooth submersion, Px a smooth submanifold, every admissible local section s :U⊂M→P smooth,.

Verp=Ker dΠp

⊂TpP vertical space; canonical isomorphismdβp(1) :g−→= VerpP.

(44)

Principal fiber bundles

a setP (total space)

a differentiable manifoldM(base space) a mapΠ :P →M(projection)

a Lie groupG(structural group)

a right action ofGonP that makes thefiber Px = Π−1(x)a principal space, for allx ∈m

a maximal atlas ofadmissiblelocal sections ofΠ.

Lemma

There exists a unique differentiable structure on P that makes the action of G on P smooth,Πa smooth submersion, Px a smooth submanifold, every admissible local section s :U⊂M→P smooth,.

Verp=Ker dΠp

⊂TpP vertical space; canonical isomorphismdβp(1) :g−→= VerpP.

(45)

Principal fiber bundles

a setP (total space)

a differentiable manifoldM(base space) a mapΠ :P →M(projection)

a Lie groupG(structural group)

a right action ofGonP that makes thefiber Px = Π−1(x)a principal space, for allx ∈m

a maximal atlas ofadmissiblelocal sections ofΠ.

Lemma

There exists a unique differentiable structure on P that makes the action of G on P smooth,Πa smooth submersion, Px a smooth submanifold, every admissible local section s :U⊂M→P smooth,.

Verp=Ker dΠp

⊂TpP vertical space; canonical isomorphismdβp(1) :g−→= VerpP.

(46)

Principal fiber bundles

a setP (total space)

a differentiable manifoldM(base space) a mapΠ :P →M(projection)

a Lie groupG(structural group)

a right action ofGonP that makes thefiber Px = Π−1(x)a principal space, for allx ∈m

a maximal atlas ofadmissiblelocal sections ofΠ.

Lemma

There exists a unique differentiable structure on P that makes the action of G on P smooth,Πa smooth submersion, Px a smooth submanifold, every admissible local section s :U⊂M→P smooth,.

Verp=Ker dΠp

⊂TpP vertical space; canonical isomorphismdβp(1) :g−→= VerpP.

(47)

Principal fiber bundles

a setP (total space)

a differentiable manifoldM(base space) a mapΠ :P →M(projection)

a Lie groupG(structural group)

a right action ofGonP that makes thefiber Px = Π−1(x)a principal space, for allx ∈m

a maximal atlas ofadmissiblelocal sections ofΠ.

Lemma

There exists a unique differentiable structure on P that makes the action of G on P smooth,Πa smooth submersion, Px a smooth submanifold, every admissible local section s :U⊂M→P smooth,.

Verp=Ker dΠp

⊂TpP vertical space; canonical isomorphismdβp(1) :g−→= VerpP.

(48)

Principal fiber bundles

a setP (total space)

a differentiable manifoldM(base space) a mapΠ :P →M(projection)

a Lie groupG(structural group)

a right action ofGonP that makes thefiber Px = Π−1(x)a principal space, for allx ∈m

a maximal atlas ofadmissiblelocal sections ofΠ.

Lemma

There exists a unique differentiable structure on P that makes the action of G on P smooth,Πa smooth submersion, Px a smooth submanifold, every admissible local section s :U⊂M →P smooth,.

Verp=Ker dΠp

⊂TpP vertical space; canonical isomorphismdβp(1) :g−→= VerpP.

(49)

Principal fiber bundles

a setP (total space)

a differentiable manifoldM(base space) a mapΠ :P →M(projection)

a Lie groupG(structural group)

a right action ofGonP that makes thefiber Px = Π−1(x)a principal space, for allx ∈m

a maximal atlas ofadmissiblelocal sections ofΠ.

Lemma

There exists a unique differentiable structure on P that makes the action of G on P smooth,Πa smooth submersion, Px a smooth submanifold, every admissible local section s :U⊂M →P smooth,.

Verp=Ker dΠp

⊂TpP vertical space;

canonical isomorphismdβp(1) :g−→= VerpP.

(50)

Examples of principal fiber bundles

trivial principal bundle: Mmanifold,GLie group,P0a principal G-space,P =M×P0.

quotient of Lie groups:GLie group,H⊂Gclosed subgroup, Π :G→G/H projection; forx ∈G/H,Π−1(x)is a left coset ofH inG. His the structural group.

restriction:Π :P→M principal fiber bundle,U ⊂M open subset P|U= Π−1(U).

principal subbundles:Π :P →Mprincipal fiber bundle with structural groupG,H ⊂Ga Lie subgroup,Q ⊂Psatisfying:

I for allx M,Qx =PxQis a principal subspace ofPx with structural groupH;

I for allx M, there exists a smooth local sections:UPwith x Uands(U)Q.

pull-backs: Π :P→M principal fiber bundle,f :M0 →Msmooth map,fP =S

y∈M0 {y} ×Pf(y) .

(51)

Examples of principal fiber bundles

trivial principal bundle: Mmanifold,GLie group,P0a principal G-space,P =M×P0.

quotient of Lie groups:GLie group,H⊂Gclosed subgroup, Π :G→G/H projection; forx ∈G/H,Π−1(x)is a left coset ofH inG. His the structural group.

restriction:Π :P→M principal fiber bundle,U ⊂M open subset P|U= Π−1(U).

principal subbundles:Π :P →Mprincipal fiber bundle with structural groupG,H ⊂Ga Lie subgroup,Q ⊂Psatisfying:

I for allx M,Qx =PxQis a principal subspace ofPx with structural groupH;

I for allx M, there exists a smooth local sections:UPwith x Uands(U)Q.

pull-backs: Π :P→M principal fiber bundle,f :M0 →Msmooth map,fP =S

y∈M0 {y} ×Pf(y) .

(52)

Examples of principal fiber bundles

trivial principal bundle: Mmanifold,GLie group,P0a principal G-space,P =M×P0.

quotient of Lie groups:GLie group,H⊂Gclosed subgroup, Π :G→G/H projection; forx ∈G/H,Π−1(x)is a left coset ofH inG. His the structural group.

restriction:Π :P→M principal fiber bundle,U ⊂M open subset P|U= Π−1(U).

principal subbundles:Π :P →Mprincipal fiber bundle with structural groupG,H ⊂Ga Lie subgroup,Q ⊂Psatisfying:

I for allx M,Qx =PxQis a principal subspace ofPx with structural groupH;

I for allx M, there exists a smooth local sections:UPwith x Uands(U)Q.

pull-backs: Π :P→M principal fiber bundle,f :M0 →Msmooth map,fP =S

y∈M0 {y} ×Pf(y) .

(53)

Examples of principal fiber bundles

trivial principal bundle: Mmanifold,GLie group,P0a principal G-space,P =M×P0.

quotient of Lie groups:GLie group,H⊂Gclosed subgroup, Π :G→G/H projection; forx ∈G/H,Π−1(x)is a left coset ofH inG. His the structural group.

restriction:Π :P→M principal fiber bundle,U ⊂M open subset P|U= Π−1(U).

principal subbundles:Π :P →Mprincipal fiber bundle with structural groupG,H ⊂Ga Lie subgroup,Q ⊂Psatisfying:

I for allx M,Qx =PxQis a principal subspace ofPx with structural groupH;

I for allx M, there exists a smooth local sections:UPwith x Uands(U)Q.

pull-backs: Π :P→M principal fiber bundle,f :M0 →Msmooth map,fP =S

y∈M0 {y} ×Pf(y) .

(54)

Examples of principal fiber bundles

trivial principal bundle: Mmanifold,GLie group,P0a principal G-space,P =M×P0.

quotient of Lie groups:GLie group,H⊂Gclosed subgroup, Π :G→G/H projection; forx ∈G/H,Π−1(x)is a left coset ofH inG. His the structural group.

restriction:Π :P→M principal fiber bundle,U ⊂M open subset P|U= Π−1(U).

principal subbundles:Π :P →Mprincipal fiber bundle with structural groupG,H ⊂Ga Lie subgroup,Q ⊂Psatisfying:

I for allx M,Qx =PxQis a principal subspace ofPx with structural groupH;

I for allx M, there exists a smooth local sections:UPwith x Uands(U)Q.

pull-backs: Π :P→M principal fiber bundle,f :M0 →Msmooth map,fP =S

y∈M0 {y} ×Pf(y) .

(55)

Examples of principal fiber bundles

trivial principal bundle: Mmanifold,GLie group,P0a principal G-space,P =M×P0.

quotient of Lie groups:GLie group,H⊂Gclosed subgroup, Π :G→G/H projection; forx ∈G/H,Π−1(x)is a left coset ofH inG. His the structural group.

restriction:Π :P→M principal fiber bundle,U ⊂M open subset P|U= Π−1(U).

principal subbundles:Π :P →Mprincipal fiber bundle with structural groupG,H ⊂Ga Lie subgroup,Q ⊂Psatisfying:

I for allx M,Qx =PxQis a principal subspace ofPx with structural groupH;

I for allx M, there exists a smooth local sections:UPwith x Uands(U)Q.

pull-backs: Π :P→M principal fiber bundle,f :M0 →Msmooth map,fP =S

y∈M0 {y} ×Pf(y) .

(56)

Examples of principal fiber bundles

trivial principal bundle: Mmanifold,GLie group,P0a principal G-space,P =M×P0.

quotient of Lie groups:GLie group,H⊂Gclosed subgroup, Π :G→G/H projection; forx ∈G/H,Π−1(x)is a left coset ofH inG. His the structural group.

restriction:Π :P→M principal fiber bundle,U ⊂M open subset P|U= Π−1(U).

principal subbundles:Π :P →Mprincipal fiber bundle with structural groupG,H ⊂Ga Lie subgroup,Q ⊂Psatisfying:

I for allx M,Qx =PxQis a principal subspace ofPx with structural groupH;

I for allx M, there exists a smooth local sections:UPwith x Uands(U)Q.

(57)

Associated and vector bundles

GLie group,Π :P→M aG-principal bundle,N a differentialG-space

Associated bundle:P×GN =S

x∈MPx×GN Definition

Avector bundleconsists of: a setE (total space)

a differentiable manifoldM(base manifold) a mapπ :E →M(projection)

a finite dimensional vector spaceE0(typical fiber)

a vector space structure on each fiberEx−1isomorphic toE0 a maximal atlas of admissible local sections of the fiber bundle FRE0(E) =S

x∈MFRE0(Ex).

FRE0(E)×GL(E

0)E0∼=E, [p,e0]7→p(e0)∈E Def.: AG-structure on Eis aG-principal subbundle ofFR(E).

(58)

Associated and vector bundles

GLie group,Π :P→M aG-principal bundle,N a differentialG-space Associated bundle:P×GN =S

x∈MPx×GN

Definition

Avector bundleconsists of: a setE (total space)

a differentiable manifoldM(base manifold) a mapπ :E →M(projection)

a finite dimensional vector spaceE0(typical fiber)

a vector space structure on each fiberEx−1isomorphic toE0 a maximal atlas of admissible local sections of the fiber bundle FRE0(E) =S

x∈MFRE0(Ex).

FRE0(E)×GL(E

0)E0∼=E, [p,e0]7→p(e0)∈E Def.: AG-structure on Eis aG-principal subbundle ofFR(E).

(59)

Associated and vector bundles

GLie group,Π :P→M aG-principal bundle,N a differentialG-space Associated bundle:P×GN =S

x∈MPx×GN Definition

Avector bundleconsists of:

a setE (total space)

a differentiable manifoldM(base manifold) a mapπ :E →M(projection)

a finite dimensional vector spaceE0(typical fiber)

a vector space structure on each fiberEx−1isomorphic toE0 a maximal atlas of admissible local sections of the fiber bundle FRE0(E) =S

x∈MFRE0(Ex).

FRE0(E)×GL(E

0)E0∼=E, [p,e0]7→p(e0)∈E Def.: AG-structure on Eis aG-principal subbundle ofFR(E).

(60)

Associated and vector bundles

GLie group,Π :P→M aG-principal bundle,N a differentialG-space Associated bundle:P×GN =S

x∈MPx×GN Definition

Avector bundleconsists of:

a setE (total space)

a differentiable manifoldM(base manifold) a mapπ :E →M(projection)

a finite dimensional vector spaceE0(typical fiber)

a vector space structure on each fiberEx−1isomorphic toE0 a maximal atlas of admissible local sections of the fiber bundle FRE0(E) =S

x∈MFRE0(Ex).

FRE0(E)×GL(E

0)E0∼=E, [p,e0]7→p(e0)∈E Def.: AG-structure on Eis aG-principal subbundle ofFR(E).

(61)

Associated and vector bundles

GLie group,Π :P→M aG-principal bundle,N a differentialG-space Associated bundle:P×GN =S

x∈MPx×GN Definition

Avector bundleconsists of:

a setE (total space)

a differentiable manifoldM(base manifold)

a mapπ :E →M(projection)

a finite dimensional vector spaceE0(typical fiber)

a vector space structure on each fiberEx−1isomorphic toE0 a maximal atlas of admissible local sections of the fiber bundle FRE0(E) =S

x∈MFRE0(Ex).

FRE0(E)×GL(E

0)E0∼=E, [p,e0]7→p(e0)∈E Def.: AG-structure on Eis aG-principal subbundle ofFR(E).

(62)

Associated and vector bundles

GLie group,Π :P→M aG-principal bundle,N a differentialG-space Associated bundle:P×GN =S

x∈MPx×GN Definition

Avector bundleconsists of:

a setE (total space)

a differentiable manifoldM(base manifold) a mapπ:E →M (projection)

a finite dimensional vector spaceE0(typical fiber)

a vector space structure on each fiberEx−1isomorphic toE0 a maximal atlas of admissible local sections of the fiber bundle FRE0(E) =S

x∈MFRE0(Ex).

FRE0(E)×GL(E

0)E0∼=E, [p,e0]7→p(e0)∈E Def.: AG-structure on Eis aG-principal subbundle ofFR(E).

(63)

Associated and vector bundles

GLie group,Π :P→M aG-principal bundle,N a differentialG-space Associated bundle:P×GN =S

x∈MPx×GN Definition

Avector bundleconsists of:

a setE (total space)

a differentiable manifoldM(base manifold) a mapπ:E →M (projection)

a finite dimensional vector spaceE0(typical fiber)

a vector space structure on each fiberEx−1isomorphic toE0 a maximal atlas of admissible local sections of the fiber bundle FRE0(E) =S

x∈MFRE0(Ex).

FRE0(E)×GL(E

0)E0∼=E, [p,e0]7→p(e0)∈E Def.: AG-structure on Eis aG-principal subbundle ofFR(E).

(64)

Associated and vector bundles

GLie group,Π :P→M aG-principal bundle,N a differentialG-space Associated bundle:P×GN =S

x∈MPx×GN Definition

Avector bundleconsists of:

a setE (total space)

a differentiable manifoldM(base manifold) a mapπ:E →M (projection)

a finite dimensional vector spaceE0(typical fiber)

a vector space structure on each fiberEx−1isomorphic toE0

a maximal atlas of admissible local sections of the fiber bundle FRE0(E) =S

x∈MFRE0(Ex).

FRE0(E)×GL(E

0)E0∼=E, [p,e0]7→p(e0)∈E Def.: AG-structure on Eis aG-principal subbundle ofFR(E).

(65)

Associated and vector bundles

GLie group,Π :P→M aG-principal bundle,N a differentialG-space Associated bundle:P×GN =S

x∈MPx×GN Definition

Avector bundleconsists of:

a setE (total space)

a differentiable manifoldM(base manifold) a mapπ:E →M (projection)

a finite dimensional vector spaceE0(typical fiber)

a vector space structure on each fiberEx−1isomorphic toE0 a maximal atlas of admissible local sections of the fiber bundle FRE0(E) =S

x∈MFRE0(Ex).

FRE0(E)×GL(E

0)E0∼=E, [p,e0]7→p(e0)∈E Def.: AG-structure on Eis aG-principal subbundle ofFR(E).

(66)

Associated and vector bundles

GLie group,Π :P→M aG-principal bundle,N a differentialG-space Associated bundle:P×GN =S

x∈MPx×GN Definition

Avector bundleconsists of:

a setE (total space)

a differentiable manifoldM(base manifold) a mapπ:E →M (projection)

a finite dimensional vector spaceE0(typical fiber)

a vector space structure on each fiberEx−1isomorphic toE0 a maximal atlas of admissible local sections of the fiber bundle FRE0(E) =S

x∈MFRE0(Ex).

Def.: AG-structure on Eis aG-principal subbundle ofFR(E).

(67)

Associated and vector bundles

GLie group,Π :P→M aG-principal bundle,N a differentialG-space Associated bundle:P×GN =S

x∈MPx×GN Definition

Avector bundleconsists of:

a setE (total space)

a differentiable manifoldM(base manifold) a mapπ:E →M (projection)

a finite dimensional vector spaceE0(typical fiber)

a vector space structure on each fiberEx−1isomorphic toE0 a maximal atlas of admissible local sections of the fiber bundle FRE0(E) =S

x∈MFRE0(Ex).

FRE0(E)×GL(E

0)E0∼=E, [p,e0]7→p(e0)∈E Def.: AG-structure on Eis aG-principal subbundle ofFR(E).

(68)

Outline

1 G-structures

2 Principal spaces

3 Principal fiber bundles

4 Connections

5 Inner torsion of aG-structure

6 Infinitesimally homogeneous affine manifolds withG-structure

7 Immersion theorems

(69)

Principal connections

Π :P →Mprincipal fiber bundle,Gstructural group

Aprincipal connection on P is a distributionHor(P)⊂TP: TpP=Horp⊕Verp

Horpg =Horp·g

Connection form ofHor: g-valued one formωonP:

Ker(ωp) =Horp, ωp|Verp =dβp(1)−1:Verp

=

−→g

G-principal bundlesΠ :P →M,Π0 :Q→M with connectionsHor(P) andHor(Q)and a morphism of principal bundlesφ:P→Q, thenφis connection preservingif:

dφ Hor(P)

⊂Hor(Q) ⇐⇒ φQ) =ωP

Properties of principal connections can bepushed forward

induce connections on all associated bundles

(70)

Principal connections

Π :P →Mprincipal fiber bundle,Gstructural group Aprincipal connection on Pis a distributionHor(P)⊂TP:

TpP=Horp⊕Verp

Horpg =Horp·g

Connection form ofHor: g-valued one formωonP:

Ker(ωp) =Horp, ωp|Verp =dβp(1)−1:Verp

=

−→g

G-principal bundlesΠ :P →M,Π0 :Q→M with connectionsHor(P) andHor(Q)and a morphism of principal bundlesφ:P→Q, thenφis connection preservingif:

dφ Hor(P)

⊂Hor(Q) ⇐⇒ φQ) =ωP

Properties of principal connections can bepushed forward

induce connections on all associated bundles

(71)

Principal connections

Π :P →Mprincipal fiber bundle,Gstructural group Aprincipal connection on Pis a distributionHor(P)⊂TP:

TpP=Horp⊕Verp

Horpg =Horp·g

Connection form ofHor: g-valued one formωonP:

Ker(ωp) =Horp, ωp|Verp =dβp(1)−1:Verp

=

−→g

G-principal bundlesΠ :P →M,Π0 :Q→M with connectionsHor(P) andHor(Q)and a morphism of principal bundlesφ:P→Q, thenφis connection preservingif:

dφ Hor(P)

⊂Hor(Q) ⇐⇒ φQ) =ωP

Properties of principal connections can bepushed forward

induce connections on all associated bundles

(72)

Principal connections

Π :P →Mprincipal fiber bundle,Gstructural group Aprincipal connection on Pis a distributionHor(P)⊂TP:

TpP=Horp⊕Verp

Horpg =Horp·g

Connection form ofHor: g-valued one formωonP:

Ker(ωp) =Horp, ωp|Verp =dβp(1)−1:Verp

=

−→g

G-principal bundlesΠ :P →M,Π0 :Q→M with connectionsHor(P) andHor(Q)and a morphism of principal bundlesφ:P→Q, thenφis connection preservingif:

dφ Hor(P)

⊂Hor(Q) ⇐⇒ φQ) =ωP

Properties of principal connections can bepushed forward

induce connections on all associated bundles

(73)

Principal connections

Π :P →Mprincipal fiber bundle,Gstructural group Aprincipal connection on Pis a distributionHor(P)⊂TP:

TpP=Horp⊕Verp

Horpg =Horp·g

Connection form ofHor: g-valued one formωonP:

Ker(ωp) =Horp, ωp|Verp =dβp(1)−1:Verp

=

−→g

G-principal bundlesΠ :P →M,Π0 :Q→M with connectionsHor(P) andHor(Q)and a morphism of principal bundlesφ:P→Q, thenφis connection preservingif:

dφ Hor(P)

⊂Hor(Q) ⇐⇒ φQ) =ωP

Properties of principal connections can bepushed forward

induce connections on all associated bundles

(74)

Principal connections

Π :P →Mprincipal fiber bundle,Gstructural group Aprincipal connection on Pis a distributionHor(P)⊂TP:

TpP=Horp⊕Verp

Horpg =Horp·g

Connection form ofHor: g-valued one formωonP:

Ker(ωp) =Horp, ωp|Verp =dβp(1)−1:Verp

=

−→g

G-principal bundlesΠ :P →M,Π0 :Q→M with connectionsHor(P) andHor(Q)and a morphism of principal bundlesφ:P→Q, thenφis connection preservingif:

dφ Hor(P)

⊂Hor(Q) ⇐⇒ φQ) =ωP

Properties of principal connections can bepushed forward

induce connections on all associated bundles

(75)

Principal connections

Π :P →Mprincipal fiber bundle,Gstructural group Aprincipal connection on Pis a distributionHor(P)⊂TP:

TpP=Horp⊕Verp

Horpg =Horp·g

Connection form ofHor: g-valued one formωonP:

Ker(ωp) =Horp, ωp|Verp =dβp(1)−1:Verp

=

−→g

G-principal bundlesΠ :P →M,Π0 :Q→M with connectionsHor(P) andHor(Q)and a morphism of principal bundlesφ:P→Q, thenφis connection preservingif:

dφ Hor(P)

⊂Hor(Q) ⇐⇒ φQ) =ωP Properties of principal connections

can bepushed forward

induce connections on all associated bundles

(76)

Principal connections

Π :P →Mprincipal fiber bundle,Gstructural group Aprincipal connection on Pis a distributionHor(P)⊂TP:

TpP=Horp⊕Verp

Horpg =Horp·g

Connection form ofHor: g-valued one formωonP:

Ker(ωp) =Horp, ωp|Verp =dβp(1)−1:Verp

=

−→g

G-principal bundlesΠ :P →M,Π0 :Q→M with connectionsHor(P) andHor(Q)and a morphism of principal bundlesφ:P→Q, thenφis connection preservingif:

dφ Hor(P)

⊂Hor(Q) ⇐⇒ φQ) =ωP

induce connections on all associated bundles

(77)

Principal connections

Π :P →Mprincipal fiber bundle,Gstructural group Aprincipal connection on Pis a distributionHor(P)⊂TP:

TpP=Horp⊕Verp

Horpg =Horp·g

Connection form ofHor: g-valued one formωonP:

Ker(ωp) =Horp, ωp|Verp =dβp(1)−1:Verp

=

−→g

G-principal bundlesΠ :P →M,Π0 :Q→M with connectionsHor(P) andHor(Q)and a morphism of principal bundlesφ:P→Q, thenφis connection preservingif:

dφ Hor(P)

⊂Hor(Q) ⇐⇒ φQ) =ωP

Properties of principal connections can bepushed forward

induce connections on all associated bundles

(78)

Connections on vector bundles

Definition

Aconnectionon the vector bundleE is anR-bilinear map

∇:IΓ(TM)×IΓ(E)3(X, )7−→ ∇X∈IΓ(E)

C(M)-linear inX

Leibnitz rule: ∇X(f) =X(f)+f∇X

a sections:U ⊂M →FR(E)(trivializationofE) defines a connection inE|U: ∇sv=s(x) d(s−1)xv

x ∈U,v ∈TxM. the difference∇ − ∇sdefines theChristoffel tensor:

Γsx :TxM×Ex →Ex

∇inducesnaturalconnections on all vector bundles obtained with functorial constructionsfromE: sums, tensor products, duals, pull-backs, ...

Connections onE ⇐⇒ Principal connections onFR(E)

Referências

Documentos relacionados

Sendo bem receptiva, a Diretora administrativa do IPHAEP foi bastante atenciosa e me citou as formas necessárias de procedimento - em contrapartida contei a ela sobre o projeto,

- Comparar o mecanismo de resistência multixenobiótica (MXR) nos bivalves límnicos Corbicula fluminea e Diplodon parodizi expostos ao lixiviado em diferentes

The term cutaneous Rosai-Dorfman disease is used exclusively for the forms of the disease in which involvement is restricted to the skin in order to differ- entiate it from

a) realizar anualmente uma reunião, na forma de seminário ou congresso, onde os bolsistas deverão apresentar sua produção científica sob a forma de pôsteres,

um fato ainda decorrente da proposição anterior: como a produtividade do trabalho depende do volume de capital posto à disposição do trabalhador e como a

[r]

En el caso español, el sistema audiovisual cuenta con sus propios sistemas de clasificación de contenidos audiovisuales -los cuales implican distintos tipos de relaciones entre

Este artigo apresenta uma alternativa de implementação de um objeto de aprendizagem que é utilizado em ambiente desktop, para que possa também ser visualizado e utilizado por