• Nenhum resultado encontrado

UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA Rômel da Rosa da Silva

N/A
N/A
Protected

Academic year: 2018

Share "UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA Rômel da Rosa da Silva"

Copied!
79
0
0

Texto

(1)

❯◆■❱❊❘❙■❉❆❉❊ ❋❊❉❊❘❆▲ ❉❊ ❙➹❖ ❈❆❘▲❖❙

❈❊◆❚❘❖ ❉❊ ❈■✃◆❈■❆❙ ❊❳❆❚❆❙ ❊ ❉❊ ❚❊❈◆❖▲❖●■❆

❉❊P❆❘❚❆▼❊◆❚❖ ❉❊ ▼❆❚❊▼➪❚■❈❆

❘ô♠❡❧ ❞❛ ❘♦s❛ ❞❛ ❙✐❧✈❛

❖ Pr♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② ♣❛r❛ s✐st❡♠❛s q✉❛s❡✲❧✐♥❡❛r❡s ❤✐♣❡r❜ó❧✐❝♦s

é ❜❡♠ ♣♦st♦ ❡♠ ❡s♣❛ç♦s ❞❡ ❍ö❧❞❡r

(2)
(3)

❯◆■❱❊❘❙■❉❆❉❊ ❋❊❉❊❘❆▲ ❉❊ ❙➹❖ ❈❆❘▲❖❙

❈❊◆❚❘❖ ❉❊ ❈■✃◆❈■❆❙ ❊❳❆❚❆❙ ❊ ❉❊ ❚❊❈◆❖▲❖●■❆

❉❊P❆❘❚❆▼❊◆❚❖ ❉❊ ▼❆❚❊▼➪❚■❈❆

❘ô♠❡❧ ❞❛ ❘♦s❛ ❞❛ ❙✐❧✈❛

❖ Pr♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② ♣❛r❛ s✐st❡♠❛s q✉❛s❡✲❧✐♥❡❛r❡s ❤✐♣❡r❜ó❧✐❝♦s

é ❜❡♠ ♣♦st♦ ❡♠ ❡s♣❛ç♦s ❞❡ ❍ö❧❞❡r

❚❡s❡ ❛♣r❡s❡♥t❛❞❛ ❛♦ Pr♦❣r❛♠❛ ❞❡ Pós✲●r❛❞✉❛çã♦ ❡♠ ▼❛t❡♠á✲ t✐❝❛ ❝♦♠♦ ♣❛rt❡ ❞♦s r❡q✉✐s✐t♦s ♣❛r❛ ❛ ♦❜t❡♥çã♦ ❞♦ tít✉❧♦ ❞❡ ❉♦✉t♦r ❡♠ ▼❛t❡♠át✐❝❛✳

❖r✐❡♥t❛çã♦✿ Pr♦❢✳ ❉r✳ ❏♦sé ❘✉✐❞✐✈❛❧ ❙♦❛r❡s ❞♦s ❙❛♥t♦s ❋✐✲ ❧❤♦✳

(4)

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária/UFSCar

S586pc

Silva, Rômel da Rosa da.

O problema de Cauchy para sistemas quase-lineares hiperbólicos é bem posto em espaços de Hölder / Rômel da Rosa da Silva. -- São Carlos : UFSCar, 2012.

75 f.

Tese (Doutorado) -- Universidade Federal de São Carlos, 2012.

1. Análise matemática. 2. Cauchy, Problemas de. 3. Espaços de Hölder. I. Título.

(5)
(6)

❆❣r❛❞❡❝✐♠❡♥t♦s

❆ ❉❡✉s ♣❡❧❛s ♦♣♦rt✉♥✐❞❛❞❡s✳

❆ ♠❡✉s ♣❛✐s✱ ✐r♠ã♦s ❡ ❛ ❡s♣♦s❛ ♣❡❧♦ ✐♥❝❡♥t✐✈♦✱ ❛♣♦✐♦ ❡ ♣r✐♥❝✐♣❛❧♠❡♥t❡ ♣❡❧♦ ❛♠♦r✳

❆♦ ♠❡✉ ♦r✐❡♥t❛❞♦r✱ ❘✉✐❞✐✈❛❧✱ ♠❡✉s s✐♥❝❡r♦s ❛❣r❛❞❡❝✐♠❡♥t♦s✱ ♣❡❧♦s ❡♥s✐♥❛♠❡♥t♦s✱ ♣❡❧❛ ❛♠✐③❛❞❡✱ ❝♦♠♣r❡❡♥sã♦✱✳✳✳ ✳

❆♦s ♣r♦❢❡ss♦r❡s✱ ❆❞❛❧❜❡rt♦✱ ❈❡③❛r✱ ▼❛r❝❡❧♦ ❡ ❏♦r❣❡ ♣♦r ❢❛③❡r❡♠ ♣❛rt❡ ❞❛ ❜❛♥❝❛ ❡①❛♠✐♥❛✲ ❞♦r❛✳

❆ t♦❞♦s ♦s ❞❡♠❛✐s ♣r♦❢❡ss♦r❡s q✉❡ t✐✈❡ ❛té ❛❣♦r❛✳

❆♦s ❛♠✐❣♦s ❞♦ ❉▼✳

(7)

❘❡s✉♠♦

◆ós ❝♦♥s✐❞❡r❛♠♦s ♦ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② ♣❛r❛ s✐st❡♠❛s q✉❛s❡✲❧✐♥❡❛r❡s

∂tu+a(u)∂xu = 0

u(0, x) = ✉0(x),

❝♦♠u= (u1, . . . , uN)❡a(u) = (ajk(u))Nj,k=1 ♠❛tr✐③ r❡❛❧N×N✱ ❝♦♠ ❡♥tr❛❞❛sC∞✱ t❛❧ q✉❡

a(0) t❡♠ t♦❞♦s ♦s ❛✉t♦✈❛❧♦r❡s r❡❛✐s ❡ ❞✐st✐♥t♦s✱ ♦✉ s❡❥❛ ♦ s✐st❡♠❛ é ❤✐♣❡r❜ó❧✐❝♦ ❡♠ u= 0✳

❉❡♠♦♥str❛♠♦s q✉❡ ❝❡rt♦s ❡s♣❛ç♦s ❞❡ ❇❡s♦✈ sã♦ ♣r❡s❡r✈❛❞♦s ♣❡❧♦ ✢✉①♦ ❞❛ s♦❧✉çã♦✱ ♣❡rt♦ ❞❛ s♦❧✉çã♦ ♥✉❧❛✳

(8)

❆❜str❛❝t

❲❡ ❝♦♥s✐❞❡r t❤❡ ❈❛✉❝❤② ♣r♦❜❧❡♠ ❢♦r t❤❡ q✉❛s✐✲❧✐♥❡❛r s②st❡♠s

∂tu+a(u)∂xu = 0

u(0, x) = ✉0(x),

✇✐t❤u= (u1, . . . , uN) ❛♥❞a(u) = (ajk(u))Nj,k=1 r❡❛❧ ♠❛tr✐① N×N✱ ✇✐t❤ ❡♥tr✐❡sC∞✱ s✉❝❤ t❤❛t t❤❡ ❡✐❣❡♥✈❛❧✉❡s ♦❢ a(0) ❛r❡ r❡❛❧ ❛♥❞ ❞✐st✐♥❝t✱ t❤❛t ✐s✱ t❤❡ s②st❡♠ ✐s ❤②♣❡r❜♦❧✐❝ ❛t

u= 0✳ ❲❡ s❤♦✇ t❤❛t ❝❡rt❛✐♥ ❇❡s♦✈ s♣❛❝❡s ❛r❡ ♣r❡s❡r✈❡❞ ❜② ✢♦✇ ♦❢ t❤❡ s♦❧✉t✐♦♥✱ ♥❡❛r t❤❡

♥✉❧❧ s♦❧✉t✐♦♥✳

(9)

❙✉♠ár✐♦

■♥tr♦❞✉çã♦ ✼

✶ Pr❡❧✐♠✐♥❛r❡s ✶✵

✶✳✶ ❊s♣❛ç♦s ❞❡ ❇❡s♦✈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✶✳✷ ❉❡❝♦♠♣♦s✐çã♦ ❞❡ ❇♦♥② ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ✶✳✸ ❆❧❣✉♥s ❘❡s✉❧t❛❞♦s ❞❡ ❆♥á❧✐s❡ ▼❛t❡♠át✐❝❛✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✹ ✶✳✹ ❍✐♣❡r❜♦❧✐❝✐❞❛❞❡ ♣❛r❛ ❙✐st❡♠❛s ▲✐♥❡❛r❡s ❞❡ ❊q✉❛çõ❡s ❉✐❢❡r❡♥❝✐❛✐s ❞♦ P❧❛♥♦ ✶✺

✷ ❖ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② q✉❛s❡✲❧✐♥❡❛r é ❜❡♠ ♣♦st♦ ❡♠ Cρ ✶✼ ✷✳✶ ❖ ❈❛s♦ C∞

b ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✶ ✷✳✷ ❖ ❈❛s♦ Ck ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✹ ✷✳✸ ❖ ❈❛s♦ Cρ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✵

✸ ❖ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② ✭✵✳✵✳✶✮ é ❜❡♠ ♣♦st♦ ❡♠ ❇ρ

∞,r ✺✹

✸✳✶ ❯♠❛ ❱❡rsã♦ P❛r❛❞✐❢❡r❡♥❝✐❛❧ ❞♦ ❚❡♦r❡♠❛ ✵✳✵✳✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✺ ✸✳✷ ❖ ❈❛s♦ ❇ρ

∞,r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✶

(10)

■♥tr♦❞✉çã♦

▲❛rs ❍ör♠❛♥❞❡r ✐♥✐❝✐❛ ♦ ❝❛♣ít✉❧♦ ■❱ ❞❡ ❬✹❪ ❝♦♠ ✉♠❛ ❞✐s❝✉ssã♦ ❛ r❡s♣❡✐t♦ ❞❡ s♦❧✉✲ çõ❡s ❝❧áss✐❝❛s ❞♦ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② ♣❛r❛ s✐st❡♠❛s q✉❛s❡✲❧✐♥❡❛r❡s ❞❡ ♣r✐♠❡✐r❛ ♦r❞❡♠✳ ❈♦♥s✐❞❡r❛ ♦ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤②

∂tu+a(u)∂xu = 0

u(0, x) = ✉0(x), ✭✵✳✵✳✶✮

❝♦♠u= (u1, . . . , uN)❡a(u) = (ajk(u)) N

j,k=1 ♠❛tr✐③ r❡❛❧N×N✱ ❝♦♠ ❡♥tr❛❞❛sC∞✱ t❛❧ q✉❡

a(0) t❡♠ t♦❞♦s ♦s ❛✉t♦✈❛❧♦r❡s r❡❛✐s ❡ ❞✐st✐♥t♦s✳ ❙♦❜ ❝❡rt❛s ❝♦♥❞✐çõ❡s ✐♠♣♦st❛s ❛♦ ❞❛❞♦

✐♥✐❝✐❛❧ ♦ ♣r♦❜❧❡♠❛ ✭✵✳✵✳✶✮ é ❜❡♠ ♣♦st♦ ❡♠Ckk 1✳ ▼❛✐s ♣r❡❝✐s❛♠❡♥t❡✱ ♥❛ s❡çã♦ ✹✳✷ ❞❡ ❬✹❪ ❞❡♠♦♥str❛✲s❡ ♦ s❡❣✉✐♥t❡ t❡♦r❡♠❛✿

❚❡♦r❡♠❛ ✵✳✵✳✶ ❙❡ ✉0 ∈Ck(R)✱ k ≥1✱ t❡♠ t♦❞❛s ❛s ❞❡r✐✈❛❞❛s ❞❡ ♦r❞❡♠≤k ❧✐♠✐t❛❞❛s ❡ ❛s ❞❡ ♦r❞❡♠ ≤1 sã♦ s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥❛s✱ ❡♥tã♦ ♦ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② ✭✵✳✵✳✶✮ t❡♠

✉♠❛ ú♥✐❝❛ s♦❧✉çã♦ u∈Ck✱ ❞❡✜♥✐❞❛ ♣❛r❛ t♦❞♦ 0tT✱ ❞❡s❞❡ q✉❡

T sup|✉′

0| ≤c,

♦♥❞❡cé ✉♠❛ ❝♦♥st❛♥t❡ ❞❡♣❡♥❞❡♥❞♦ ❛♣❡♥❛s ❞❡a✳ ▼❛✐s ❛✐♥❞❛✱ ❡①✐st❡♠ ❝♦♥st❛♥t❡sC1, . . . , Ck✱ ✭❞❡♣❡♥❞❡♥❞♦ só ❞❛ ♥♦r♠❛ C1 ❞♦ ❞❛❞♦ ✐♥✐❝✐❛❧✮ ♣❛r❛ ❛s q✉❛✐s ✈❛❧❡♠ ❛s ❡st✐♠❛t✐✈❛s

kukCl ≤Clk✉0kCl. ✭✵✳✵✳✷✮

❖❜s❡r✈❛♠♦s q✉❡ t❛❧ r❡s✉❧t❛❞♦ ♥ã♦ ♣♦❞❡ s❡r s✉❜st❛♥❝✐❛❧♠❡♥t❡ ♠❡❧❤♦r❛❞♦✱ ♣❛r❛ t❛❧ ✈❡❥❛♠♦s ♦ q✉❡ s❡ ♣❛ss❛ ❝♦♠ ❛ ❡q✉❛çã♦ ❞❡ ❇✉r❣❡rs❀ ♦✉ s❡❥❛ q✉❛♥❞♦ N = 1 ❡ a(u) = u✳

◆❡st❡ ❝❛s♦✱ ✈✐❛ ♠ét♦❞♦ ❞❛s ❝❛r❛❝t❡ríst✐❝❛s✱ ✈❡r✐✜❝❛✲s❡✿ P❛r❛ ✉0 ∈ C1✱ ❛ s♦❧✉çã♦ é ❞❛❞❛ ♣♦r u(t, x) = ✉0(y)❀ x = y+t✉0(y). ❈♦♠♦ xy = 1 +t✉0′(y) s❡ ✉0 ❡ ✉′0 sã♦ ❧✐♠✐t❛❞❛s✱ ❡♥tã♦ ❛ ❡q✉❛çã♦ x= y+t✉0(y) ❞❡t❡r♠✐♥❛ ✐♠♣❧✐❝✐t❛♠❡♥t❡ y ❡♠ t❡r♠♦s ❞❡ (t, x) q✉❛♥❞♦

0≤t ≤T ❝♦♠

1

T = sup{−✉ ′

0}.

◆♦t❡♠♦s ❛✐♥❞❛ q✉❡ s❡ −✉′

0(y) ❛t✐♥❣❡ ♦ ♠á①✐♠♦ ♣♦s✐t✐✈♦ ❡♠ y✱ ❡♥tã♦ ux = x−y1✉′0(y) ❝♦♥✈❡r❣❡ ♣❛r❛ ♦ ✐♥✜♥✐t♦ q✉❛♥❞♦t →T✱ ❛ss✐♠ ❛ ❢❛✐①❛ ❡♠ t q✉❡ ❛ s♦❧✉çã♦ ♣❡r♠❛♥❡❝❡C1 é

0≤t < T✳

❖ ♣r✐♥❝✐♣❛❧ ♦❜❥❡t✐✈♦ ❛q✉✐ é ❛♣r❡s❡♥t❛r ❛❧❣✉♠❛s ❡①t❡♥sõ❡s ❞♦ ❚❡♦r❡♠❛ ✵✳✵✳✶✳ ❊♠ ♣❛rt✐❝✉❧❛r✱ ♥♦s ❝♦♥❝❡♥tr❛♠♦s ♥♦ ❝❛s♦ ❡♠ q✉❡ ♦ ❞❛❞♦ ✐♥✐❝✐❛❧ ♣❡rt❡♥❝❡ ❛♦ ❡s♣❛ç♦ ❞❡ ❍ö❧❞❡r

✱ ❝♦♠ ρ > 1✳ ❊①t❡♥sõ❡s ❞♦ r❡❢❡r✐❞♦ t❡♦r❡♠❛ t❡♠ s✐❞♦ ❡①❛✉st✐✈❛♠❡♥t❡ ❡st✉❞❛❞♦s ♥♦ â♠❜✐t♦ ❞♦s ❡s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈✱ ✈❡❥❛ ❬✷❪ ❡ ❬✻❪✳

(11)

■♥tr♦❞✉çã♦ ✽

◆♦ ❈❛♣ít✉❧♦ ✷✱ ❞❡♠♦♥str❛♠♦s q✉❡ ❛ ❤✐♣ót❡s❡ ❞❡ ♣❡q✉❡♥❡③ ♥❛ ♣r✐♠❡✐r❛ ❞❡r✐✈❛❞❛ ❞♦ ❞❛❞♦ ✐♥✐❝✐❛❧✱ ✐♠♣♦st❛ ♣♦r ❍ör♠❛♥❞❡r✱ ♥ã♦ é ♥❡❝❡ssár✐❛ ♣❛r❛ q✉❡ ♦ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② ✭✵✳✵✳✶✮ s❡❥❛ ❧♦❝❛❧♠❡♥t❡ ❜❡♠ ♣♦st♦ ❡♠Ck k 1✳ ▼❛✐s ♣r❡❝✐s❛♠❡♥t❡ ❞❡♠♦♥str❛♠♦s ♦✿ ❚❡♦r❡♠❛ ✵✳✵✳✷ ❙❡ ✉0 ∈Ck✱ k ≥1✱ t❡♠ t♦❞❛s ❛s ❞❡r✐✈❛❞❛s ❧✐♠✐t❛❞❛s ❡k✉0k∞ é s✉✜❝✐❡♥✲

t❡♠❡♥t❡ ♣❡q✉❡♥♦✱ ❡♥tã♦ ♦ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② ✭✵✳✵✳✶✮ ❛❞♠✐t❡ s♦❧✉çã♦k✈❡③❡s ❞✐❢❡r❡♥❝✐á✈❡❧✱

❡ ♠❛✐s✱ ❡①✐st❡♠ T > 0 ❡ ❝♦♥st❛♥t❡s C0,C˜0, C1,C˜1, . . . , Ck,C˜k ♣❛r❛ ❛s q✉❛✐s ❛ s♦❧✉çã♦ u s❛t✐s❢❛③

k∂l

xu(t,·)k∞ ≤Clk✉( l)

0 k∞exp(tC˜l), ∀ t∈[0, T].

❊♠ s❡❣✉✐❞❛✱ ❛✐♥❞❛ s❡♠ ❛ ❤✐♣ót❡s❡ ❞❡ ♣❡q✉❡♥❡③ ♥❛ ❞❡r✐✈❛❞❛ ❞♦ ❞❛❞♦ ✐♥✐❝✐❛❧✱ ✈❡r✐✜❝❛♠♦s q✉❡ ♦ ♣r♦❜❧❡♠❛ é ❧♦❝❛❧♠❡♥t❡ ❜❡♠ ♣♦st♦ ♥♦ ❡s♣❛ç♦ ❞❡ ❍ö❧❞❡r Cρ✱ ❝♦♠ ρ > 1✳ ■st♦ é✱ ❞❡♠♦♥str❛♠♦s ♦✿

❚❡♦r❡♠❛ ✵✳✵✳✸ ❙❡❥❛ρ >1 ✉♠ ♥ú♠❡r♦ r❡❛❧ ♥ã♦✲✐♥t❡✐r♦✳ ❙❡ ✉0 ∈Cρ ❡ k✉0k∞ é s✉✜❝✐❡♥✲

t❡♠❡♥t❡ ♣❡q✉❡♥♦✱ ❡♥tã♦ ♦ ♣r♦❜❧❡♠❛ ✭✵✳✵✳✶✮ ❛❞♠✐t❡ s♦❧✉çã♦u∈Cρ([0, T]×R)✭♣❛r❛ ❛❧❣✉♠

T >0✮ ❡ ♠❛✐s✱

kukCρ ≤Ck✉0kCρ.

◆♦s r❡s✉❧t❛❞♦s ❛❝✐♠❛✱ ♣r✐♥❝✐♣❛❧♠❡♥t❡ q✉❛♥❞♦ ❛ r❡❣✉❧❛r✐❞❛❞❡ ❞♦ ❞❛❞♦ ✐♥✐❝✐❛❧ ❛✉♠❡♥t❛✱ ♥ã♦ ❝♦♥s❡❣✉✐♠♦s r❡❧❛❝✐♦♥❛r ♦ ✈❛❧♦r ❞❡ T ❝♦♠ ❛ ♣❡q✉❡♥❡③ ❞♦ ❞❛❞♦ ✐♥✐❝✐❛❧✳ ◆♦ ✜♥❛❧ ❞♦

❈❛♣ít✉❧♦ ✷✱ ♠❛♥t❡♥❞♦ ❛ ❤✐♣ót❡s❡ ❞❡ ♣❡q✉❡♥❡③ ❞❛ ❞❡r✐✈❛❞❛✱ ❛♣r❡s❡♥t❛♠♦s ✉♠ r❡s✉❧t❛❞♦ q✉❡ ❣❡♥❡r❛❧✐③❛ ♦ ❚❡♦r❡♠❛ ✵✳✵✳✶ ♣❛r❛ ♦ ❝❛s♦ Cρ ρ > 1✱ ❡ ♠❛♥t❡♠ ❛ r❡❧❛çã♦ ❡♥tr❡ T ♦ ❛ ♣❡q✉❡♥❡③ ❞♦ ❞❛❞♦ ✐♥✐❝✐❛❧✳ ❆ s❛❜❡r✿

❚❡♦r❡♠❛ ✵✳✵✳✹ ❙❡❥❛ ✉0 ∈Cρ✱ ρ >1♥ã♦✲✐♥t❡✐r♦✳ ❙❡ ✉0 t❡♠ t♦❞❛s ❛s ❞❡r✐✈❛❞❛s ❞❡ ♦r❞❡♠

≤ [ρ] ❧✐♠✐t❛❞❛s ❡ ❛s ❞❡ ♦r❞❡♠ ≤ 1 sã♦ s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥❛s✱ ❡♥tã♦ ♦ ♣r♦❜❧❡♠❛ ❞❡

❈❛✉❝❤② ✭✵✳✵✳✶✮ t❡♠ ✉♠❛ ú♥✐❝❛ s♦❧✉çã♦u∈Cρ✱ ❞❡✜♥✐❞❛ ♣❛r❛ t♦❞♦ 0tT✱ ❞❡s❞❡ q✉❡

T sup|✉′

0| ≤c,

♦♥❞❡ c é ✉♠❛ ❝♦♥st❛♥t❡ ❞❡♣❡♥❞❡♥❞♦ ❛♣❡♥❛s ❞❡ a✳ ▼❛✐s ❛✐♥❞❛✱ ❡①✐st❡ ❝♦♥st❛♥t❡ C ♣❛r❛ ❛

q✉❛❧ ✈❛❧❡

kukCρ ≤Ck✉0kCρ. ✭✵✳✵✳✸✮

◆♦ ❈❛♣ít✉❧♦ ✸✱ ❡♠ ✉♠ ♣r✐♠❡✐r♦ ♠♦♠❡♥t♦✱ ❞❡♠♦♥str❛♠♦s✱ ✉t✐❧✐③❛♥❞♦ ❛ t❡♦r✐❛ ❞❡ ▲✐tt❧❡✇♦♦❞✲P❛❧❡②✱ ✉♠❛ ❣❡♥❡r❛❧✐③❛çã♦ ❞♦ ❚❡♦r❡♠❛ ✵✳✵✳✶ q✉❡ é ❞❡ ❢❛t♦ ♠❛✐s ❢r❛❝❛ q✉❡ ❛ ❥á ❛♣r❡s❡♥t❛❞❛ ♥♦ ❈❛♣ít✉❧♦ ✷✱ ♥♦ ❡♥t❛♥t♦✱ t❛❧ ❞❡♠♦♥str❛çã♦ s❡r✈❡ ❞❡ ✐♥s♣✐r❛çã♦ ♣❛r❛✱ ♥✉♠❛ s❡❣✉♥❞❛ ❡t❛♣❛✱ tr❛❜❛❧❤❛r ❝♦♠ ♦ ♣r♦❜❧❡♠❛ ♥✉♠❛ ❝❧❛ss❡ ♠❛✐s ❛♠♣❧❛ ❞❡ ❢✉♥çõ❡s✱ ♦ q✉❡ ♥♦s ♣♦ss✐❜✐❧✐t❛ ❞❡♠♦♥str❛r ✉♠❛ ❡①t❡♥sã♦ ❞♦ ❚❡♦r❡♠❛ ✵✳✵✳✶ ♣❛r❛ ♦s ❡s♣❛ç♦s ❞❡ ❇❡s♦✈ ❇ρ

∞,r ❝♦♠ ρ >2♥ã♦✲✐♥t❡✐r♦✳ ▼❛✐s ♣r❡❝✐s❛♠❡♥t❡ ❝♦♠ t❛❧ té❝♥✐❝❛ ❞❡♠♦♥str❛♠♦s ♦✿

❚❡♦r❡♠❛ ✵✳✵✳✺ ❙❡❥❛ ✉0 ∈❇ρ∞,r✱ ρ >2♥ã♦✲✐♥t❡✐r♦ ❡ 1≤r≤ ∞✳ ❙❡ ✉0 t❡♠ ❛s ❞❡r✐✈❛❞❛s ❞❡ ♦r❞❡♠ ≤[ρ] ❧✐♠✐t❛❞❛s ❡ ❞❡ ♦r❞❡♠ ≤1 s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥❛s✱ ❡♥tã♦ ♦ ♣r♦❜❧❡♠❛ ❞❡

❈❛✉❝❤② ✭✵✳✵✳✶✮ t❡♠ ✉♠❛ ú♥✐❝❛ s♦❧✉çã♦u∈C[ρ]([0, T]×R) ❞❡s❞❡ q✉❡

T sup|✉′0| ≤c,

♦♥❞❡cé ✉♠❛ ❝♦♥st❛♥t❡ ❞❡♣❡♥❞❡♥❞♦ ❛♣❡♥❛s ❞❡a✳ ▼❛✐s ❛✐♥❞❛✱ ♣❛r❛ ❝❛❞❛t∈[0, T], u(t,·)∈

❇ρ

∞,r ❡ s❛t✐s❢❛③

ku(t,·)kρ

∞,r ≤Ck✉0k❇∞ρ,r ∀t∈[0, T],

(12)

■♥tr♦❞✉çã♦ ✾

(13)

❈❛♣ít✉❧♦ ✶

Pr❡❧✐♠✐♥❛r❡s

❈♦♠♦ ♠❡♥❝✐♦♥❛❞♦ ♥❛ ✐♥tr♦❞✉çã♦✱ ❡st❡ é ✉♠ ❝❛♣ít✉❧♦ ✐♥❢♦r♠❛t✐✈♦✱ ♥❡❧❡ ❛♣r❡s❡♥t❛♠♦s ❛❧❣✉♠❛s ❞❡✜♥✐çõ❡s ❡ ❛❧❣✉♥s r❡s✉❧t❛❞♦s✳ ❱❛♠♦s s❡r ❜❡♠ s✉❝✐♥t♦s ✉♠❛ ✈❡③ q✉❡ t❛❧ ❝❛♣ít✉❧♦ é✱ ❜❛s✐❝❛♠❡♥t❡✱ ✉♠ ❛♣❛♥❤❛❞♦ ❞❡ ✐♥❢♦r♠❛çõ❡s q✉❡ t❡♠ ♣♦r ♦❜❥❡t✐✈♦ ❢♦r♥❡❝❡r ✉♠❛ ❝♦♥s✉❧t❛ rá♣✐❞❛✱ ❛✜♠ ❞❡ s❛♥❛r ❡✈❡♥t✉❛✐s ❞ú✈✐❞❛s✱ s♦❜r❡ ❢❛t♦s ♦✉ ❞❡✜♥✐çõ❡s q✉❡ s❡rã♦ ✉t✐❧✐③❛❞❛s ♥♦s ❝❛♣ít✉❧♦s s❡❣✉✐♥t❡s✳ P❛r❛ ♠❛✐♦r❡s ✐♥❢♦r♠❛çõ❡s ❛❝❡r❝❛ ❞♦s ❝♦♥t❡ú❞♦s ❡ r❡s✉❧t❛❞♦s ❛♣r❡s❡♥t❛❞♦s ♥❡st❡ ❝❛♣ít✉❧♦ ✈❡r ❬✷❪✱ ♣❛r❛ ❛s s❡çõ❡s ✶✳✶ ❡ ✶✳✷✱ ❡ ♣❛r❛ ❛s s❡çõ❡s ✶✳✸ ❡ ✶✳✹ ✈❡r ❬✶❪✱ ❬✹❪✱ ❬✺❪ ❡ ❬✼❪✳ ❖❜s❡r✈♦ q✉❡ ♥❡♠ t♦❞❛s ❛s ❞❡✜♥✐çõ❡s ♦✉ ♦s r❡s✉❧t❛❞♦s q✉❡ sã♦ ✉t✐❧✐③❛❞♦s ♥♦s ❝❛♣ít✉❧♦s s❡❣✉✐♥t❡s ❡stã♦ ❛q✉✐ ❝♦❧❡❝✐♦♥❛❞♦s✱ ♣♦r ❡①❡♠♣❧♦✱ ❛s ❞❡✜♥✐çõ❡s ❞❡ ❝❛♠♣♦ ✈❡t♦r✐❛❧ ❡ ✢✉①♦ sã♦ ❛ss✉♠✐❞❛s✳ ❆❧❣✉♥s ❢❛t♦s ❜ás✐❝♦s ❞❡ ❝á❧❝✉❧♦ sã♦ ✉s❛❞♦s s❡♠ q✉❛❧q✉❡r ♠❡♥çã♦✳ ❊st❛♠♦s ❡s♣❡❝✐❛❧♠❡♥t❡ ✐♥t❡r❡ss❛❞♦s ❡♠ ❛♣r❡s❡♥t❛r ❛q✉✐ ❛ ❞❡✜♥✐çã♦ ❞♦s ❡s♣❛ç♦s ❞❡ ❇❡s♦✈ ❡ ❛ ❉❡❝♦♠♣♦s✐çã♦ ❞❡ ❇♦♥②✳

✶✳✶ ❊s♣❛ç♦s ❞❡ ❇❡s♦✈

❆❧❣✉♠❛s ❞❡s✐❣✉❛❧❞❛❞❡s ❜❡♠ ❝♦♥❤❡❝✐❞❛s ❡ q✉❡ t❡♠ ♣❛♣❡❧ ✐♠♣♦rt❛♥t❡ ♥♦ ❡st✉❞♦ ❞♦s ❡s♣❛ç♦s ❞❡ ❇❡s♦✈ sã♦ ♦ ❝♦♥t❡ú❞♦ ❞♦✿

❚❡♦r❡♠❛ ✶✳✶✳✶ ✭❉❡s✐❣✉❛❧❞❛❞❡s ❞❡ ❇❡r♥st❡✐♥✮ ❙❡❥❛♠ C ✉♠❛ ❝♦r♦❛ ❡ B ✉♠❛ ❜♦❧❛✳

❊①✐st❡ ✉♠❛ ❝♦♥st❛♥t❡ C t❛❧ q✉❡ ♣❛r❛ q✉❛❧q✉❡r ♣❛r ❞❡ ♥ú♠❡r♦s r❡❛✐s (p, q) s❛t✐s❢❛③❡♥❞♦✱

q≥p≥1✱ λ >0 ❡ u∈Lp t❡♠♦s✿

✐✮ S(ˆu)⊂λB⇒ sup

|α|=k

k∂αuk

Lq(Rd) ≤Ck+1λk+d(

1

p−

1

q)kuk

Lp(Rd);

✐✐✮ S(ˆu)⊂λC ⇒C−k−1λkkuk

Lp(Rd) ≤ sup

|α|=k

k∂αuk

Lp(Rd) ≤Ck+1λkkukLp(Rd).

P❛r❛ q✉❡ ♣♦ss❛♠♦s ❛♣r❡s❡♥t❛r ❛ ❞❡✜♥✐çã♦ ❞♦s ❡s♣❛ç♦s ❞❡ ❇❡s♦✈✱ ♣r❡❝✐s❛♠♦s ❝♦♥s✐❞❡r❛r ❛❧❣✉♠❛s ❢✉♥çõ❡s ❡s♣❡❝✐❛s✱ t❛✐s ❢✉♥çõ❡s sã♦ ❛♣r❡s❡♥t❛❞❛s ♥❛✿

Pr♦♣♦s✐çã♦ ✶✳✶✳✶ ❙❡❥❛♠ C = C(0,34,83) ❡ B = B(0,43)✳ ❊①✐st❡♠ ❢✉♥çõ❡s r❛❞✐❛✐s χ ∈

C∞

c (B,[0,1]) ❡ ϕ ∈Cc∞(C,[0,1]) s❛t✐s❢❛③❡♥❞♦✿

∀ ξ∈Rn, χ(ξ) +X

j≥0

ϕ(2−jξ) = 1;

∀ ξ ∈Rn\ {0}, X

j∈Z

(14)

❈❛♣ít✉❧♦ ✶✳ Pr❡❧✐♠✐♥❛r❡s ✶✶

|j−j′| ≥2⇒S(ϕ(2−j·))S(ϕ(2−j′·)) =;

j ≥1⇒S(χ)∩S(ϕ(2−j·)) = ∅. ❆❧é♠ ❞✐st♦✱ s❡ C˜=B(0,2

3) +C✱ ❡♥tã♦

|j−j′| ≥5⇒2j′˜

C ∩2jC =;

∀ ξ ∈Rn, 1

3 ≤χ

2(ξ) +X

j≥0

ϕ2 2−jξ≤1;

∀ ξ∈Rn\ {0}, 1

2 ≤

X

j∈Z

ϕ2(2−jξ)1.

P❛r❛ ϕ ❡ χ s❛t✐s❢❛③❡♥❞♦ ❛s ❝♦♥❞✐çõ❡s ❞❛ ♣r♦♣♦s✐çã♦ ❛❝✐♠❛ ❛ss♦❝✐❛✲s❡ ♦s s❡❣✉✐♥t❡s

♠✉❧t✐♣❧✐❝❛❞♦r❡s ❞❡ ❋♦✉r✐❡r✿

∆ju= 0, ∀ j <−1;

∆−1u= (χuˆˇ);

∆ju= (ϕ(2−j·)ˆu)ˇ,∀ j ≥0;

Sju= (χ(2−j·)ˆu)ˇ, ∀ j ∈Z. ✭✶✳✶✳✶✮ ◆♦ ❝❛s♦ ❞❡ u ∈ Lp, 1 p ≤ ∞, ♦s ♦♣❡r❛❞♦r❡s ❛❝✐♠❛ ♣♦❞❡♠ s❡r ❡s❝r✐t♦s ✉t✐❧✐③❛♥❞♦ ❝♦♥✈♦❧✉çã♦✱ ❛ s❛❜❡r

∆−1u= 2−nχˇ(2−1·)∗u,

∆ju= 2jnϕˇ(2j·)∗u, ∀j ≥0,

Sju= 2jnχˇ(2j·)∗u, ∀j ≥ −1.

❖❜s❡r✈❡♠♦s ❛✐♥❞❛ q✉❡ ♦s ♦♣❡r❛❞♦r❡s ∆j ❝♦♠✉t❛♠ ❝♦♠ ❛s ❞❡r✐✈❛❞❛s✱ ✐st♦ é✱

∆j∂αu=∂α∆ju; ∀α∈Nn, ∀u∈ S′,

♥♦t❡♠♦s✱ ❛❧é♠ ❞✐st♦✱ q✉❡∆j ❡Sj ♠❛♣❡✐❛♠Lp ❡♠ Lp ❡ ❡①✐st❡ ❝♦♥st❛♥t❡C ✭ ✐♥❞❡♣❡♥❞❡♥t❡ ❞❡j ∈Z ✮✱ t❛❧ q✉❡

k∆jukLp ≤CkukLp ❡

kSjukLp ≤CkukLp.

❱❡r✐✜❝❛✲s❡ t❛♠❜é♠✱ ♣❛r❛ t♦❞❛u∈ S′✱ q✉❡

Sju=

X

j′j1

∆j′u

❡ q✉❡

u= lim

j→∞Sju ♥♦ ❡s♣❛ç♦ S ′(Rn

).

▲♦❣♦ t❡♠ s❡♥t✐❞♦ ❡s❝r❡✈❡r

u=X

j∈Z

(15)

❈❛♣ít✉❧♦ ✶✳ Pr❡❧✐♠✐♥❛r❡s ✶✷

❉❡✜♥✐çã♦ ✶✳✶✳✶ ✭❉❡❝♦♠♣♦s✐çã♦ ❞❡ ▲✐tt❧❡✇♦♦❞✲P❛❧❡②✮ ❖ ❧❛❞♦ ❞✐r❡✐t♦ ❞❡ ✭✶✳✶✳✷✮ é ❝❤❛♠❛❞♦ ❞❡❝♦♠♣♦s✐çã♦ ♥ã♦✲❤♦♠♦❣ê♥❡❛ ❞❡ ▲✐tt❧❡✇♦♦❞✲P❛❧❡② ❞❛ u✳

P♦❞❡♠♦s ❛❣♦r❛ ❛♣r❡s❡♥t❛r ❛ ❞❡✜♥✐çã♦ ❞♦s ❡s♣❛ç♦s ❞❡ ❇❡s♦✈ ♥ã♦✲❤♦♠♦❣ê♥❡♦s✳

❉❡✜♥✐çã♦ ✶✳✶✳✷ ❙❡❥❛♠ (p, r)∈[1,∞]2 s ✉♠ ♥ú♠❡r♦ r❡❛❧✳ P❛r❛ u∈ S✱ ❝♦♥s✐❞❡r❡♠♦s

kuks p,r

.

=k(2sjk∆jukLp)jZklr(Z).

❖ ❡s♣❛ç♦ ❞❡ ❇❡s♦✈ ❇s

p,r é ♦ ❝♦♥❥✉♥t♦ ❞❡ t♦❞❛s ❛s ❞✐str✐❜✉✐çõ❡s t❡♠♣❡r❛❞❛s u t❛✐s q✉❡

kuks

p,r <∞✳

❖❜s❡r✈❛♠♦s ❛q✉✐ q✉❡ ♦s ❡s♣❛ç♦s ❇s

p,r ♥ã♦ ❞❡♣❡♥❞❡♠ ❞❛ ❡s❝♦❧❤❛ ❞♦ ♣❛r (χ, ϕ)✳ ❆❧❣✉♠❛s ♣r♦♣r✐❡❞❛❞❡s ♠✉✐t♦ út❡✐s ❞♦s ♦♣❡r❛❞♦r❡s ∆q sã♦ ❞❛❞❛s ♥❛✿

Pr♦♣♦s✐çã♦ ✶✳✶✳✷ P❛r❛ q✉❛✐sq✉❡r u ❡ v ∈ S′(Rd)✱ ✈❛❧❡♠ ❛s s❡❣✉✐♥t❡s ♣r♦♣r✐❡❞❛❞❡s✿

∆q∆pu≡0 s❡ |q−p| ≥2;

∆q(Sp−1u∆pv)≡0 s❡ |q−p| ≥5.

❆❣♦r❛ ❛♣r❡s❡♥t❛r❡♠♦s ✉♠❛ ❝❛r❛❝t❡r✐③❛çã♦ ❞♦s ❡s♣❛ç♦s ❞❡ ❍ö❧❞❡r ✈✐❛ ❞❡❝♦♠♣♦s✐çã♦ ❞❡ ▲✐tt❧❡✇♦♦❞✲P❛❧❡②✳ Pr✐♠❡✐r❛♠❡♥t❡ ❧❡♠❜r❡♠♦s ❛✿

❉❡✜♥✐çã♦ ✶✳✶✳✸ ✭❊s♣❛ç♦s ❞❡ ❍ö❧❞❡r✮ ❙❡❥❛ ρ ∈(0,1)✳ ❉❡♥♦t❛♠♦s ♣♦r Cρ(Rd) ♦ ❝♦♥✲ ❥✉♥t♦ ❞❛s ❢✉♥çõ❡s u: Rd R ❝♦♥tí♥✉❛s ❡ ❧✐♠✐t❛❞❛s s❛t✐s❢❛③❡♥❞♦✱ ♣❛r❛ ❛❧❣✉♠❛ ❝♦♥st❛♥t❡

C✱

|u(x)−u(y)| ≤C|x−y|ρ, x y Rd.

▼❛✐s ❣❡r❛❧♠❡♥t❡✱ s❡ρ >0✱ ❡ ♥ã♦ é ✉♠ ♥ú♠❡r♦ ✐♥t❡✐r♦✱ ❞❡♥♦t❛♠♦s ♣♦rCρ(Rd)♦ ❝♦♥❥✉♥t♦ ❞❛s ❢✉♥çõ❡s u✱ [ρ] ✈❡③❡s✶ ❞✐❢❡r❡♥❝✐á✈❡✐s t❛✐s q✉❡ ∂αuCρ−[ρ](Rd)✱ ♣❛r❛ t♦❞♦ |α| = [ρ]✳ ❖ ❝♦♥❥✉♥t♦ Cρ(Rd) ♠✉♥✐❞♦ ❝♦♠ ❛ ♥♦r♠❛

kukCρ =.

X

|α|≤[ρ]

k∂αuk∞+ X

|α|=[ρ]

sup

x6=y

|∂αu(x)αu(y)|

|x−y|ρ−[ρ] .

é ♦ ❡s♣❛ç♦ ❞❡ ❍ö❧❞❡r Cρ(Rd)

❚❡♠♦s ❛ s❡❣✉✐♥t❡ ❝❛r❛❝t❡r✐③❛çã♦✱ ✈✐❛ ❞❡❝♦♠♣♦s✐çã♦ ❞❡ ▲✐tt❧❡✇♦♦❞✲P❛❧❡②✱ ♣❛r❛ ♦s ❡s♣❛✲ ç♦s ❞❡ ❍ö❧❞❡r✳

❚❡♦r❡♠❛ ✶✳✶✳✷ ❙❡ρé ✉♠ ♥ú♠❡r♦ r❡❛❧ ♣♦s✐t✐✈♦ ♥ã♦✲✐♥t❡✐r♦✱ ❡♥tã♦ ♦s ❡s♣❛ç♦s ❇ρ,∞ ❡ Cρ

sã♦ ✐❣✉❛✐s ❡✱ ♣❛r❛ ❛❧❣✉♠❛ ❝♦♥st❛♥t❡ C✱ ✈❛❧❡

C−1kukρ

∞,∞ ≤ kukCρ ≤Ckuk❇ρ∞,∞.

❆ ♣ró①✐♠❛ ♣r♦♣♦s✐çã♦ ❝♦♥té♠ ✉♠❛ ❧✐st❛ ❞❡ ✐♠♣♦rt❛♥t❡s ♣r♦♣r✐❡❞❛❞❡s ❞♦s ❡s♣❛ç♦s ❞❡ ❇❡s♦✈✳

(16)

❈❛♣ít✉❧♦ ✶✳ Pr❡❧✐♠✐♥❛r❡s ✶✸

✭✐✮ Pr♦♣r✐❡❞❛❞❡ t♦♣♦❧ó❣✐❝❛✿ ❇s

p,r é ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤ ❝♦♥t✐♥✉❛♠❡♥t❡ ♠❡r❣✉❧❤❛❞♦ ❡♠

S′

✭✐✐✮ ❖ ❡s♣❛ç♦ ❞❛s ❢✉♥çõ❡s s✉❛✈❡s ❝♦♠ s✉♣♦rt❡ ❝♦♠♣❛❝t♦ é ❞❡♥s♦ ❡♠ ❇s

p,r s❡✱ ❡ s♦♠❡♥t❡ s❡✱ p ❡ r sã♦ ✜♥✐t♦s✳

✭✐✐✐✮ ❙❡ 1≤p ❡ r <∞✱ ❡♥tã♦ ❇s

p,r é s❡♣❛rá✈❡❧✳ ✭✐✈✮ ❆❧❣✉♥s ♠❡r❣✉❧❤♦s✿

✭❛✮ ❇s

p,r ֒→❇˜ s

p,r˜ s❡♠♣r❡ q✉❡ s < s˜ ♦✉ s˜=s ❡ r ≤˜r❀ ✭❜✮ ❇s

p,r(Rd)֒→❇

s−d(1p−1 ˜

p)

˜

p,r (Rd) s❡♠♣r❡ q✉❡ p≤p˜❀

✭✈✮ Pr♦♣r✐❡❞❛❞❡ ❞❡ ❋❛t♦✉✿ s❡ (un)n∈N é ✉♠❛ s❡q✉ê♥❝✐❛ ❧✐♠✐t❛❞❛ ❡♠ ❇

s

p,r q✉❡ ❝♦♥✈❡r❣❡ ♣❛r❛ u ❡♠ S′✱ ❡♥tã♦ us

p,r ❡

kuks

p,r ≤lim infkunk❇sp,r.

❉❡st❛❝❛♠♦s ❛✐♥❞❛ ♦ s❡❣✉✐♥t❡ r❡s✉❧t❛❞♦ ❡♥✈♦❧✈❡♥❞♦ ♦ ❝♦♠✉t❛❞♦r ❞❡ ♦♣❡r❛❞♦r❡s✳

▲❡♠❛ ✶✳✶✳✶ ❊①✐st❡ ❝♦♥st❛♥t❡C t❛❧ q✉❡ ♣❛r❛ t♦❞❛f ❡♠Lp g ❢✉♥çã♦ ❧✐♣s❝❤✐t③ ❡ p[1,] ✈❛❧❡✿

k[∆q, g]fkLp ≤C2−qk∇gkkfkLp.

✶✳✷ ❉❡❝♦♠♣♦s✐çã♦ ❞❡ ❇♦♥②

❆ ❞❡❝♦♠♣♦s✐çã♦ ❞❡ ❇♦♥② é ✉♠❛ ❢❡rr❛♠❡♥t❛ ✐♠♣♦rt❛♥t❡ ❡ ♠✉✐t♦ út✐❧ ♣❛r❛ ❡st✉❞❛r ♦ ♣r♦❞✉t♦ ❞❡ ❢✉♥çõ❡s ❡ ❞❡ ❞✐str✐❜✉✐çõ❡s✳ P❛r❛ ❞✉❛s ❞✐str✐❜✉✐çõ❡s t❡♠♣❡r❛❞❛su ❡ v t❡♠♦s ❛

s❡❣✉✐♥t❡ ❞❡❝♦♠♣♦s✐çã♦✿

uv = X

q,q′Z

∆qu∆q′v.

❆ ♣ró①✐♠❛ ❞❡✜♥✐çã♦ ✐♥tr♦❞✉③ ❛ ❉❡❝♦♠♣♦s✐çã♦ ❞❡ ❇♦♥② q✉❡ é ✉♠❛ ❜♦❛ ❛❜♦r❞❛❣❡♠ ❛♦ ♣r♦❞✉t♦ ❞❡ ❞✐str✐❜✉✐çõ❡s✳

❉❡✜♥✐çã♦ ✶✳✷✳✶ ❙❡❥❛♠ u ❡ v ❞✉❛s ❞✐str✐❜✉✐çõ❡s t❡♠♣❡r❛❞❛s✳ ❈♦♥s✐❞❡r❡♠♦s

Tuv =.

X

q∈Z

Sq−1u∆qv

R(u, v)=. X

|q−q′|≤1

q,q′∈Z

∆qu∆q′v.

P❡❧♦ ♠❡♥♦s ✐♥❢♦r♠❛❧♠❡♥t❡ ♣♦❞❡♠♦s ❡s❝r❡✈❡r

uv =Tuv+Tvu+R(u, v) ✭❉❡❝♦♠♣♦s✐çã♦ ❞❡ ❇♦♥②✮. ✭✶✳✷✳✶✮

(17)

❈❛♣ít✉❧♦ ✶✳ Pr❡❧✐♠✐♥❛r❡s ✶✹

❚❡♦r❡♠❛ ✶✳✷✳✶ P❛r❛ q✉❛❧q✉❡r s ∈ R ❡①✐st❡ ✉♠❛ ❝♦♥st❛♥t❡ C t❛❧ q✉❡✱ ♣❛r❛ q✉❛✐sq✉❡r

(p, r)∈[1,+∞]2✱ t❡♠♦s

kTuvk❇s

p,r ≤CkukL∞kvk❇sp,r, ∀(u, v)∈L

×s

p,r.

❚❡♦r❡♠❛ ✶✳✷✳✷ ❙❡ (s1, s2) ∈ R2 sã♦ t❛✐s q✉❡ s1+s2 >0✳ ❊♥tã♦✱ ❡①✐st❡ ✉♠❛ ❝♦♥st❛♥t❡

C t❛❧ q✉❡ ♣❛r❛ q✉❛✐sq✉❡r (p1, p2, r1, r2)∈[1,∞]4 s❛t✐s❢❛③❡♥❞♦

1

p .

= 1

p1

+ 1

p2

≤1 ❡ 1

r .

= 1

r1

+ 1

r2

≤1,

t❡♠♦s

kR(u, v)ks1+s2

p,r ≤Ckuk❇ s1

p1,r1kvk❇ s2

p2,r2, ∀(u, v)∈❇

s1

p1,r1 ×❇

s2

p2,r2.

❈♦♠❜✐♥❛❞♦s✱ ♦s ❞♦✐s t❡♦r❡♠❛s ❛❝✐♠❛ ✐♠♣❧✐❝❛♠ ♦✿

❈♦r♦❧ár✐♦ ✶✳✷✳✶ P❛r❛ q✉❛❧q✉❡r r❡❛❧ ♣♦s✐t✐✈♦ s✱ ♦ ❡s♣❛ç♦ L∞s

p,r é ✉♠❛ á❧❣❡❜r❛✳ ▼❛✐s ♣r❡❝✐s❛♠❡♥t❡✱ ❡①✐st❡ ✉♠❛ ❝♦♥st❛♥t❡C t❛❧ q✉❡

kuvks

p,r ≤C(kukL∞kvk❇sp,r +kuk❇sp,rkvkL∞), ∀u, v ∈L

s p,r.

✶✳✸ ❆❧❣✉♥s ❘❡s✉❧t❛❞♦s ❞❡ ❆♥á❧✐s❡ ▼❛t❡♠át✐❝❛✳

❆♣r❡s❡♥t❛♠♦s ❛q✉✐ ❛❧❣✉♥s r❡s✉❧t❛❞♦s q✉❡ s❡rã♦ ❝✐t❛❞♦s ♥♦s ❝❛♣ít✉❧♦s s❡❣✉✐♥t❡s✳ ■♥✐✲ ❝✐❛♠♦s ❝♦♠ ✉♠ r❡s✉❧t❛❞♦ ♠✉✐t♦ út✐❧ q✉❛♥❞♦ ♣r❡❝✐s❛♠♦s ❡①♣❧✐❝✐t❛r ❞❡r✐✈❛❞❛s ❞❡ ♦r❞❡♠ s✉♣❡r✐♦r ♣❛r❛ ❝♦♠♣♦st❛ ❞❡ ❢✉♥çõ❡s✳

❚❡♦r❡♠❛ ✶✳✸✳✶ ❙❡❥❛♠ U ⊂ Rm V Rn ❛❜❡rt♦s✱ f : U Rn ✉♠❛ ❛♣❧✐❝❛çã♦ i ✈❡③❡s ❞✐❢❡r❡♥❝✐á✈❡❧ ♥♦ ♣♦♥t♦ x ∈ U✱ ❝♦♠ f(U) ⊂ V✱ ❡ g : V → Rp ✉♠❛ ❛♣❧✐❝❛çã♦ i ✈❡③❡s ❞✐❢❡r❡♥❝✐á✈❡❧ ♥♦ ♣♦♥t♦ y = f(x)✳ P❛r❛ ❝❛❞❛ ♣❛rt✐çã♦ i = i1 +. . .+ik ✭❞❡ i ❝♦♠♦ s♦♠❛ ❞❡ ♥ú♠❡r♦s ♥❛t✉r❛✐s✮ ❡①✐st❡ ✉♠ n(i1, . . . , ik)∈Q t❛❧ q✉❡ ❛ i✲és✐♠❛ ❞❡r✐✈❛❞❛ ❞❛ ❛♣❧✐❝❛çã♦

g◦f :U →Rp t❡♠ ❛ ❡①♣r❡ssã♦

(g◦f)(i)= i

X

k=1

n(i1, . . . , ik)g(k)◦f· f(i1), . . . , f(ik)

.

❖ ♣ró①✐♠♦ r❡s✉❧t❛❞♦ r❡❧❛❝✐♦♥❛ ❝♦♥✈❡r❣ê♥❝✐❛ ❞❡ s❡q✉ê♥❝✐❛ ❞❡ ❢✉♥çõ❡s ❝♦♠ ❛ ❝♦♥✈❡r❣ê♥✲ ❝✐❛ ❞❛ s❡q✉ê♥❝✐❛ ❞❛s ❞❡r✐✈❛❞❛s✳

❚❡♦r❡♠❛ ✶✳✸✳✷ ✭❉❡r✐✈❛çã♦ ❚❡r♠♦ ❛ ❚❡r♠♦✮ ❙❡❥❛ U ⊂ Rd ✉♠ ❛❜❡rt♦ ❝♦♥❡①♦✳ ❙❡ ❛ s❡q✉ê♥❝✐❛ ❞❡ ❛♣❧✐❝❛çõ❡s ❞✐❢❡r❡♥❝✐á✈❡✐s fk : U → Rn ❝♦♥✈❡r❣❡ ♥✉♠ ♣♦♥t♦ c ∈ U ❡ ❛ s❡q✉ê♥❝✐❛ ❞❛s ❞❡r✐✈❛❞❛s f′

k :U → L(Rd;Rn) ❝♦♥✈❡r❣❡ ❞❡ ♠♦❞♦ ❧♦❝❛❧♠❡♥t❡ ✉♥✐❢♦r♠❡ ♣❛r❛ ✉♠❛ ❛♣❧✐❝❛çã♦ g : U → L(Rd;Rn)✱ ❡♥tã♦ (f

k)k ❝♦♥✈❡r❣❡ ❞❡ ♠♦❞♦ ❧♦❝❛❧♠❡♥t❡ ✉♥✐❢♦r♠❡ ♣❛r❛ ✉♠❛ ❛♣❧✐❝❛çã♦ f :U →Rn✱ ❛ q✉❛❧ é ❞✐❢❡r❡♥❝✐á✈❡❧✱ ❝♦♠ f′ =g

❚❛♠❜é♠ r❡❧❛❝✐♦♥❛❞♦ ❛ ❝♦♥✈❡r❣ê♥❝✐❛ ❞❡ s❡q✉ê♥❝✐❛ ❞❡ ❢✉♥çõ❡s t❡♠♦s ♦s✿

❚❡♦r❡♠❛ ✶✳✸✳✸ ✭❚❡♦r❡♠❛ ❞❡ ❆r③❡❧á✮ ❙❡❥❛♠ ✭❳✱❞✮ ✉♠ ❡s♣❛ç♦ ♠étr✐❝♦ ❝♦♠♣❛❝t♦ ❡ F

✉♠❛ ❢❛♠í❧✐❛ ❡q✉✐❝♦♥tí♥✉❛ ❞❡ ❢✉♥çõ❡s ϕ:X →R✳ ❙❡ F é ✉♥✐❢♦r♠❡♠❡♥t❡ ❧✐♠✐t❛❞❛✱ ❡♥tã♦

t♦❞❛ s❡q✉ê♥❝✐❛ (ϕn)n∈N ❞❡ ❡❧❡♠❡♥t♦s ❞❡ F t❡♠ ✉♠❛ s✉❜s❡q✉ê♥❝✐❛ (ϕnk)nk∈N ✉♥✐❢♦r♠❡✲

(18)

❈❛♣ít✉❧♦ ✶✳ Pr❡❧✐♠✐♥❛r❡s ✶✺

❚❡♦r❡♠❛ ✶✳✸✳✹ ❙❡❥❛ (ϕn)n∈N ✉♠❛ s❡q✉ê♥❝✐❛ ❡q✉✐❝♦♥tí♥✉❛ ❡ ✉♥✐❢♦r♠❡♠❡♥t❡ ❧✐♠✐t❛❞❛ ❞❡

❢✉♥çõ❡s r❡❛✐s ❡ ❝♦♥tí♥✉❛s ♥✉♠ ❡s♣❛ç♦ ♠étr✐❝♦ ❝♦♠♣❛❝t♦ X✳ ❙✉♣♦♥❤❛♠♦s q✉❡ t♦❞❛ ❛

s✉❜s❡q✉ê♥❝✐❛ ✉♥✐❢♦r♠❡♠❡♥t❡ ❝♦♥✈❡r❣❡♥t❡ ❞❡st❛ s❡q✉ê♥❝✐❛ t❡♠ ♦ ♠❡s♠♦ ❧✐♠✐t❡ ϕ✱ ❡♥tã♦

(ϕn)n∈N é ✉♥✐❢♦r♠❡♠❡♥t❡ ❝♦♥✈❡r❣❡♥t❡ ♣❛r❛ ϕ✳

❖ ♣ró①✐♠♦ r❡s✉❧t❛❞♦ ❛♣r❡s❡♥t❛ ✉♠❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❡ ✐♥t❡r♣♦❧❛çã♦ q✉❡ é ✉♠ ❝❛s♦ ♣❛r✲ t✐❝✉❧❛r ❞❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❡ ●❛❣❧✐❛r❞♦✲◆✐r❡♥❜❡r❣✳

❚❡♦r❡♠❛ ✶✳✸✳✺ ❙❡v ∈Ck(R) t❡♠ t♦❞❛s ❛s ❞❡r✐✈❛❞❛s ❧✐♠✐t❛❞❛s✱ ❡♥tã♦

kv(j)k

∞≤2

j(k−j) 2 kv(k)k

j k

∞kvkk−kj

♣❛r❛ t♦❞♦0< j < k✳

❯♠ r❡s✉❧t❛❞♦ ♠❛✐s ❝♦♠✉♠ ❡♠ ❧✐✈r♦s q✉❡ tr❛t❛ ❞❡ ❡q✉❛çõ❡s ❞✐❢❡r❡♥❝✐❛s ♠❛s q✉❡ t❛♠❜é♠ ❝♦❧♦❝❛♠♦s ❛q✉✐ é✿

▲❡♠❛ ✶✳✸✳✶ ✭▲❡♠❛ ❞❡ ●r♦♥✇❛❧❧✮ ❙❡ u ❡ v sã♦ ❢✉♥çõ❡s ❝♦♥tí♥✉❛s ♥ã♦ ♥❡❣❛t✐✈❛s ❡♠

[a, b] ❡ t❛✐s q✉❡ ♣❛r❛ ❛❧❣✉♠ r ≥0 s❛t✐s❢❛③❡♠

u(t)≤r+

Z t

a

v(s)u(s)ds, ∀t∈[a, b],

❡♥tã♦

u(t)≤rexp(

Z t

a

v(s)ds), ∀t∈[a, b].

❈♦❧♦❝❛♠♦s ❛✐♥❞❛ ❛q✉✐ ♦✿

❚❡♦r❡♠❛ ✶✳✸✳✻ ✭❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❨♦✉♥❣✮ ❙✉♣♦♥❤❛1≤p, q, r≤ ∞❡ q✉❡p−1+q−1 =

r−1+ 1✳ ❙❡ f Lp g Lq✱ ❡♥tã♦ fg Lr kf gk

Lr ≤ kfkLpkgkLq✳

✶✳✹ ❍✐♣❡r❜♦❧✐❝✐❞❛❞❡ ♣❛r❛ ❙✐st❡♠❛s ▲✐♥❡❛r❡s ❞❡ ❊q✉❛✲

çõ❡s ❉✐❢❡r❡♥❝✐❛✐s ❞♦ P❧❛♥♦

❉❡✜♥✐çã♦ ✶✳✹✳✶ ❯♠ s✐st❡♠❛ ❞❡ ♣r✐♠❡✐r❛ ♦r❞❡♠ é ✉♠ ♦♣❡r❛❞♦r ❞❛ ❢♦r♠❛

L=S(t, x)∂t+A(t, x)∂x+B(t, x),

♦♥❞❡ S, A ❡ B sã♦ ♠❛tr✐③❡s C∞ N ×N

❉❡✜♥✐çã♦ ✶✳✹✳✷ ✭❍✐♣❡r❜♦❧✐❝✐❞❛❞❡✮ ❖ s✐st❡♠❛ Lé ❤✐♣❡r❜ó❧✐❝♦ s❡ t♦❞♦s ♦s ❛✉t♦✈❛❧♦r❡s✱ λi✱ ❞❡ S−1A sã♦ r❡❛✐s✳ ❊st❡s ❛✉t♦✈❛❧♦r❡s sã♦ ❝❤❛♠❛❞♦s ❞❡ ✈❡❧♦❝✐❞❛❞❡s ❝❛r❛❝t❡ríst✐❝❛s ❞♦ ♦♣❡r❛❞♦r L✳ ❙❡ t♦❞♦s ♦s ❛✉t♦✈❛❧♦r❡s sã♦ r❡❛✐s ❡ ❞✐st✐♥t♦s ♦ s✐st❡♠❛ é ❞✐t♦ ❡str✐t❛♠❡♥t❡

❤✐♣❡r❜ó❧✐❝♦✳

(19)

❈❛♣ít✉❧♦ ✶✳ Pr❡❧✐♠✐♥❛r❡s ✶✻

❉❡✜♥✐çã♦ ✶✳✹✳✹ ❯♠ ❞♦♠í♥✐♦ ❢❡❝❤❛❞♦ D⊂[0,∞)×R ❝♦♠ ❜❛s❡

ω =D∩ {t = 0}

é ✉♠ ❞♦♠í♥✐♦ ❞❡ ❞❡t❡r♠✐♥❛çã♦ ❞❡ω ♣❛r❛ ✉♠ ♦♣❡r❛❞♦rLs❡ ♣❛r❛ t♦❞♦ ♣♦♥t♦m= (t0, x0)∈

D✱ ❡ t♦❞♦i✱ ❛ ❝✉r✈❛ ✐✲❝❛r❛❝t❡ríst✐❝❛ ♣❛r❛ trás ✭✐st♦ é t≤t0✮ q✉❡ s❛✐ ❞❡ m✱ ♣❡r♠❛♥❡❝❡ ❡♠

D ❛té ❡♥❝♦♥tr❛r ω✳

❚❡♦r❡♠❛ ✶✳✹✳✶ ❙❡❥❛D✉♠ ❞♦♠í♥✐♦ ❞❡ ❞❡t❡r♠✐♥❛çã♦ ❝♦♠♣❛❝t♦ ❝♦♠ ❜❛s❡ω♥♦ ❡✐①♦x♣❛r❛

✉♠ s✐st❡♠❛ ❞❡ ♣r✐♠❡✐r❛ ♦r❞❡♠ ❡str✐t❛♠❡♥t❡ ❤✐♣❡r❜ó❧✐❝♦ L✳ ❙❡❥❛ Dt = {x : (t, x) ∈ D}✳ ❊♥tã♦ ❡①✐st❡ ❝♦♥st❛♥t❡ C t❛❧ q✉❡✱ ♣❛r❛ q✉❛❧q✉❡r U ∈C( ¯D)✱ ✈❛❧❡

max

0≤s≤tkU(s,·)kL ∞(D

s)≤C

kU(0,·)kL∞(ω)+

Z t

0

k(LU)(s,·)kL∞(D

s)ds

.

(20)

❈❛♣ít✉❧♦ ✷

❖ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② q✉❛s❡✲❧✐♥❡❛r é

❜❡♠ ♣♦st♦ ❡♠

C

ρ

❱❛♠♦s ❡st✉❞❛r ♦ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② ♣❛r❛ ♦ s✐st❡♠❛

∂tu+a(u)∂xu= 0, ✭✷✳✵✳✶✮ ♦♥❞❡u= (u1, . . . , uN) ❡a(u) = (ajk(u))Nj,k=1 é ✉♠❛ ♠❛tr✐③ r❡❛❧N×N ❝♦♠ ❡♥tr❛❞❛s C∞✱ t❛❧ q✉❡ a(0) t❡♠ t♦❞♦s ♦s ❛✉t♦✈❛❧♦r❡s r❡❛✐s ❡ ❞✐st✐♥t♦s✱ ♦✉ s❡❥❛✱ ♦ s✐st❡♠❛ é ❡str✐t❛♠❡♥t❡

❤✐♣❡r❜ó❧✐❝♦✳ ❉❡st❡ ♠♦❞♦ ♣❛r❛u❡♠ ✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❞♦ ③❡r♦ ❛ ♠❛tr✐③a(u)t❡♠ ❛✉t♦✈❛❧♦r❡s

r❡❛✐s ❡ ❞✐st✐♥t♦s ❞❡♥♦t❛❞♦s ♣♦r

λ1(u)< . . . < λN(u) ✭✷✳✵✳✷✮

❡ ♦s ❝♦rr❡s♣♦♥❞❡♥t❡s ❛✉t♦✈❡t♦r❡sr1(u), . . . , rN(u)❢♦r♠❛♠ ✉♠❛ ❜❛s❡ ✉♥✐tár✐❛ ❞❡♣❡♥❞❡♥❞♦ s✉❛✈❡♠❡♥t❡ ❞❡ u✳

❉❛❞♦ ✉0 ∈ Cρ(R) ❝♦♠ k✉0k∞ s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦✱ ρ > 1✱ ✈❛♠♦s ♠♦str❛r q✉❡

❡①✐st❡ ú♥✐❝❛ u∈Cρ([0, T]×RN)s♦❧✉çã♦ ❞♦ ♣r♦❜❧❡♠❛

∂tu+a(u)∂xu = 0

u(0, x) = ✉0(x) ✭✷✳✵✳✸✮ ❛❧é♠ ❞✐st♦✱ ♠♦str❛r❡♠♦s q✉❡ us❛t✐s❢❛③ ❛ ❡st✐♠❛t✐✈❛ kukCρ ≤Cku0kCρ✳

❆♥t❡s ❞❡ ♣❛ss❛r♠♦s ❛ ❞❡♠♦♥str❛çã♦ ❞♦s r❡s✉❧t❛❞♦s✱ ❛♣r❡s❡♥t❛♠♦s três ❡t❛♣❛s ❜❛s❡❛❞❛s ❡♠ ✐❞❡✐❛s ✉t✐❧✐③❛❞❛s ❡♠ ❬✹❪ ♣❛r❛ ❞❡♠♦♥str❛r ♦ ❚❡♦r❡♠❛ ✵✳✵✳✶✳

❊t❛♣❛ ✶✳ Pr♦❝❡ss♦ ■t❡r❛t✐✈♦✳ ❱❛♠♦s s✉♣♦r q✉❡ ♦ ❞❛❞♦ ✐♥✐❝✐❛❧ ✉0 éC∞✱ t❡♠ t♦❞❛s ❛s ❞❡r✐✈❛❞❛s ❧✐♠✐t❛❞❛s ❡ k✉0k∞ é s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦✳ ❙❡❥❛ (uν)ν≥−1 ❛ s❡q✉ê♥❝✐❛ ❞❡✜♥✐❞❛ ❞❛ s❡❣✉✐♥t❡ ❢♦r♠❛

u−1(t, x) = u0(t, x) =✉0(x) ✭✷✳✵✳✹✮ ❡ ♣❛r❛ν ≥1 ❞❡✜♥✐♠♦s uν ❝♦♠♦ s❡♥❞♦ ❛ s♦❧✉çã♦ ❞♦ ♣r♦❜❧❡♠❛

∂tuν +a(uν−1)∂xuν = 0

uν(0, x) = ✉0(x). ✭✷✳✵✳✺✮ ❆ss✉♠✐♥❞♦ q✉❡ kuν−1k∞ é s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦ ❡s❝r❡✈❡♠♦s

uν(t, x) = N

X

i=1

(21)

❈❛♣ít✉❧♦ ✷✳ ❖ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② q✉❛s❡✲❧✐♥❡❛r é ❜❡♠ ♣♦st♦ ❡♠ Cρ ✶✽

∂k

xuν(t, x) =wνk(t, x) = N

X

i=1

wνki(t, x)ri(uν−1(t, x)). ✭✷✳✵✳✼✮

❆ ♥❡❝❡ss✐❞❛❞❡ ❞❡ s✉♣♦r kuν−1k∞ s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦ é ♣❛r❛ ❣❛r❛♥t✐r ❛ ❡①✐stê♥❝✐❛ ❞❛

❜❛s❡ ❞❡ ❛✉t♦✈❡t♦r❡s {r1(uν−1), . . . , rN(uν−1)}✳ ❈♦♠♦ ku−1k∞ = ku0k∞ = k✉0k∞ é ❝❧❛r♦ q✉❡ s❡k✉0k∞ é ♣❡q✉❡♥♦ ❡s❝r❡✈❡r ✭✷✳✵✳✻✮ ❡ ✭✷✳✵✳✼✮ t❡♠ s❡♥t✐❞♦ ♣❛r❛ν = 0,1✳ ▼❛✐s ❛❞✐❛♥t❡✱ ♠♦str❛r❡♠♦s✱ ✈✐❛ ✐♥❞✉çã♦ ❡♠ ν✱ q✉❡ s❡ ❛ ♥♦r♠❛ L∞ ❞♦ ❞❛❞♦ ✐♥✐❝✐❛❧ é ♣❡q✉❡♥❛✱ ❡♥tã♦

r❡str✐♥❣✐♥❞♦t❛ ✉♠ ❞❡t❡r♠✐♥❛❞♦ ✐♥t❡r✈❛❧♦ [0, T]✱ ❛ ♥♦r♠❛L∞([0, T]×R)❞❡ t♦❞♦ ♦ t❡r♠♦

❞❛ s❡q✉ê♥❝✐❛(uν)ν≥−1 ♣❡r♠❛♥❡❝❡ ♣❡q✉❡♥❛✱ ❞❡ ❢❛t♦ ❝♦♠♣❛rá✈❡❧ ❛k✉0k∞✳ ❆ss✐♠ é ❛❝❡✐tá✈❡❧ ❛ss✉♠✐r♠♦s q✉❡kuν−1k∞ é s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦ ❡ ❡s❝r❡✈❡r ✭✷✳✵✳✻✮ ❡ ✭✷✳✵✳✼✮✳

❯s❛♥❞♦ ❛ ❞❡❝♦♠♣♦s✐çã♦ ❞❡ uν ❞❛❞❛ ❡♠ ✭✷✳✵✳✻✮ ❡ q✉❡ a(uν−1)rj(uν−1) =

λj(uν−1)rj(uν−1) ♦❜t❡♠♦s✱

a(uν−1)∂xuν = N

X

i=1

∂xuνiλi(uν−1)ri(uν−1) + N

X

i=1

uνia(uν−1)∂x(ri(uν−1))

∂tuν = N

X

i=1

∂tuνiri(uν−1) + N

X

i=1

uνi∂t(ri(uν−1)).

❈♦♠♦∂tuν +a(uν−1)∂xuν = 0✱ s❡❣✉❡ s♦♠❛♥❞♦ ❛s ✐❣✉❛❧❞❛❞❡s ❛❝✐♠❛ q✉❡ N

X

i=1

(∂tuνi+λi(uν−1)∂xuνi)ri(uν−1) + N

X

i=1

uνi

h

a(uν−1)∂x(ri(uν−1)) +∂t(ri(uν−1))

i

= 0,

✐st♦ é✱ N

X

i=1

(∂tuνi +λi(uν−1)∂xuνi)ri(uν−1)

=−

N

X

i=1

uνi

h

a(uν−1)∂x(ri(uν−1)) +∂t(ri(uν−1))

i

. ✭✷✳✵✳✽✮

❖❧❤❡♠♦s ❛❣♦r❛ ♣❛r❛ ♦ t❡r♠♦ ❡♥tr❡ ❝♦❧❝❤❡t❡s ♥♦ ❧❛❞♦ ❞✐r❡✐t♦ ❞❛ ✐❣✉❛❧❞❛❞❡ ❛❝✐♠❛✳ ❚❡♠♦s

h

a(uν−1)∂x(ri(uν−1)) +∂t(ri(uν−1))

i

=a(uν−1) (ri′(uν−1)∂xuν−1) +r′i(uν−1)∂tuν−1,

❝♦♠♦uν−1 s❛t✐s❢❛③ ❛ ❡q✉❛çã♦ ❡♠ ✭✷✳✵✳✺✮✱ s❡❣✉❡ q✉❡ ∂tuν−1 =−a(uν−2)∂xuν−1✱ ❛ss✐♠

h

a(uν−1)∂x(ri(uν−1)) +∂t(ri(uν−1))

i

=a(uν−1) (r′i(uν−1)∂xuν−1)

−r′i(uν−1) (a(uν−2)∂xuν−1), s❡❣✉❡✱ ❛❣♦r❛✱ ✉t✐❧✐③❛♥❞♦ ✭✷✳✵✳✼✮ q✉❡

h

a(uν−1)∂x(ri(uν−1)) +∂t(ri(uν−1))

i

=

N

X

l=1

(22)

❈❛♣ít✉❧♦ ✷✳ ❖ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② q✉❛s❡✲❧✐♥❡❛r é ❜❡♠ ♣♦st♦ ❡♠ Cρ ✶✾

s✉❜st✐t✉✐♥❞♦ ✐st♦ ❡♠ ✭✷✳✵✳✽✮ ♦❜t❡♠♦s

N

X

i=1

(∂tuνi+λi(uν−1)∂xuνi)ri(uν−1) =

N

X

i,l=1

uνiw(ν−1)1l{a(uν−1) [r′i(uν−1)rl(uν−2)]−ri′(uν−1) [a(uν−2)rl(uν−2)]}.

◆♦ ❧❛❞♦ ❡sq✉❡r❞♦ ❞❛ ✐❣✉❛❧❞❛❞❡ ❛❝✐♠❛✱ ❛♣❛r❡❝❡✱ ❡①♣❧✐❝✐t❛♠❡♥t❡✱ ❛s ❝♦♦r❞❡♥❛❞❛s ❞♦ ✈❡t♦r ❡s❝r✐t♦ ♥❛ ❜❛s❡ {r1(uν−1), . . . , rN(uν−1)}✳ P❛r❛ t✐r❛r♠♦s ✈❛♥t❛❣❡♠ ❞✐st♦✱ ✈❛♠♦s ❡s❝r❡✈❡r t❛♠❜é♠ ♥❡st❛ ❜❛s❡ ♦ ❧❛❞♦ ❞✐r❡✐t♦ ❞❛ r❡❢❡r✐❞❛ ✐❣✉❛❧❞❛❞❡✱ ♠❛✐s ♣r❡❝✐s❛♠❡♥t❡✱ ♣❛r❛ ❝❛❞❛

i, j ∈ {1, . . . , N}❡s❝r❡✈❡♠♦s

− {a(uν−1) [ri′(uν−1)rl(uν−2)]−r′i(uν−1) [a(uν−2)rl(uν−2)]}= N

X

j=1

Φilj(uν−1, uν−2)rj(uν−1),

❛ss✐♠ t❡♠♦s

N

X

i=1

(∂tuνi+λi(uν−1)∂xuνi)ri(uν−1) = N

X

i,l,j=1

uνiw(ν−1)1lΦilj(uν−1, uν−2)rj(uν−1),

❞❡ ♦♥❞❡ s❡❣✉❡ q✉❡

∂tuνj +λj(uν−1)∂xuνj = N

X

i,l=1

uνiw(ν−1)1lΦilj(uν−1, uν−2).

❈♦♥s✐❞❡r❛♥❞♦ ♦ ♦♣❡r❛❞♦r ❞❡ ♦r❞❡♠ ✉♠

Lνj−1v

.

=∂tv+λj(uν−1)∂xv, ✭✷✳✵✳✾✮

♣♦❞❡♠♦s r❡❡s❝r❡✈❡r ❛ ú❧t✐♠❛ ✐❣✉❛❧❞❛❞❡ ❝♦♠♦

Lνj−1uνj = N

X

i,l=1

uνiw(ν−1)1lΦilj(uν−1, uν−2). ✭✷✳✵✳✶✵✮

❊t❛♣❛ ✷✳ Pr♦❝❡ss♦ ✐t❡r❛t✐✈♦ ♣❛r❛ ❞❡r✐✈❛❞❛ ❞❡ ♦r❞❡♠ ✉♠✳ ◗✉❡r❡♠♦s ❛❣♦r❛ ♦❜t❡r ✉♠❛ ✐❣✉❛❧❞❛❞❡ s✐♠✐❧❛r ❛ ✭✷✳✵✳✶✵✮ ❛ q✉❛❧ ❡♥✈♦❧✈❛ ❛s ❢✉♥çõ❡s ❝♦♦r❞❡♥❛❞❛s wν1j ❞❡

∂xuν✳ P❛r❛ ✐st♦✱ ✐♥✐❝✐❛♠♦s ❞❡r✐✈❛♥❞♦ ❡♠ r❡❧❛çã♦ ❛ x ❛ ♣r✐♠❡✐r❛ ✐❣✉❛❧❞❛❞❡ ❡♠ ✭✷✳✵✳✺✮✱ ❢❛③❡♥❞♦ ✐st♦ ♦❜t❡♠♦s

∂t∂xuν +a(uν−1)∂x∂xuν =−(a′(uν−1)∂xuν−1)∂xuν, ✐st♦ é✱ ✉t✐❧✐③❛♥❞♦ ❛ ♥♦t❛çã♦ ✐♥tr♦❞✉③✐❞❛ ❡♠ ✭✷✳✵✳✼✮✱

∂twν1+a(uν−1)∂xwν1 =− a′(uν−1)w(ν−1)1

wν1. ✭✷✳✵✳✶✶✮ ❯s❛♥❞♦ ❛ ❞❡❝♦♠♣♦s✐çã♦ ❞❡ wν1 ❡♠ t❡r♠♦s ❞♦s ❛✉t♦✈❡t♦r❡s✱ ❞❛❞❛ ❡♠ ✭✷✳✵✳✼✮✱ ❡ q✉❡

(23)

❈❛♣ít✉❧♦ ✷✳ ❖ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② q✉❛s❡✲❧✐♥❡❛r é ❜❡♠ ♣♦st♦ ❡♠ Cρ ✷✵

∂twν1+a(uν−1)∂xwν1 =∂t N

X

i=1

wν1iri(uν−1)

!

+a(uν−1)∂x N

X

i=1

wν1iri(uν−1)

!

=

N

X

i=1

∂twν1iri(uν−1) +wν1iri′(uν−1)

−a(uν−2)w(ν−1)1

+

N

X

i=1

∂xwν1ia(uν−1)ri(uν−1) +wν1ia(uν−1)

r′

i(uν−1)w(ν−1)1

=

N

X

i=1

[∂twν1i+λi(uν−1)∂xwν1i]ri(uν−1)

+

N

X

i,l=1

wν1iw(ν−1)1l{a(uν−1) [r′i(uν−1)rl(uν−2)]−r′i(uν−1) [a(uν−2)rl(uν−2)]},

✐st♦ é✱

∂twν1+a(uν−1)∂xwν1 = N

X

i=1

[∂twν1i+λi(uν−1)∂xwν1i]ri(uν−1)

+

N

X

i,l=1

wν1iw(ν−1)1l{a(uν−1) [r′i(uν−1)rl(uν−2)]−ri′(uν−1) [a(uν−2)rl(uν−2)]}. ✭✷✳✵✳✶✷✮

❚❡♠♦s t❛♠❜é♠✱ ✉s❛♥❞♦ ❛s ❞❡❝♦♠♣♦s✐çõ❡s ❞❡ w(ν−1)1 ❡ wν1✱ q✉❡

a′(uν−1)w(ν−1)1

wν1 = N

X

i,l=1

wν1iw(ν−1)1l[a′(uν−1)rl(uν−2)]ri(uν−1). ✭✷✳✵✳✶✸✮

❉❡ ✭✷✳✵✳✶✶✮✱ ✭✷✳✵✳✶✷✮ ❡ ✭✷✳✵✳✶✸✮ s❡❣✉❡ q✉❡

N

X

i=1

(∂twν1i+λi(uν−1)wν1i)ri(uν−1) =− N

X

i,l=1

wν1iw(ν−1)1l{a(uν−1) [ri′(uν−1)rl(uν−2)]

−r′

i(uν−1) [a(uν−2)rl(uν−2)] + [a′(uν−1)rl(uν−2)]ri(uν−1)}. ❉❡❝♦♠♣♦♥❞♦ ❛❣♦r❛ ❝❛❞❛ ✈❡t♦r

− {a(uν−1) [ri′(uν−1)rl(uν−2)]−r′i(uν−1) [a(uν−2)rl(uν−2)] + [a′(uν−1)rl(uν−2)]ri(uν−1)}

❡♠ t❡r♠♦s ❞❛ ❜❛s❡ {r1(uν−1), . . . , rN(uν−1)} ♦❜t❡♠♦s ♦ ❛♥á❧♦❣♦ ❛ ✭✷✳✵✳✶✵✮ ❞❡s❡❥❛❞♦✱ ♠❛✐s ♣r❡❝✐s❛♠❡♥t❡✱

Lνj−1wν1j = N

X

i,l=1

wν1iw(ν−1)1iΦ˜ilj(uν−1, uν−2), ✭✷✳✵✳✶✹✮

♦♥❞❡Lν−1

j é ❞❛❞♦ ❡♠ ✭✷✳✵✳✾✮✳

(24)

❈❛♣ít✉❧♦ ✷✳ ❖ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② q✉❛s❡✲❧✐♥❡❛r é ❜❡♠ ♣♦st♦ ❡♠ Cρ ✷✶

M0ν(t)= sup.

i,x

|uνi(t, x)|

❡ ♣❛r❛k ≥1

Mkν(t)

.

= sup

i,x

|wνki(t, x)|.

❖❜s❡r✈❛çã♦ ✷✳✵✳✶ ➱ ✈á❧✐❞♦ ❛q✉✐ ❢❛③❡r♠♦s ❛❧❣✉♥s ❝♦♠❡♥tár✐♦s ❛ r❡s♣❡✐t♦ ❞❡Mν

k✳ ❆❜❛✐①♦✱ ♣❛r❛ ✉♠ ✈❡t♦r u ∈ R✱ [u]β ❞❡♥♦t❛rá ❛ ♠❛tr✐③ ❞❛s ❝♦♦r❞❡♥❛❞❛s ❞❡ u ♥❛ ❜❛s❡ ❝❛♥ô♥✐❝❛ β ={e1, . . . , eN} ❡ [u]βv ❛ ♠❛tr✐③ ❞❛s ❝♦♦r❞❡♥❛❞❛s ❞❡ u ♥❛ ❜❛s❡ βv = {r1(v), . . . , rN(v)}✱ ❝♦♥st✐t✉í❞❛ ♣❡❧♦s ❛✉t♦✈❡t♦r❡s ❞❡ a(v)✳ ❚❡♠♦s

[u]β =P(v) [u]βv ✭✷✳✵✳✶✺✮

♦♥❞❡ P(v) é ♠❛tr✐③ ♠✉❞❛♥ç❛ ❞❡ ❜❛s❡ ❛ q✉❛❧ t❡♠ ❝♦♠♦ ✈❡t♦r❡s ❝♦❧✉♥❛ r1(v), . . . , rN(v)✳ ❙❡ |u|β ❡ |u|βv ❞❡♥♦t❛♠✱ r❡s♣❡❝t✐✈❛♠❡♥t❡✱ ♦ s✉♣r❡♠♦ ❞❛s ❝♦♦r❞❡♥❛❞❛s ❞❡ u ♥❛ ❜❛s❡ β ❡

♥❛ ❜❛s❡ βv✱ ❡♥tã♦ |u|β ❡ |u|βv sã♦ ♥♦r♠❛s ❡♠ R

N✳ ❊s❝r❡✈❡♥❞♦ kP(v)k ♣❛r❛ ❛ ♥♦r♠❛ ❞❛ ♠❛tr✐③ P(v) (s✉♣r❡♠♦ ❞♦ ♠ó❞✉❧♦ ❞❛s ❡♥tr❛❞❛s ❞❡ P(v)) s❡❣✉❡ ❞❡ (2.0.15) q✉❡

|u|β ≤NkP(v)k |u|βv.

❈♦♠♦ P(v) é ✐♥✈❡rtí✈❡❧✱ t❡♠♦s t❛♠❜é♠

[u]βv = (P(v))−1[u]β,

❞❡ ♦♥❞❡ s❡❣✉❡ q✉❡

|u|βv ≤N

(P(v))−1|u|β.

❙❡ r❡str✐♥❣✐r♠♦s v ❛ ✉♠❛ ✈✐③✐♥❤❛♥ç❛ s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥❛ ❞❛ ♦r✐❣❡♠✱ ❡♥tã♦ ❡①✐st❡♠

❝♦♥st❛♥t❡s C0 ❡ C1✱ ✐♥❞❡♣❡♥❞❡♥t❡s ❞❡ v✱ ❞❡ ♠♦❞♦ q✉❡

C0|u|βv ≤ |u|β ≤C1|u|βv.

❆ss✐♠ s❡ ❣❛r❛♥t✐r♠♦s✱ ♣❛r❛ ❛❧❣✉♠ T >0✱ q✉❡ kuνkL∞([0,T]×R) ♣❡r♠❛♥❡❝❡ s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦ ✭✐♥❞❡♣❡♥❞❡♥t❡ ❞❡ ν✮✱ ❡♥tã♦ ❡①✐st❡♠ ❝♦♥st❛♥t❡s C0 ❡ C1 ❞❡ ♠♦❞♦ q✉❡

C0 sup

i=1,...,N

{|uνi|} ≤ |uν| ≤C1 sup i=1,...,N

{|uνi|},

❧♦❣♦

C0M0ν(t)≤ kuν(t,·)k≤C1M0ν(t), ✭✷✳✵✳✶✻✮ ❡✱ ❝❧❛r♦ q✉❡✱ ♣❛r❛ ❛s ♠❡s♠❛s ❝♦♥st❛♥t❡s ✈❛❧❡

C0Mkν(t)≤

∂xkuν(t,·)

∞≤C1M

ν

k(t). ✭✷✳✵✳✶✼✮

✷✳✶ ❖ ❈❛s♦

C

b

◆❡st❛ s❡çã♦ ❛♣r❡s❡♥t❛♠♦s ❛❧❣✉♥s r❡s✉❧t❛❞♦s s✉♣♦♥❞♦ q✉❡ ♦ ❞❛❞♦ ✐♥✐❝✐❛❧ ❡stá ❡♠ C∞

b ✱ ✐st♦ é✱ q✉❡ ♦ ❞❛❞♦ ✐♥✐❝✐❛❧ ❡stá ❡♠C∞ ❡ t❡♠ t♦❞❛s ❛s ❞❡r✐✈❛❞❛s ❧✐♠✐t❛❞❛s✳ ■♥✐❝✐❛♠♦s ♣❡❧♦

(25)

❈❛♣ít✉❧♦ ✷✳ ❖ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② q✉❛s❡✲❧✐♥❡❛r é ❜❡♠ ♣♦st♦ ❡♠ Cρ ✷✷

▲❡♠❛ ✷✳✶✳✶ ❙❡❥❛♠ ✉0 : R→ RN ♣❡rt❡♥❝❡♥t❡ ❛ Cb∞ ❡ (uν)ν≥−1 ❛ s❡q✉ê♥❝✐❛ ❞❡✜♥✐❞❛ ❡♠ ✭✷✳✵✳✹✮ ❡ ✭✷✳✵✳✺✮✳ ❙❡ k✉0k∞ é s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦✱ ❡♥tã♦ ❡①✐st❡♠ ❝♦♥st❛♥t❡s T > 0✱

C0 ❡ C1✱ ✐♥❞❡♣❡♥❞❡♥t❡s ❞❡ ν✱ ♣❛r❛ ❛s q✉❛✐s ✈❛❧❡♠✿

0(t)≤M0ν(0) exp

Z t

0

C0M1ν−1(s)

≤2M0

0(0) ∀ν ≥0, ∀t∈[0, T] ✭✷✳✶✳✶✮ ❡

1(t)≤M1ν(0) exp

Z t

0

C1M1ν−1(s)

≤2M10(0) ∀ν ≥0, ∀t∈[0, T]. ✭✷✳✶✳✷✮

❉❡♠♦♥str❛çã♦✳ ➱ ✐♠❡❞✐❛t♦ ❞❛ ❞❡✜♥✐çã♦ ❞❡ u0 q✉❡ ❛s ❞❡s✐❣✉❛❧❞❛❞❡s ❡♠ ✭✷✳✶✳✶✮ ❡ ✭✷✳✶✳✷✮ ✈❛❧❡♠ ♣❛r❛ ν = 0✳ ❈♦♠♦ ❡st❛♠♦s ❛ss✉♠✐♥❞♦ k✉0k∞ s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦✱ ✜❝❛ ❝❧❛r♦

q✉❡ ✭✷✳✵✳✻✮ ❡ ✭✷✳✵✳✼✮ ❢❛③❡♠ s❡♥t✐❞♦ ♣❛r❛ ν = 1✱ s❡♥❞♦ ❛ss✐♠✱ t❛♥t♦ ✭✷✳✵✳✶✵✮ ❝♦♠♦ ✭✷✳✵✳✶✹✮

sã♦ ✈á❧✐❞❛s✳ ■♥t❡❣r❛♥❞♦ ♦ ❧❛❞♦ ❡sq✉❡r❞♦ ❞❡ ✭✷✳✵✳✶✵✮ ❛♦ ❧♦♥❣♦ ❞❡ ✉♠❛ ❝✉r✈❛ ✐♥t❡❣r❛❧✱

γ(t) = (t, γ2(t))✱ ❞♦ ❝❛♠♣♦ L0j✱ ♦❜t❡♠♦s

Z t

0

L0ju1j(γ(s))ds =

Z t

0

(u1j◦γ)′(s)ds

=u1j(t, γ2(t))−u1j(0, γ2(0)). ✭✷✳✶✳✸✮

❏á ♣❛r❛ ♦ ❧❛❞♦ ❞✐r❡✐t♦ ❞❡ ✭✷✳✵✳✶✵✮ t❡♠♦s

Z t

0 N

X

i,l=1

u1iw01lΦilj(u0, u−1)

!

(γ(s))ds

N

X

i,l=1

Z t

0

|u1i(s, γ2(s))w01l(s, γ2(s))| |Φilj(u0, u−1)γ(s)|ds,

❡st✐♠❛♥❞♦|Φilj(u0, u−1)γ(s)|♣♦r ✉♠❛ ❝♦♥st❛♥t❡C✱ ❞❡ ♠♦❞♦ q✉❡ ♣❛r❛ t❛❧ ❝♦♥st❛♥t❡ ✈❛❧❤❛

sup

i,l,j

sup

v,v˜∈RN

|v|,|˜v|≤2M00 (0)

|Φilj(v,v˜)| ≤C, ✭✷✳✶✳✹✮

♣♦❞❡♠♦s ❡s❝r❡✈❡r

Z t

0 N

X

i,l=1

u1iw01lΦilj(u0, u−1)

!

(γ(s))ds

≤C0

Z t

0

M10(s)M01(s)ds, ✭✷✳✶✳✺✮

♣♦✐s✱|u1i(s, γ2(s))| ≤M01(s) ❡ |w01l(s, γ2(s))| ≤M11(s)✳ ❉❡ ✭✷✳✶✳✸✮ ❡ ✭✷✳✶✳✺✮ s❡❣✉❡ q✉❡

u1j(t, γ2(t))≤M01(0) +C0

Z t

0

M10(s)M01(s)ds. ✭✷✳✶✳✻✮

❆♥❛❧♦❣❛♠❡♥t❡✱ ♦❧❤❛♥❞♦ ♣❛r❛ ✲✭✷✳✵✳✶✵✮✱ ♦❜t❡♠♦s

−u1j(t, γ2(t))≤M01(0) +C0

Z t

0

M0

1(s)M01(s)ds.

(26)

❈❛♣ít✉❧♦ ✷✳ ❖ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② q✉❛s❡✲❧✐♥❡❛r é ❜❡♠ ♣♦st♦ ❡♠ Cρ ✷✸

|u1j(t, γ2(t))| ≤M01(0) +C0

Z t

0

M10(s)M01(s)ds.

❈♦♠♦ ♦ ❧❛❞♦ ❞✐r❡✐t♦ ❞❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❛❝✐♠❛ é ✐♥❞❡♣❡♥❞❡♥t❡ ❞❡ j ❡ ❞❛ ❝✉r✈❛ ✐♥t❡❣r❛❧ γ✱

♦❜t❡♠♦s t♦♠❛♥❞♦ ♦ s✉♣r❡♠♦ ❡♠γ ❡ j q✉❡

M01(t)≤M01(0) +C0

Z t

0

M10(s)M01(s)ds,

❞♦ ▲❡♠❛ ❞❡ ●r♦♥✇❛❧❧✱ s❡❣✉❡ q✉❡

M01(t)≤M01(0) exp

Z t

0

C0M10(s)ds

. ✭✷✳✶✳✼✮

❆❣♦r❛✱ ✉s❛♥❞♦ ✭✷✳✵✳✶✹✮ ❛♦ ✐♥✈és ❞❡ ✭✷✳✵✳✶✵✮✱ ✈❛♠♦s ♦❜t❡r✱ ♣r♦❝❡❞❡♥❞♦ ❞❡ ♠♦❞♦ ✐♥t❡✐✲ r❛♠❡♥t❡ ❛♥á❧♦❣♦ ❛♦ ✉s❛❞♦ ♣❛r❛ ♣❛rt✐r ❞❡ ✭✷✳✵✳✶✵✮ ❡ ♦❜t❡r ✭✷✳✶✳✼✮✱ q✉❡

M11(t)≤M11(0) exp

Z t

0

C1M10(s)ds

. ✭✷✳✶✳✽✮

➱ ♣❡rt✐♥❡♥t❡ ♦❜s❡r✈❛r q✉❡ ❛ ❞✐❢❡r❡♥ç❛ ❡♥tr❡C0 ❡C1 ✈❡♠ ❞❡ q✉❡✱ ♣❛r❛ ♦❜t❡r ✭✷✳✶✳✼✮ ✉s❛♠♦s ✭✷✳✶✳✹✮ ❡ ♣❛r❛ ♦❜t❡r ✭✷✳✶✳✽✮ ✉s❛♠♦s ♦ ❛♥á❧♦❣♦ ❛ ✭✷✳✶✳✹✮

sup

i,l,j

sup

v,v˜∈RN

|v|,|˜v|≤2M00 (0)

|Φ˜ilj(v,v˜)| ≤C. ✭✷✳✶✳✾✮

❖ ✜♥❛❧ ❞❛ ❞❡♠♦♥str❛çã♦ ❝♦♥s✐st❡ ❛❣♦r❛✱ ❜❛s✐❝❛♠❡♥t❡✱ ❡♠ ❡s❝♦❧❤❡r T✳ ❉❡ ❢❛t♦✱ s❡

✜①❛r♠♦sT > 0❞❡ ♠♦❞♦ q✉❡

exp(T max{C0, C1}2M10(0)) <2,

❡♥tã♦ ❛s ❞❡s✐❣✉❛❧❞❛❞❡s ❡♠ ✭✷✳✶✳✶✮ ❡ ✭✷✳✶✳✷✮ s❡❣✉❡♠ ♣❛r❛ν = 1 ❞❡ ✭✷✳✶✳✼✮ ❡ ✭✷✳✶✳✽✮✱ ♣♦✐s✱

M0

1(t) =M10(0) ∀t∈R✳ ❆❣♦r❛ s❡ s✉♣♦r♠♦s ❛s ❞❡s✐❣✉❛❧❞❛❞❡s ❡♠ ✭✷✳✶✳✶✮ ❡ ✭✷✳✶✳✷✮ ✈á❧✐❞❛s ♣❛r❛ t♦❞♦ 0 ≤ ν0 ≤ ν ❡ t ∈ [0, T]✱ t❡r❡♠♦s✱ ❡♠ ❡s♣❡❝✐❛❧✱ q✉❡ ❛s ♥♦t❛çõ❡s ❡♠ ✭✷✳✵✳✻✮ ❡ ✭✷✳✵✳✼✮ ❢❛③❡♠ s❡♥t✐❞♦ ♣❛r❛ν+ 1✱ ❧♦❣♦ sã♦ ✈á❧✐❞❛s ✭✷✳✵✳✶✵✮ ❡ ✭✷✳✵✳✶✹✮✱ ♣❛r❛ν+ 1✳ ❆ss✐♠✱ ♦s

❝á❧❝✉❧♦s ❛❝✐♠❛ r♦❞❛♠ ❝♦♠ν ❡ν+ 1 ♥♦ ❧✉❣❛r ❞❡ 0 ❡1✳ ❊❢❡t✉❛♥❞♦ t❛✐s ❝á❧❝✉❧♦s✱ ♦❜t❡♠♦s

M0ν+1(t)≤M0ν(0) exp

Z t

0

C0M1ν(s)ds

Mν+1

1 (t)≤M1ν(0) exp

Z t

0

C1M1ν(s)ds

.

❈♦♠♦ ♣❛r❛ν t❡♠♦s Mν

1(s)≤2M10(s) ∀s∈[0, T] ✭❤✐♣ót❡s❡ ❞❡ ✐♥❞✉çã♦✮✱ s❡❣✉❡ ❞❛ ❡s❝♦❧❤❛ ❞❡T q✉❡

Mν+1

0 (t)≤2M0ν(0) ❡

Mν+1

(27)

❈❛♣ít✉❧♦ ✷✳ ❖ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② q✉❛s❡✲❧✐♥❡❛r é ❜❡♠ ♣♦st♦ ❡♠ Cρ ✷✹

❖❜s❡r✈❛çã♦ ✷✳✶✳✶ ❉❛ ❞❡♠♦♥str❛çã♦ ❞♦ ▲❡♠❛ ✷✳✶✳✶ é ❝❧❛r♦ q✉❡ s❡ ✉0 ❡ ✉˜0 sã♦ t❛✐s q✉❡

k✉˜0k≤ k✉0k ❡ k✉˜′0k∞≤ k✉′0k∞✱ ❡♥tã♦ s❡ ♦ ▲❡♠❛ ✷✳✶✳✶ ✈❛❧❡ ♣❛r❛ ✉0 ❡♠ ✉♠ ✐♥t❡r✈❛❧♦

[0, T] ❡ ❝♦♥st❛♥t❡s C0 ❡ C1 ❡❧❡✱ ♦ ❧❡♠❛✱ t❛♠❜é♠ ✈❛❧❡rá ♥♦ ♠❡s♠♦ ✐♥t❡r✈❛❧♦ ❡ ❝♦♠ ❛s ♠❡s♠❛s ❝♦♥st❛♥t❡s ♣❛r❛ ✉˜0✳ ■st♦ é✱ ♦ ✐♥t❡r✈❛❧♦ [0, T] ❡ ❛s ❝♦♥st❛♥t❡s C0 ❡ C1 ❞❡♣❡♥❞❡♠ ❡ss❡♥❝✐❛❧♠❡♥t❡ ❞❛ ♥♦r♠❛ ❞♦ ❞❛❞♦ ✐♥✐❝✐❛❧ ❡ ❞❛ ♥♦r♠❛ ❞❡ s✉❛ ❞❡r✐✈❛❞❛✳

❖ ♣ró①✐♠♦ r❡s✉❧t❛❞♦ r❡❧❛❝✐♦♥❛ ❛ ♥♦r♠❛ ❞❛s ❞❡r✐✈❛❞❛s ❞♦s t❡r♠♦s ❞❛ s❡q✉ê♥❝✐❛(uν)ν≥−1✱ ❞❡✜♥✐❞❛ ❡♠ ✭✷✳✵✳✹✮ ❡ ✭✷✳✵✳✺✮✱ ❝♦♠ ❛ ♥♦r♠❛ ❞❛s ❞❡r✐✈❛❞❛s ❡♠ r❡❧❛çã♦ ❛ ✈❛r✐á✈❡❧x✳

Pr♦♣♦s✐çã♦ ✷✳✶✳✶ ❙❡❥❛(uν)ν≥−1 ❛ s❡q✉ê♥❝✐❛ ❞❡✜♥✐❞❛ ❡♠ ✭✷✳✵✳✹✮ ❡ ✭✷✳✵✳✺✮✳ ❙❡ ❛ s❡q✉ê♥✲ ❝✐❛ (kuνk∞)ν≥−1 é ❧✐♠✐t❛❞❛ ❡ ❡①✐st❡♠ ❝♦♥st❛♥t❡s C1, . . . , Ck ♣♦s✐t✐✈❛s✱ ✐♥❞❡♣❡♥❞❡♥t❡s ❞❡

ν✱ ❞❡ ♠♦❞♦ q✉❡

k∂l

xuνk∞≤Clk✉0(l)k∞ ∀ν ≥0,

❡♥tã♦ ❡①✐st❡♠ ❝♦♥st❛♥t❡s C˜1, . . . ,C˜k ♣♦s✐t✐✈❛s✱ ✐♥❞❡♣❡♥❞❡♥t❡s ❞❡ ν✱ ♣❛r❛ ❛s q✉❛✐s ✈❛❧❡♠

k∂α

uνk∞≤C|˜α|k✉(0|α|)k∞

♣❛r❛ t♦❞♦ ♠✉❧t✐✲í♥❞✐❝❡ α t❛❧ q✉❡ 1≤ |α| ≤k✳

❉❡♠♦♥str❛çã♦✳ ❊st❡ r❡s✉❧t❛❞♦ s❡❣✉❡ ✉t✐❧✐③❛♥❞♦ ♦ ❚❡♦r❡♠❛ ✶✳✸✳✺ ❡ ♦ ❢❛t♦ ❞❡ q✉❡ ❝❛❞❛ uν é s♦❧✉çã♦ ❞❡ ✭✷✳✵✳✺✮✳

Pr♦♣♦s✐çã♦ ✷✳✶✳✷ ❙❡ (uν)ν≥−1 ❡ ✉0 s❛t✐s❢❛③❡♠ ❛s ❝♦♥❞✐çõ❡s ❞♦ ▲❡♠❛ ✷✳✶✳✶✱ ❡♥tã♦ ♣❛r❛ ❝❛❞❛ k ∈N ❡①✐st❡♠ Tk ❡ ❝♦♥st❛♥t❡s ♣♦s✐t✐✈❛s Ck ❡ C˜k ❞❡ ♠♦❞♦ q✉❡ ✈❛❧❡

k(t)≤CkMkν(0) exp(tC˜k) ∀ν≥0 ❡ t∈[0, Tk]. ✭✷✳✶✳✶✵✮ ▲♦❣♦✱ ♣❡❧❛ Pr♦♣♦s✐çã♦ ✷✳✶✳✶✱ ❡①✐st❡♠ ❝♦♥st❛♥t❡s C˜˜0, . . . ,C˜˜k ❞❡ ♠♦❞♦ q✉❡

k∂αu

νk∞≤C|˜˜α|k✉(| α|)

0 k∞

♣❛r❛ t♦❞♦ ♠✉❧t✐✲í♥❞✐❝❡ α t❛❧ q✉❡ 1≤ |α| ≤k✳

❉❡♠♦♥str❛çã♦✳ ❖ ▲❡♠❛ ✷✳✶✳✶ ❣❛r❛♥t❡ q✉❡ ❛ ❡st✐♠❛t✐✈❛ ❡♠ ✭✷✳✶✳✶✵✮ ✈❛❧❡ ♣❛r❛ k = 0,1✳

❙✉♣♦♥❤❛♠♦s ❛❣♦r❛ q✉❡ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❡♠ ✭✷✳✶✳✶✵✮ ✈❛❧❡ ♣❛r❛ t♦❞♦0 ≤ k0 ≤ k−1✱ ❝♦♠

k≥2✳ Pr❡❝✐s❛♠♦s ♠♦str❛r q✉❡ ✭✷✳✶✳✶✵✮ ✈❛❧❡ ♣❛r❛k✳ P❡❧❛ ❞❡✜♥✐çã♦ ❞❛ s❡q✉ê♥❝✐❛(uν)ν≥−1 t❡♠♦s ♣❛r❛ν ≥1

∂tuν +a(uν−1)∂xuν = 0.

❉✐❢❡r❡♥❝✐❛♥❞♦ t❛❧ ✐❣✉❛❧❞❛❞❡k✲✈❡③❡s ❡♠ r❡❧❛çã♦ ❛ x✱ ♦❜t❡♠♦s✱ ✈✐❛ ❢ór♠✉❧❛ ❞❡ ▲❡✐❜♥✐③ ♣❛r❛

❞❡r✐✈❛❞❛ ❞♦ ♣r♦❞✉t♦✱ q✉❡

∂t∂xkuν+a(uν−1)∂x∂xkuν =−k a′(uν−1)∂xuν−1

∂xkuν−∂kx a(uν−1)

∂xuν

k−1

X

m=2

k m

(28)

❈❛♣ít✉❧♦ ✷✳ ❖ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② q✉❛s❡✲❧✐♥❡❛r é ❜❡♠ ♣♦st♦ ❡♠ Cρ ✷✺

♥♦ ❝❛s♦ k = 2 ❛ ú❧t✐♠❛ ♣❛r❝❡❧❛ ❞♦ ❧❛❞♦ ❞✐r❡✐t♦ ✭♦ s♦♠❛tór✐♦✮ ♥ã♦ ❛♣❛r❡❝❡✱ ❡st❛r❡♠♦s

♣♦rt❛♥t♦ ❝♦♥✈❡♥❝✐♦♥❛♥❞♦ q✉❡ P1

m=2(· · ·) = 0✳ ❯t✐❧✐③❛♥❞♦ ❛❣♦r❛ ♦ ❚❡♦r❡♠❛ ✶✳✸✳✶ t❡♠♦s

∂t∂xkuν +a(uν−1)∂x∂xkuν =−k a′(uν−1)∂xuν−1

∂xkuν

−h

k

X

l=1

n(i1, . . . , il)a(l)(uν−1)

∂i1

x uν−1, . . . , ∂xiluν−1

i

∂xuν

k−1

X

m=2

k m

"Xm

τ=1

n(j1, . . . , jτ)a(τ)(uν−1)

∂j1

x uν−1, . . . , ∂xjτuν−1

#

∂xk+1−muν

◆♦t❛♥❞♦ q✉❡ ♣❛r❛l= 1 ❛ ú♥✐❝❛ ♣❛rt✐çã♦ ♣❛r❛k =i1 é ❝♦♠i1 =k ❡ q✉❡ ♥❡st❡ ❝❛s♦ t❡♠♦s

n(i1) = 1✱ ♣♦❞❡♠♦s ❡s❝r❡✈❡♠♦s

∂t∂xkuν +a(uν−1)∂x∂xkuν =−k a′(uν−1)∂xuν−1

∂xkuν − a′(uν−1)∂xkuν−1

∂xuν

−h

k

X

l=2

n(i1, . . . , il)a(l)(uν−1)

∂i1

xuν−1, . . . , ∂xiluν−1

i

∂xuν

k−1

X

m=2

k m

"Xm

τ=1

n(j1, . . . , jτ)a(τ)(uν−1)

∂j1

x uν−1, . . . , ∂xjτuν−1

#

∂xk+1−muν.

❆❣♦r❛✱ ✉t✐❧✐③❛♥❞♦ ❛ ❞❡❝♦♠♣♦s✐çã♦ ❞❡ ∂k

xuν−1 ❡ ∂xkuν ❡♠ t❡r♠♦s ❞♦s ❛✉t♦✈❡t♦r❡s ❞❛❞❛ ❡♠ ✭✷✳✵✳✼✮✱ ♦❜t❡♠♦s ❞❛ ✐❣✉❛❧❞❛❞❡ ❛❝✐♠❛ q✉❡

N

X

i=1

∂twνki+λi(uν−1)∂xwνki

ri(uν−1) =

− N X i=1 wνki h

∂t ri(uν−1)

+a(uν−1)∂x ri(uν−1)

+k a′(u

ν−1)∂xuν−1

ri(uν−1)

i

N

X

i=1

w(ν−1)ki a′(uν−1)ri(uν−2)

∂xuν

−h

k

X

l=2

n(i1, . . . , il)a(l)(uν−1)

∂i1

xuν−1, . . . , ∂xiluν−1

i

∂xuν

k−1

X

m=2

k m

"Xm

τ=1

n(j1, . . . , jτ)a(τ)(uν−1)

∂j1

x uν−1, . . . , ∂xjτuν−1

#

∂kx+1−muν,

✜♥❛❧♠❡♥t❡✱ ❡s❝r❡✈❡♥❞♦

N

X

i=1

w(ν−1)ki a′(uν−1)ri(uν−2)

∂xuν = N

X

i,l=1

w(ν−1)kiwν1l a′(uν−1)ri(uν−2)

rl(uν−1)

Referências

Documentos relacionados

Por fim, destacamos que esta recomendação para o elemento Atividades de Controle tem o potencial de, após verificado êxito de atuação dos controladores adstritos a cada

Vale ressaltar que o PNE guarda relação direta com o Plano de Aceleração do Crescimento (PAC) que tem como objetivo o desenvolvimento econômico e social, além de

O caso de gestão a ser estudado irá discutir sobre as possibilidades de atuação da Pró-Reitoria de Assistência Estudantil e Educação Inclusiva (PROAE) da

Depois de exibido o modelo de distribuição orçamentária utilizado pelo MEC para financiamento das IFES, são discutidas algumas considerações acerca do REUNI para que se

Em 2008 foram iniciadas na Faculdade de Educação Física e Desportos (FAEFID) as obras para a reestruturação de seu espaço físico. Foram investidos 16 milhões

Não obstante a reconhecida necessidade desses serviços, tem-se observado graves falhas na gestão dos contratos de fornecimento de mão de obra terceirizada, bem

intitulado “O Plano de Desenvolvimento da Educação: razões, princípios e programas” (BRASIL, 2007d), o PDE tem a intenção de “ser mais do que a tradução..

No Brasil, a falta de uma fiscalização mais rigorosa é uma das razões que possibilitam que certas empresas utilizem os estágios como forma de dispor de uma mão-de-obra