• Nenhum resultado encontrado

Rev. Bras. Hematol. Hemoter. vol.38 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. Bras. Hematol. Hemoter. vol.38 número4"

Copied!
10
0
0

Texto

(1)

w w w . r b h h . o r g

Revista

Brasileira

de

Hematologia

e

Hemoterapia

Brazilian

Journal

of

Hematology

and

Hemotherapy

Review

article

Structural

diversity

and

biological

importance

of

ABO,

H,

Lewis

and

secretor

histo-blood

group

carbohydrates

Luiz

Carlos

de

Mattos

FaculdadedeMedicinadeSãoJosédoRioPreto(FAMERP),SãoJosédoRioPreto,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30May2016 Accepted21July2016

Availableonline5September2016

Keywords:

Histo-bloodgroups ABOsystem Lewissystem Carbohydrateantigen Glycosyltransferases

a

b

s

t

r

a

c

t

ABO, H,secretor andLewishisto-bloodsystem genescontroltheexpressionofpartof the carbohydraterepertoire presentin areasof thebodyoccupied by microorganisms. Thesecarbohydrates,besideshavinggreatstructuraldiversity,actaspotentialreceptors forpathogenicandnon-pathogenicmicroorganismsinfluencingsusceptibilityand resis-tancetoinfectionandillness.Despitetheknowledgeofsomestructuralvariabilityofthese carbohydrateantigensandtheirpolymorphiclevelsofexpressionintissueandexocrine secretions,littleisknownabouttheirbiologicalimportanceandpotentialapplicationsin medicine. Thisreviewhighlightsthe structuraldiversity,the biologicalimportanceand potentialapplicationsofABO,H,Lewisandsecretorhisto-bloodcarbohydrates.

©2016Associac¸ ˜aoBrasileiradeHematologia,HemoterapiaeTerapiaCelular.Published byElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Therelationshipsbetweenhumansandmicroorganismsthat colonizetheirbodysurface,cavitiesandmucousmembranes beginatbirthandcontinuethroughoutlife.These relation-shipsincludeacontinuumofmutuallybeneficialconditions orotherwise(symbiosis,commensalism)aswellasinjuryto oneoftheparties(parasitism).1Someofthecarbohydrates

expressedbytheepithelialcellsofthebodysurfaceaswell asinthegastrointestinal,respiratoryandgenitourinary sys-temsare closelyinvolvedintheserelationshipsand playa criticalroleinthesymbiosis,commensalismandparasitism continuum.2,3

Correspondingauthorat:LaboratóriodeImunogenética,DepartamentodeBiologiaMolecular,AvenidaBrigadeiroFariaLima,5416,São

JosédoRioPreto,SP,Brazil.

E-mailaddress:luiz.demattos@famerp.br

ABO (ABO, 9q34.1), H (FUT1, 19q13.3), secretor (FUT2, 19q.13.3)andLewis(FUT3:19p13.3)histo-bloodsystemgenes control the expression of part of the carbohydrate reper-toirepresentinareasoccupiedbymicroorganisms.2,4 These

carbohydrates besides havinggreatstructuraldiversity, act as potential receptors for pathogenic and non-pathogenic microorganismsinfluencing susceptibilityandresistanceto infectionandillness.Itisbelievedthatthisstructuraldiversity results from environment pressure and plays an impor-tant role in the symbiosis, commensalism and parasitism continuum.2,5

Evidence supports the proposition that ABO, H, Lewis and secretor histo-blood group carbohydrates are related

http://dx.doi.org/10.1016/j.bjhh.2016.07.005

(2)

tosusceptibilityand resistancetoinfections andinfectious diseases.5–9 Experimental analyzes have clarified the

bio-chemical and molecular basis underlying some of these relationships.10–12Thisreviewhighlightsthestructural

diver-sityandbiologicalimportanceofABO,H,Lewisandsecretor histo-bloodcarbohydrates.

Histo-bloodgroupsystems

Theexpression“histo-bloodsystem” wasfirstproposed for the ABO system.13 Later, it was extended to H,Lewis and

secretorsystems astheir carbohydrates arealso expressed inothertissuesandexocrinesecretions.14Thesehisto-blood

groupsystemshavestrong relationshipsatgenomic, enzy-matic,biochemical,tissueandimmunelevels. Knowingthe structuralvariabilityoftheircarbohydrateantigensallowsus tounderstandtheevolutionaryimportanceandbiologicalrole especiallyintermsofdiseases.2

The International Society for Blood Transfusion (ISBT) WorkingPartyonRedCellImmunogeneticsandBloodGroup Terminologyidentifieseachbloodgroupsystemaccordingto its discovery ( http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/). ABO, LewisandHhisto-bloodgroupsystemsareidentifiedbythe numbers001,007and018,respectively.Assecretorisnota trueblood groupsystem, it wasnotincludedamongthose recognizedbytheISBTWorkingParty.However,asitcontrols the expression ofABO and Lewis carbohydrates in tissues andexocrinesecretionsitmustbeconsideredanalloantigen system.15

Phenotypingofhisto-bloodgroupsystems

Histo-blood group systems are commonly identified by or inferred from red blood cell phenotyping. Different phe-notypes are known including ABO [A, B, AB, O], H [H, H-deficient], secretor [secretor, non-secretor] and Lewis [Le(a+b−),Le(a−b+),Le(a+b+), Le(a−b−)].16 TheABOsystem

is characterizedby the presenceor absence oftwo carbo-hydrateantigens(AandB)ontheredbloodcellmembrane andthreeregularantibodies(Anti-A,anti-B,anti-A,B)inthe bloodplasma.15 TheHsystemischaracterizedbythe

pres-enceofonlyonecarbohydrateantigen(H)ontheredblood cell membrane.H-deficient individuals containoneregular antibody(anti-H) inthe blood plasma. Three rare typesof H-deficient phenotypes have been described: the classical Bombayphenotypewhichisnon-secretor,theH-partially defi-cientphenotypewhichisnon-secretorandthePara-Bombay phenotypewhichissecretor.15,16

SecretorsexpresstheABOcarbohydratesinexocrine secre-tions inaddition to inred blood cells.On the other hand, non-secretorsexpressABOcarbohydrates onlyinredblood cells.Le(a+b−)phenotypecorrelatestoanon-secretor

pheno-typewhileLe(a−b+)correlatestoasecretorphenotypeand

Le(a+b+)correlatestoaweaksecretorphenotype.Le(a−b−)

can besecretor or non-secretor. However,due to potential cross-reactivitybetweenanti-Lea andanti-Leb antiseraand eventheweakadsorptionofLeaandLebcarbohydratesinthe redbloodcellmembrane,thiscorrelationisnotalwaystrue, particularlyindiseases.17,18

The identification of red blood cell phenotypes is com-monly based on an agglutination reaction with tests performed withslides,tubes, microplates,gelcolumn, and automation.19However,theresultsareaffectedbythemethod

usedandthequalityofantiseraandcanbeinaccurate espe-ciallyinrelationtotheLewishisto-bloodgroupsystem.15,17

Therefore, red cell serologytechniques aloneare not suffi-cient to characterizethe structural diversityofhisto-blood group carbohydrates intissuesand exocrine secretions.As thegenesofthesehisto-bloodgroupsystemsallinteract,the combinationofserologyandgenotypingisagoodstrategyto predictthediversityofcarbohydratesexpressedintissuesand exocrinesecretions.17Additionally,immunochemistry,proton

nuclearmagneticresonance(NMR)imagingandmass spec-trometry(MALDIandQ-TofMS/MS)areusefultoolstoresolve thecarbohydratestructureanddiversity;however,these tech-niquesandsomeofthereagents requiredarenotroutinely available.2

Histo-bloodgroupphenotypefrequenciesinpopulations

Sincethebeginningofthelastcentury,studiesonpopulation variability demonstratedthatthe histo-bloodgroup pheno-typesoccurinallpopulationsbuttheirfrequenciesvarywidely fromoneethnicitytoanother.20TheOphenotypeiscommon

amongAfricansandSouthAmericannativeswhileAandB arecommoninNorthEuropeanandAsiancountries, respec-tively.H-deficientphenotypesarerareinallpopulationsbut theyaremorefrequentinIndiaandReunionIsland,located intheIndianOcean.Althoughpresentinallpopulations,the secretorphenotypeoccursin80%ofCaucasians.TheLe(a+b−)

phenotypeisfoundinmorethan20%ofCaucasiansandBlacks butitisrareinAsians.Le(a−b+)isfrequentinallpopulations

butLe(a+b+)ismorecommoninAsiansandPolynesiansthan populationsfromtheWesternworld.Le(a−b−)israrein

Cau-casiansbutiscommonamongBlacks.16,21 Thereasonswhy

thedifferentialdistributionofhisto-bloodphenotypesoccurs atpopulationlevelarenotfullyunderstoodbutitisbelieved thatselectivepressureimposedbydisease-causing microor-ganismscontributedtothisprocess.9

Biochemicalbasisofhisto-bloodgroupcarbohydrates

ABO, H, secretor and Lewis histo-blood group carbohy-dratesarenotprimarygeneproducts.Theyaresynthesized by specificglycosyltransferases encodedbythe ABO, FUT1,

FUT2andFUT3genes.15Theseenzymesincorporate

sequen-tially,monosaccharideunitstolinearorbranchedprecursor oligosaccharidechains,modifyingandcreatingnewantigenic specificities.16

(3)

Table1–Linearstructureofprecursoroligosaccharide chainsoftheABO,H,Lewisandsecretorhisto-blood groupsystems.

Types Terminalstructures Expressedforms

1 Gal␤1→3GlcNAc␤1-R Glycoproteins,glycolipids 2 Gal␤1→4GlcNAc␤1-R Glycoproteins,glycolipids 3 Gal␤1→3GalNAc␣1-R Glycolipids

4 Gal␤1→3GalNAc␤1-R Glycolipids 5 Gal␤1→3Gal␤1-R Syntheticstructure

6 Gal␤1→4Glc␤1-R Glycoproteins,glycolipids

Source:AdaptedfromOriol.16

Carbohydrateunitsandprecursoroligosaccharidechains

SixtypesofmonosaccharidesarefoundintheABO,H,Lewis and secretor histo-blood group carbohydrates: ␤-d-glucose (Glc),␤-d-N-acetylglucosamine(GlcNAc),␤-d-galactose(Gal), ␤-d-N-acetylgalactosamine (GalNAc), ␣-fucose (Fuc) and d -mannose (Man). Another monosaccharide carrying nine carbonatoms,␣-d-N-acetylneuraminicacid(NeuAc)mayalso befoundinthesecarbohydrates.l-Fucoseisthe immunodom-inantmonosaccharidepresentinH,LeaandLebcarbohydrates whileN-acetylgalactosamine(GalNAc)andgalactose(Gal)are the immunodominant monosaccharides present in A and ALeb,andBandBLebcarbohydrates,respectively.23

Sixtypesofprecursoroligosaccharide chainshavebeen characterized.Type1isfoundintheepitheliumofthe gas-trointestinal,respiratory,genitourinarytractsandinexocrine secretions.Type2ispredominantinhematopoietictissueand vascularendothelium.Type3canbefoundlinkedtomucins orasanextensionoftheAType2carbohydrateduetothe additionofaGalactosetotheterminalN-acetylgalactosamine. Type4isabundantinrenaltissue. Type5issyntheticand has not yet been isolated from human tissues. Type 6 is foundinhumanintestinalcells.Theglycosylationofanyof theseprecursoroligosaccharidechainsgiverisetodifferent carbohydrateantigens,whichmaydifferinthespatial con-formationand affinity to monoclonalantibodies.13,16,18,23,24

Table 1 shows the linear structures of the six precursor oligosaccharidechains.

ThestructuraldiversityoftheABO,H,Lewisandsecretor histo-blood group carbohydrates is enormous and influ-enced by a range of factors. The type of monosaccharide and the glycosidic bond between them, the ionic charge,

thecarbon ringsize,thelinearityand branching,thechain extension, and ␣ and ␤ anomeric conformations, result in more than 1.05×1012 possible structural combinations

that can be obtained from the combinations of these six monosaccharides.25Additionally,thestructuraldifferencesin

these precursoroligosaccharides favorstructuralvariability and raise the complexity of the carbohydrate repertoirein tissuesandexocrinesecretions.2

Histo-bloodgroupglycosyltransferases

TheglycosyltransferasesactingonthebiosynthesisofABO,H, secretorandLewishisto-bloodgroupcarbohydratesare struc-turallyrelatedtotypeIItransmembraneglycosyltransferases andhavesomecommoncharacteristics.23Theyrequire

uri-dinediphosphate(UDP)andguanidinediphosphate(GDP)as nucleotidesugardonorsaswellasdivalentionsto sequen-tially incorporatemonosaccharide units into the precursor oligosaccharidechains.26TomodifyandcreatenewABO,H,

Lewisandsecretorhisto-bloodgroupcarbohydratestructures, some of these enzymes compete for the same precursor. Thereforethepresence,absenceorcombinationofthese gly-cosyltransferaseswilldeterminethequalityandthequantity ofcarbohydratesexpressedbyindividuals.2,15Table2presents

generalcharacteristicsofthehisto-bloodgroup glycosyltrans-ferasesandthecarbohydrateantigenssynthesized.

Someglycosyltransferasesactingonthehisto-bloodgroup carbohydrate biosynthesis haveredundancy and degenera-tion. Redundancyisobserved whentwo separateenzymes synthesizethesameantigen.Forexample,FUT1gene-defined fucosyltransferaseandFUT2gene-definedfucosyltransferase arecapableofsynthesizingtheHType2carbohydratefromthe sameprecursoroligosaccharide(Type2).Degenerationoccurs whenthe same enzymesynthesizesdifferent carbohydrate structures.Forexample,FUT2gene-definedfucosyltransferase iscapableofsynthesizingHType1andHType2carbohydrates fromtheirrespectiveType1andType2precursor oligosaccha-rides.TherarephenotypesB(A)andA(B)whichillustratethe synthesisofsmallamountsofAcarbohydratebythegroupB galactosyltransferase(GTB)andviceversaisanother exam-ple of degeneration in the ABO histo-blood group system. Additionally,FUT3gene-definedfucosyltransferaseiscapable ofsynthesizingatleastfourdifferenthisto-bloodgroup car-bohydrates(Lea, Leb,ALeaand ALeb)derivedfromthetype

Table2–ABO,H,Lewisandsecretorhisto-bloodgroupsystems,genelocation,glycosyltransferasesandsynthesized carbohydratestructuresoftype1andtype2precursoroligosaccharides.

Systems Genea Chromosome

location

Enzyme Abbreviation ECb Nucleotide

donor

Synthesized carbohydrate

H FUT1 19q13.3 ␣1,2-Fucosyltransferase FUTI 2.4.1.69 GDP Htype2

Secretor FUT2 19q13.3 ␣1,2-Fucosyltransferase FUTII 2.4.1.69 GDP Htype1

Lewis FUT3 19p13.3 ␣1,3/4-Fucosyltransferase FUTIII 2.4.1.65 GDP Lea,Leb,ALeb,BLeb

ABO ABO 9q.34.1 ␣1,3-N-Acetylgalactosaminiltransferase GTA 2.4.1.40 UDP Atype1,Atype2

␣1,3-D-Galactosyltransferase GTB 2.4.1.37 UDP Btype1,Btype2

Source:AdaptedfromSchenkel-Brunner.23

EC:EnzymeCommissionNumber;GDP:guanidinediphosphate;UDP:uridinediphosphate.

(4)

1precursoroligosaccharide.27Redundancyanddegeneration

create additional levels ofcomplexity in these histo-blood groupsystems.16Thelevelofexpressionaswellasthe

loca-tionoftheseenzymesintheGolgicompartmentsinfluence theircompetitionformonosaccharidedonorsandacceptors, determiningvariationsinthetype,sizeandamountofeach synthesizedcarbohydratestructure.15

Biosynthesisofhisto-bloodgroupcarbohydrates

Thehisto-bloodgroupcarbohydratessynthesizedfromtype2 precursoroligosaccharidesareintrinsictotheredbloodcell membraneas theyare expressed byred blood cell precur-sorcells.However,thosesynthesizedfromtype1precursor oligosaccharide(A,B,H,LeaandLeb)areextrinsicsincethey originateintheliver,pancreas,kidneyandsmallintestine,are transportedfromtheirplaceofsynthesistothebloodplasma andthenadsorbedintotheredbloodcellmembrane.27,28

The biosynthesis of ABO, H, Lewis and secretor histo-blood carbohydrates is a complex event and dependent on interactions between FUTI, FUTII, FUTIII, group A N-acetylglucosaminyltransferase (GTA) and GTB proteins.27

FUTI,GTA and GTBallowthe synthesisofH,Aand B car-bohydratesfromtype2oligosaccharidesinmesodermaland hematopoietic tissues and vascular endothelium.29 FUTII,

FUTIII,GTAandGTBallowthesynthesisofH,A,B,Lea,Leb, ALebandBLebcarbohydratesfromthetype1oligosaccharides inectodermaltissuessuchasthegut,respiratoryandurinary mucosaeandexocrinesecretions.16Therefore,these

interac-tionsresultinadifferenttissueprofileofcarbohydratestothat foundontheredbloodcellmembrane.2,15

Additionalcomplexitiesoccuratatissuelevel.For exam-ple,theexpressionofABOandLewiscarbohydratesonpyloric and duodenal mucosae isrelated to the migrationofcells fromBrunnerglands.30Cellsmigratingtothesurfaceofthe

gastricandduodenalepitheliumexpressABOandLewis car-bohydratesunderthecontrolofFUTII,FUTIII,GTAandGTB. ThosemigratingtodeepareasoftheBrunnerglandsexpress these carbohydrates under the control of FUTI, GTA and GTB.16

ThesynthesisofABOcarbohydratesissimilarin mesoder-maltissuesasinectodermaltissuesbutunderdistinctgenetic control.FUTIactslikeFUTIIbutitgenerallyusestype2 pre-cursoroligosaccharidestoformtheHtype2carbohydrates.H type2carbohydratescanbeconvertedintoAtype2andBtype 2carbohydratesbyGTAandGTB,respectively.15,16Despitethe

reduceddiversity,thesetype2carbohydratesare crucialin transfusionproceduresandsolidorgantransplantation.

Inectodermaltissues,FUTIItransfersaFucunitthrougha ␣1→2glycosidicbondtothecarbon2oftheterminalGalof

thetype1precursoroligosaccharidebuildinguptheHtype1 carbohydrate.ThisstructurecanbeconvertedintoAtype1or Btype1byGTAorGTB,respectively.GTAaddsaGal-NAcunit througha␣1→3glycosidicbondtocarbon3oftheterminalGal

oftheHtype1carbohydrate.GTBaddsaGalmonosaccharide througha␣1→3glycosidicbondtocarbon3oftheterminal

GaloftheHtype1carbohydrate.31

ThesynthesisofLewisantigensoccursindifferentorgans increasing the complexity of histo-blood group systems.

FUTIIIcreatesnewantigenicspecificityanddiversifiesthe pre-vious carbohydrates bythesynthesisofLea, Leb, ALeb and BLeb.ItincorporatesaFucmoleculebya␣14glycosidicbond tocarbon4ofthesubterminalGlc-NAcofthetype1 precur-soroligosaccharidetoformtheLeacarbohydrate.Bythesame reaction,FTUIIIformstheLebcarbohydratefromtheHtype1 antigen.FUTIIIcanaddasecondFucunitbya␣1→4glycosidic

bondtothecarbon 4oftheN-acetylglucosamine subtermi-nalantigensAand B,converting theminto ALeb and BLeb carbohydrates,respectively.16

TheroleofthefunctionalFUTIIiscrucialtotheactionof other histo-bloodgroup glycosyltransferasesindiversifying thehisto-bloodgroupcarbohydratesinsecretors.It synthe-sizesthe Htype1carbohydrate,thecommon substratefor GTA,GTBandFUTIII.Thus,theseenzymescompeteforthe samesubstrateandtheirefficiencywilldeterminethelevelof expressionofeachcarbohydratestructure.Forexample,due totheabsenceofGTAandGTB,theOphenotypeexpressesa highleveloftheLebcarbohydrate.Ontheotherhand,theA,B andABphenotypesexpressmoreALebandBLebthanLeb car-bohydrates.Sincenon-secretorsdonotexpressanactiveFUTII theywillformtheLeacarbohydratefromthetype1precursor oligosaccharideiftheycarryafunctionalFUTIIIindependent oftheirABO phenotype.15,16,21 For example,this setof

gly-cosylation processes seems to modulate innate immunity responsesinthemucosaandmaycontributetotheriskof gas-tricdiseasebyreducingthebacterialdensityandassociated inflammationinHelicobacterpyloriinfection.32

Alternativenomenclatureforhisto-bloodgroup carbohydrates

ABO, secretor and Lewis carbohydrates can be named by thenumberofmonosaccharideunitspresentintheir struc-ture and by the type of precursor oligosaccharide. For instance, A-4-6 refers to A carbohydrate antigen carrying fourmonosaccharideunitsderivedfromthetype6precursor oligosaccharide whileH-5-2 referstoH carbohydrate speci-ficity with five monosaccharide units derived from type 2 precursor oligosaccharide.31 All these carbohydrates react

withcommercialpolyclonalandmonoclonalantibodies but they present distinct spatial conformations which can be recognized bysomespecific monoclonalantibodiesas well asmicrobialadhesins.18,33,34 Figure1illustratesthe

biosyn-thesis of histo-blood group carbohydrates from the type1 precursoroligosaccharide.Table3containsthecombinations ofhisto-bloodgroupglycosyltransferases,thecarbohydrates expressed,andthemucosaandredbloodcellphenotypes.

Carbohydratestructuralvariationsincommonandrare histo-bloodgroups

(5)

Galβ1→3GlcNAc-R

Galβ1→3GlcNAc-R

Galβ1→3GlcNAc-R

GalNAcα1→3Galβ1→3GlcNAc-R

GalNAcα1→3Galβ1→3GlcNAc-R

Galα1→3Galβ1→3GlcNAc-R

Galα1→3Galβ1→3GlcNAc-R

Galβ1→3GlcNAc-R

Fuc Fuc α1→2

α1→2 α1→2

α1→2 α1→4 α1→2 α1→4

α1→2 α1→4 α1→4

FUTIII

FUTII

FUTIII

FUTIII FUTIII

H type 1

A type 1 Fuc B type 1

Fuc Fuc BLeb Fuc Fuc

ALeb

Fuc Fuc

GTA GTB

Fuc Lea

Leb

Figure1–BiosynthesisofABH-Lewisfromtype1precursoroligosaccharides.Guanidinediphosphateanduridine diphosphateindicatethemonosaccharidedonors.

Source:AdaptedfromOriol16andSchenkel-Brunner.23

Anti-A,Bantibodiescanreactwiththecommonportionsof thesecarbohydrates.25

A1,A2andsomerareABOsubgroupsalsopresent struc-tural differences in their carbohydrates as revealed by an analysisofglycolipids.Immunochemicalstudiesbythinlayer chromatographyandmonoclonalantibodiesdemonstrateda predominanceoftheAtype4carbohydrateintheA1 com-paredtotheA2subgroup.34Additionally,novelcarbohydrate

structuralvariationswereobservedinweakAsubgroups.33

ThesestudiessuggestthatmutationsintheAgeneallowthe

expressionofvariantGTAwhichseemstobepotentiallyable tosynthesizeanovelABOcarbohydratestructure.

LeaandLebdiffernotonlybythenumberofFucunits,but alsobythelengthoftheoligosaccharidechains.TheLea car-bohydrateismonofucosylatedandLebisdifucosylated.While thesechainsareshortinLebtheyareelongatedinmost car-bohydratescarryingLeaspecificity.24,35Thesedifferencesare

coincident, respectively, withthe presence and absence of afunctionalFUT2gene-definedfucosyltransferase.The rea-sonsforthesedifferencesarenottotallyunderstoodfromthe

Table3–Histo-bloodgroupglycosyltransferases,carbohydratesandmucosaandredbloodcellphenotypes.

ABO FUTII FUTIII Carbohydrates Mucosaphenotypes Redbloodcell phenotypes

A,B,AB,O Active Active H,Aand/orB Lea,Leb,ALeb,BLeb

Secretor Lewispositive

A,B,AB,O Le(a−b+)

A,B,AB,O Active Inactive H,Aand/orB Secretor Lewisnegative

A,B,AB,O Le(a−b−)

A,B,AB,O Inactive Active Lea Non-secretor

Lewispositive

A,B,AB,O Le(a+b−)

A,B,AB,O Inactive Inactive POa Non-secretor

Lewisnegative

A,B,AB,O Le(a−b−)

(6)

evolutionaryperspectivebutitispossiblethattheyresultfrom biologicalpressurebymicroorganismsthatcolonizeareasof thebodywherethesecarbohydratesareexpressed.2

Appar-ently,theepitopesofLeaextendedcarbohydratesofferbetter accesstoanti-Lea antibodies,reducingcrossreactivity com-paredtoanti-Leb.18

Variabilityandbiologicalimportanceofhisto-bloodgroup carbohydrates

Theenvironmentexertsconstant pressureon livingbeings anddrivesthemtocreatediversityinordertoevolveandbe perpetuatedinnaturewiththemaintenanceofdiversitybeing regulatedbytheselectionofthebestadaptation.Since diver-sityresultsdirectlyfromgeneticvariations,microorganisms anddiseasesareessentialfactorsthatactintheselectionand maintenanceofspeciesdiversity.36–39

Theactivity ofFUTI, FUTII,FUTIII, GTA and GTB inthe glycosylation of precursor oligosaccharides, besides creat-ing new antigenic structures, diversifies the pre-existent structuresallowingahighdegreeofvariability.2The

variabil-ity ofhisto-bloodgroup carbohydrates extends beyondthe boundariesofgeneandglycosyltransferasepolymorphisms.40

Distinctlevelsofglycosylationinprecursoroligosaccharides areresponsibleforthecarbohydratestructuraldiversityand thepolymorphismsseenintheseantigenicsystems.Thefirst level,controlledbyFUTIII,resultsinthesynthesisoftheLea carbohydrate.Thesecondlevel,controlledbyFUTIandFUTII, resultsintheexpressionofHtype2andHtype1 carbohy-drates,respectively.Atthethirdlevel,controlledbyFUTIII,the Htype1antigenisconvertedintoLeb.GTAandGTBactatthe fourthlevelallowingthesynthesisofAtype1andBtype1, andAtype2andBtype2carbohydratesfromHtype1and type2carbohydrates,respectively.Finally,thefifthlevel,also controlledbytheFUTIIIenzyme,resultsintheconversionof Atype1intoALebandBtype1intoBLeb.16

FUTI, FUTII, FUTIII, GTA and GTB create ␣-glycosidic bondstoincorporateeachmonosaccharideunitinprecursor oligosaccharides.However, the inner core of these precur-sorscontains␤-glycosidicbonds.23 Maybethisfeaturestops

pathogenicmicroorganismsabletoproduce␤-glucosidaseto usehisto-bloodgroupcarbohydrates asreceptorsby break-ingglycosidebondsof␤-glycosylatedoligosaccharidechains. This suggests a potential reason for the abundance of ␣-carbohydrate structuresin the gastrointestinal,respiratory, andgenitourinarytractsandexocrinesecretions.Thesesites areinhabitedbygreatdiversityofmicroorganismsand itis possiblethat the ␣-glycosidicbondsprotect the inner core oftheprecursoroligosaccharidesfrommicrobial exoglycosi-dasesattack.2

Currently,thereisstrongevidencethatthesehisto-blood group carbohydrates and the microbial adhesins that rec-ognize them are important links in the relationship that humans have withthe microorganisms that colonizetheir bodysurface,cavitiesandmucosa.5,8,41,42 Thenatureofthe

interactions betweenparasites and their hostsis complex, but it is also possible that the ABO, secretor and Lewis histo-bloodgroupcarbohydratesrepresentimportantpieces inthisprocess.Maybe thehisto-bloodgroup glycosyltrans-ferases have evolved to control the part of synthesis of

oligosaccharidesexpressedinthegastrointestinal,respiratory and genitourinary tracts through glycosylation and struc-turaldiversification.Thisstrategymayrepresentanimportant biological event in the change of potential receptors for pathogenic microorganisms. Therefore, the contribution of ABO, H, secretor and Lewis histo-blood group systems in thediversityofpopulationsmaybeassociatedwithgreater chanceofsuccessofourspeciesinepidemicevents.2

In thisscenario, ABO,H,secretor and Lewishisto-blood group systems contribute withtheir different polymorphic levels tothe ethnic diversity ofthe humanspecies acting throughmechanismsofevolutionsuchasgeneflow,genetic drift, founder effect, and natural selection.36,43 Through

glycosylation and structural diversification of precursor oligosaccharides,thesesystemsinfluencetheglycoconjugate repertoireexpressedinmucosaeandexocrinesecretions.40,42

Consequently,theyaffecttheinnateimmuneresponse, sus-ceptibility to infections and the parasitism,symbiosis and commensalismcontinuum.1,42,44

Medicalimportanceofhisto-bloodgroupcarbohydrates

Thecarbohydratevariabilityresultingfromthesehisto-blood group systemshas importantimplications insusceptibility toinfections,innateand adaptive immuneresponses, can-cer,solidorgantransplantationaswellasnewtechnologies appliedtobloodtransfusion.Due tothe simplicityandlow costofidentifyinghisto-bloodgroupphenotypesinredblood cells,alargenumberofindependent,quick,simplestudies explored them as potential markers fordiseases. Many of themdidnotconsiderthediversityofcarbohydratesinthe tissuesinfectedbymicroorganismsaswellasthestrainsor serotypesofthesamemicroorganismamongotherpossible confoundingfactors.44However,somewell-designedstudies

providedabetterunderstandingofthepotentialrelationships between histo-blood group carbohydrates and microorgan-ismsaswellastheirethnicdistributionworldwide.

Helicobacterpyloristrainsexpressingthebloodgroup

bind-ingadhesin(BAbA)areabletobindtotheLeb carbohydrate thatishighlyexpressedingastricepithelialcellsrelatedtoO andsecretorhisto-bloodgroups.45Additionally,the

observa-tionthatSouthAmericanspecialiststrainsofH.pyloriaremore abletobindtoHtype1andLebcarbohydratesthangeneralist strainsthatareabletobindtootherhisto-bloodgroup carbo-hydratesiscoincidentwiththepredominanceoftheOblood groupinAmerindians.46Thesestudiesofferedone

explana-tionforanoldenigma:WhyindividualswiththeObloodgroup aremorepronetogastroduodenaldiseasessuchasgastritis andpepticulcers.

ItisbelievedthatthelowandhighfrequenciesofOand B blood groups, respectively, in some areas ofBangladesh are relatedtoselectivepressureimposed bytheseverityof cholera.47Theseverityofthisdiseaseisrelatedtothecholera

toxin secreted by Vibrio cholera that binds more strongly to the H type 1 carbohydrate than the B carbohydrate.48

AnothersuggestionisthatthehighfrequencyoftheOblood group in endemic areas of malaria results from selective pressure related to the severity of this disease caused by

Plasmodiumfalciparum.49Theseauthorshypothesizethat

(7)

Table4–Examplesofassociationsbetweensomehisto-bloodgroupphenotypesandmicroorganisms.

Microorganisms Histo-bloodgroupphenotypes Biologicaleffects

Gastrointestinaltract

Helicobacterpylori O,Le(a−b+) Pepticulcers,Gastritis

Escherichiacoli B Gastrointestinalinfection

Giardialamblia A Re-infestation

Toxoplasmagondii B Notdetermined

Candidaalbicans O,non-secretor Gastricinflammation

Vibriocholera O,Le(a+b−) Severediarrhea

Salmonellatyphimurium B Typhoidfever

Norovirus Non-secretor Gastroenteritis

Respiratorytract

Streptococcuspneumoniae AandO Pneumonia

Streptococcuspyogenes A,non-secretor Rheumaticfever

InfluenzaA O Influenza

Mycobacteriumtuberculosis O Tuberculosis

Genitourinarytract

Escherichiacoli A,B,Le(a+b−) Urinaryinfection

Pseudomonasaeruginosa B Upperurinaryinfection

Neisseriagonorrhoeae B Urethralinfection

Source:AdaptedfromBlackwelletal.44

of P. falciparum to red blood cells and consequently have

somesurvivaladvantagecomparedtoindividualswith non-Oandnon-Le(a−b−)phenotypeswhotendtodevelopsevere

malaria.

Cholera,malariaandH.pyloriinfectionaffectindividuals atanyage.However,thefirsttwotendtobemoreseverethan thegastricdiseasescausedbyH.pylori.Therefore,itispossible thatcholeraandmalariaexertgreaterselectivepressureby deathbeforereproductiveagethan H. pyloriinfection,thus contributingtothelowandhighfrequenciesofObloodgroup individualsinendemicareasofthesediseases.

ThereisconvincingevidencethattheHcarbohydrate in humanmilkcontributestotheprotectionofinfantsagainst

Campylobacter jejuni and other enteric pathogens. By

bind-ing to specific ligands, the H type 2 carbohydrate inhibits the attachmentofthese microorganismsto intestinalcells therebyprotectingbreastfeedingbabies.50Non-secretorsare

relatively resistant to infection by norovirus and secretors presentavariabledegreeofsusceptibilitysincethisvirususes somehisto-bloodgroupcarbohydratesinthegastrointestinal tractasreceptors.Abouthalfofsecretorsaresusceptibleto infection,developanearlymucosalimmuneresponsewith specificIgAandbecomeprotected.Therestofthese individu-alsdevelopalatemucosalimmuneresponsewithspecificIgG anIgAantibodies.51 Histologicalanalysisofgastric mucosa

fromO,non-secretorhisto-bloodgrouppatientsinfectedbyH.

pylorirevealedahigherleveloflymphocyteinfiltration

com-paredtoother phenotypes.52 Higher levels ofinterleukin-6

(IL-6),tumornecrosisfactor alpha(TNF-␣) andnitric oxide (NO)areproducedbymonocytesofObloodgroup individu-alscomparedtonon-Obloodgroups.53Takingtogetherthese

datademonstratethatthediversityofhisto-bloodgroup car-bohydrates can modulate, atleast in part, the innate and adaptiveimmuneresponses.Table4presentssomeexamples ofassociationsbetween histo-bloodgroup phenotypesand microorganisms.

Associations ofhisto-bloodgroups systems withcancer havebeenpublishedinthepastbutmanyofthemfoundlow

relativerisk.AnoldstudycarriedoutbyAirdetal.withalarge samplesizefoundthatAbloodgroupindividualshave20% higher riskofdevelopingstomachcarcinomathan Oblood groupsubjects.54Morerecently,twolarge,independent,and

prospectivecohortsshowedthatpeoplewithA,BandABblood groupsaremorelikelytodeveloppancreaticcancerthanthose withObloodgroups.55

Somestudieshavereportedlossandaberrantexpressions ofhisto-bloodgroupcarbohydratesatdifferentstagesof can-cer.Lossofusualhisto-bloodgroupcarbohydratesseemsto correlatewithapoorprognosis.Leeetal.demonstratedthat thelossoftheAcarbohydrateinthetumorhasapoor progno-sisinnon-smallcelllungcancer.56Ithasbeendemonstrated

thattheexpressionofHtype1carbohydratesinthenormal colonisunderthecontrolofFUT2gene-encoded fucosyltrans-ferase.HowevertheaberrantexpressionsofHtype2andH type3/4 carbohydratesin coloncancer tissuesofsecretors isregulatedbythesameenzyme.57 Thereasonsunderlying

these changeshave notbeenclarified. Ithasbeen pointed out that arelative down-regulation ofglycosyltransferases, thelossofheterozygosityaswellashypermethylationofgene promotersarepossibleeventsinvolvedinthisprocess.58

Some ofthehisto-blood groupcarbohydrates have high immunogenicityandplayanimportantrolein histocompat-ibility. Aand Bcarbohydrates from ABO histo-blood group systempresent inthevascularendotheliumreact withthe potent naturalanti-A, anti-B, and anti-A,Bantibodies acti-vating the complement system and increasing the risk of antibody-mediatedrejectionofsolidorgantransplantations.59

However, transplantationof solidorgans from ABO incom-patible donorshas providedpromisingresults. Ithas been suggestedthatdistinctstructuraldifferencesand antigenic-ityofthecarbohydratespresentinthevascularendothelium compared to red blood cells can modulate the immune response of the recipient thus affecting engraftment.60

(8)

Theincreasingknowledgeaboutthestructuraldiversityof histo-bloodgroupcarbohydrateshascontributedtothe devel-opmentofnewtechnologiesappliedtotransfusionmedicine, cancerandtherapy.Theinsertionoffunctionspacerlipid con-structsallowsthecreationofredbloodcellswithacontrolled amount ofcarbohydrate foruse inlaboratory quality con-trolofcommon andrare ABO andLewishisto-bloodgroup phenotypes.61 Thistechnology facilitatesthe evaluation of

monoclonalantibodyperformancein routineprocedures.18

Additionally,itimprovesourknowledgeofmanybasicaspects ofhemolytictransfusionsinanimalmodels.62

KnowingthebiologicalimplicationsofABO,H,secretorand Lewishisto-bloodgroupsystemsindiseasescanprovidethe basisfornewtherapeuticapplications.Anti-adhesiontherapy providesan opportunity touse histo-bloodgroup carbohy-dratesinthe treatmentofinfections; blockingadhesion to cellsexpressingthesecarbohydratesisanalternative strat-egytoantibiotics.Thesestrategiesmaybeusefulincasesof microbialresistancetoantibioticsand chemotherapy espe-ciallyinpatientsbeingtreatedforlongperiods.Thisformof therapycanhavedesirableeffectsatalowercostthanthe pro-ductionofspecificantibioticsandvaccines,includingincases wherevaccinationisstillnotsatisfactory.63,64Additionally,the

useofcarbohydratemicroarraysisoneofthestrategiesused toexplorepotentialnaturalligandsofantitumormonoclonal antibodieswhichallowcancersubtypingtowardidentifying targetsforimmunotherapy.65

Concludingremarks

The expression ofABO, H, Lewis and secretor histo-blood groupcarbohydrates iscapableof producing atleast three biological effectsofmedical importance:structural modifi-cationofprecursoroligosaccharides,expressionofadistinct carbohydratetissueprofileand potentnaturalantibodies.15

Theseeffectsinfluencesusceptibilitytoinfections,sincethese carbohydratesactasreceptorsformicroorganismsorother substances(toxins,allergens,etc.).9 Thereforethese

biolog-icalevents represent avast field formedicalresearch and technologies.

ThetissueexpressionofABH-Lewisantigensismore com-plexthanitappearswhenstrictlyanalyzedfromredbloodcell phenotypes.GenesencodingFUTI,FUTII,FUTIII,GTAandGTB areresponsibleforthequalitativeandquantitative variabil-ityoftheseantigensinmucosalandexocrinesecretions.15,16

Therefore,thedifferentpolymorphiclevelsofABO,H,secretor andLewishisto-bloodgroupsystemsmayhavegreater biolog-icalimportancethanitseemsfromthemerepresenceoftheir antigensintheredbloodcellmembrane.2,15

There hasbeen growing evidence that ABO, H,secretor andLewishisto-bloodgroupsystemsarenotneutral polymor-phismsastheyinfluencesusceptibilitytoinfections,disease progression and innate immune response.43,52 Despite the

knowledgeofsome structuralvariability inthese carbohy-drateantigens, their polymorphiclevels of expressionand potentialapplicationsinmodernandpersonalizedmedicine inthe“-omics”era,littleisknownabouttheirbiological impor-tanceprogrammedinnature.Newstudiestounderstandthe relationshipofthesesystemswithmicroorganismsandthe environment may contribute to our understanding of the

evolutionary pressure thatcreated andmaintains the high variabilityofpolymorphismsinhumanbeings.

Financial

support

Coordenac¸ãodeAperfeic¸oamentodePessoaldeNívelSuperior –CAPES(Grant1542-03-6)andSãoPauloResearchFoundation –FAPESP(Grants:2009/17540-2;2011/08075-4).

Conflicts

of

interest

Theauthordeclaresnoconflictofinterest.

r

e

f

e

r

e

n

c

e

s

1.ChowJ,LeeSM,ShenY,KhosraviA,MazmanianSK. Host-bacterialsymbiosisinhealthanddisease.Adv Immunol.2010;107:243–74.

2.HenrySM.MoleculardiversityinthebiosynthesisofGItract glycoconjugates.Abloodgrouprelatedchartmicroorganism receptors.TransfusClinBiol.2001;8:226–30.

3.CashHL,WhithamCV,BehrendtCL,HooperLV.Symbiotic bacteriadirectexpressionofanintestinalbactericidallectin. Science.2006;313:1126–30.

4.MaynardCL,ElsonCO,HattonRD,WeaverCT.Reciprocal interactionsoftheintestinalmicrobiotaandimmunesystem. Nature.2012;489:231–41.

5.ImbertyA,VarrotA.Microbialrecognitionofhumancell surfaceglycoconjugates.CurrOpinStructBiol.

2008;18:567–76.

6.AnsteeDJ.Therelationshipbetweenbloodgroupsand disease.Blood.2010;115:4635–43.

7.VarkiA,GagneuxP.Multifariousrolesofsialicacidsin immunity.AnnNYAcadSci.2012;1253:16–36.

8.KatoK,IshiwaA.Theroleofcarbohydratesininfection strategiesofentericpathogens.TropMedHealth. 2015;43:41–52.

9.CoolingL.Bloodgroupsininfectionandhostsusceptibility. ClinMicrobiolRev.2015;28:801–70.

10.GowdaAS,MadhunapantulaSV,AchurRN,ValiyaveettilM, BhavanandanVP,GowdaDC.Structuralbasisforthe adherenceofPlasmodiumfalciparum-infectederythrocytesto chondroitin4-sulfateanddesignofnovelphotoactivable reagentsfortheidentificationofparasiteadhesiveproteins.J BiolChem.2007;282:916–28.

11.BjörnhamO,BugaytsovaJ,BorénT,SchedinS.Dynamicforce spectroscopyoftheHelicobacterpyloriBabA-Lewisbbinding. BiophysChem.2009;143(1–2):102–5.

12.ParraGI,AbenteEJ,Sandoval-JaimeC,SosnovtsevSV,BokK, GreenKY.Multipleantigenicsitesareinvolvedinblockingthe interactionofGII.4noroviruscapsidwithABHhisto-blood groupantigens.JVirol.2012;86:7414–26.

13.ClausenH,HakomoriSI.ABHandrelatedhistobloodgroup antigens;immunochemicaldifferencesincarrierisotypes andtheirdistribution.VoxSang.1989;56:1–20.

14.NydeggerUE,TevaearaiH,BerdatP,RiebenR,CarrelT, MohacsiP,etal.Histo-bloodgroupantigensasallo-and autoantigens.AnNYAcSci.2005;1050:40–51.

(9)

16.OriolR,AboHh.Lewisandsecretion:serology,geneticsand tissuedistribution.In:CartronJP,RougerP,editors.Bloodcell biochemistry:molecularbasisofhumanbloodgroup antigens.NewYork:Plenum;1995.p.37–73.

17.PreviatoM,BorimMP,LiberatoreRDJr,PiresAC,DiasMA, BrandãodeMattosCC,etal.Lewishisto-bloodgroupsystem phenotypingandgenotypingrevealdivergenceinthe associationofLe(a−b−)phenotypeandtype1diabetes.Vox

Sang.2015;108:281–6.

18.WilliamsE,KorchaginaE,FrameT,RyzhovI,BovinN,HenryS. Glycomappingthefinespecificityofmonoclonaland polyclonalLewisantibodieswithtype-specificLewis kodecytesandfunction-spacer-lipidconstructsprintedon paper.Transfusion(Paris).2016;56:325–33.

19.MujahidA,DickertFL.Bloodgrouptyping:fromclassical strategiestotheapplicationofsyntheticantibodies generatedbymolecularimprinting.Sensors(Basel).2015;16.

20.MourantAE.Bloodrelations:bloodgroupsandanthropology. London:Oxford;1983.p.13–20.

21.HenryS,OriolR,SamuelssonB.Lewishisto-bloodgroup systemandassociatedsecretoryphenotypes.VoxSang. 1995;69:166–82.

22.MorganWTJ,WatkinsWM.Unravellingthebiochemicalbasis ofbloodgroupABOandLewisantigenicsubstances. GlycoconjJ.2000;17(7–9):501–30.

23.Schenkel-BrunnerH.Humanbloodgroups:chemicaland biochemicalbasisofantigenspecificity.Wien:Springer;2000. p.54–248.

24.AngstromJ,LarssonT,HanssonGC,KarlssonK,HenryS. Defaultbiosynthesispathwayforbloodgroup-related glycolipidsinhumansmallintestineasdefinedbystructural identificationoflinearandbranchedglycosilceramidesina groupOLe(a−b−)nonsecretor.Glycobiology.2004;14:1–12.

25.GillverLG,HenrySM.Review:biochemistryofcarbohydrate bloodgroupantigens.Immunohematology.2003;19:33–42.

26.GagnonSM,MeloncelliPJ,ZhengRB,Haji-GhassemiO,Johal AR,BorisovaSN,etal.Highresolutionstructuresofthe humanABO(H)bloodgroupenzymesincomplexwithdonor analogsrevealthattheenzymesutilizemultipledonor conformationstobindsubstratesinastepwisemanner.JBiol Chem.2015;290:27040–52.

27.OriolR,LePenduL,MolliconeR.GeneticsofABO,H,Lewis,X andrelatedantigens.VoxSang.1986;51:161–71.

28.HenrySM.Review:phenotypingforLewisandsecretor histo-bloodgroupantigens.Immunohematology. 1999;12:51–61.

29.OriolR.GeneticcontrolofthefucosylationofABHprecursor chains.Evidencefornewepistaticinteractionsindifferent cellsandtissues.JImmunogenet.1990;17(4–5):235–45.

30.MolliconeR,LePenduJ,BaraJ,OriolR.Heterogeneityofthe ABHantigensdeterminantsexpressedinhumanpyloricand duodenalmucosae.GlycoconjugateJ.1986;3:187–202.

31.HolgerssonJ,BreimerBE,SamuelssonB.Basicbiochemistry ofcellsurfacecarbohydratesandaspectsofthetissue distributionofhisto-bloodABHandrelated

glycosphingolipids.APMISSuppl.1992;27:18–27.

32.LindénS,MahdaviJ,Semino-MoraC,OlsenC,CarlstedtI, BorénT,etal.RoleofABOsecretorstatusinmucosalinnate immunityandH.pyloriinfection.PLoSPathog.2008;4:e2.

33.SvenssonL,RydbergL,HellbergA,GilliverLG,OlssonML, HenrySM.Anovelglycolipidvariationsrevealedby

monoclonalantibodyimmunochemicalanalysisofweakABO subgroupsofA.VoxSang.2005;89:27–38.

34.SvenssonL,RydbergL,deMattosLC,HenrySM.Bloodgroup A1andA2revisited:animmunochemicalanalysis.VoxSang. 2009;96:56–61.

35.HenryS,JovallPA,GhardashkhaniS,ElmgrenA,Martinsson T,LarsonG,etal.Structuralandimmunochemical

identificationofLe(a),Le(b),Htype1,andrelatedglycolipids insmallintestinalmucosaofagroupOLe(a−b−)

nonsecretor.GlycoconjJ.1997;14:209–23.

36.MielkeJH,KonigsbergLW,RelethfordJH.Humanbiological variation.NewYork:OxfordUniversityPress;2006.

37.HaldaneJBS.Diseaseandevolution.LaRicercaScientifica. 1949;19supplA19:68–76.

38.PfennigKS.Evolutionofpathogenvirulence:theroleof variationinhostphenotype.ProcBiolSci.2001;268: 755–60.

39.RahimNG,HarismendyO,TopolEJ,FrazerKA.Genetic determinantsofphenotypicdiversityinhumans.Genome Biol.2008;9:215.

40.OriolR,MolliconeR,CouillinP,DalixAM,CandelierJJ.Genetic regulationoftheexpressionofABHandLewisantigensin tissues.APMIS.1992;27:28–38.

41.KarlssonKA.Microbialrecognitionoftarget-cell glycoconjugates.CurrOpinStructBiol.1995;5:622–35.

42.HooperLV,GordonJI.Glycansaslegislatorofhost–microbial interaction:spanningthespectrumfromsymbiosisto pathogenicity.Glycobiology.2001;11:1R–0R.

43.FumagalliM,CaglianiR,PozzoliU,RivaS,ComiGP,Menozzi G,etal.Widespreadbalancingselectionandpathogen-driven selectionatbloodgroupantigengenes.GenomeRes. 2009;19:199–212.

44.BlackwellCC,WierDM,BraumJM,AlmadaniOM,BusuttilA. Bloodgroupphenotypesandinfectiousdiseases.In:Belamy R,editor.Susceptibilitytoinfectiousdiseases:theimportance ofthehostgenetics.NewYork:CambridgeUniversityPress; 2004p.p.309–36.

45.IlverD,ArnqvistA,OgrenJ,FrickIM,KersulyteD,IncecikET, etal.Helicobacterpyloriadhesinbindingfucosylated histo-bloodgroupantigensrevealedbyretagging.Science. 1998;279:373–7.

46.Aspholm-HurtigM,DailideG,LahmannM,KaliaA,IlverD, RocheN,etal.FunctionaladaptationofBabA,theH.pylori

ABObloodgroupantigenbindingadhesin.Science. 2004;305:519–22.

47.GlassRI,HolmgrenJ,HaleyCE,KhanMR,SvennerholmAM, StollBJ,etal.PredispositionforcholeraofindividualswithO bloodgroup.Possibleevolutionarysignificance.AmJ Epidemiol.1985;121:791–6.

48.VasileF,ReinaJJ,PotenzaD,HeggelundJE,MackenzieA, KrengelU,etal.Comprehensiveanalysisofbloodgroup antigenbindingtoclassicalandElTorcholeratoxin B-pentamersbyNMR.Glycobiology.2014;24:766–78.

49.CsertiCM,DzikWH.TheABObloodgroupsystemand

Plasmodiumfalciparummalaria.Blood.2007;110: 2250–8.

50.Ruiz-PalaciosGM,CervantesLE,RamosP,Chavez-MunguiaB, NewburgDS.CampylobacterjejunibindsintestinalH(O) antigen(Fucalpha1,2Galbeta1,4GlcNAc),and

fucosyloligosaccharidesofhumanmilkinhibititsbinding andinfection.JBiolChem.2003;278:14112–20.

51.LindesmithL,MoeC,MarionneauS,RuvoenN,JiangX, LindbladL,etal.Humansusceptibilityandresistanceto Norwalkvirusinfection.NatMed.2003;9:548–53.

52.HeneghanMA,MoranAP,FeeleyKM,EganEL,GouldingJ, ConnollyCE,etal.EffectofhostLewisandABObloodgroup antigenexpressiononHelicobacterpyloricolonisationdensity andtheconsequentinflammatoryresponse.FEMSImmunol MedMicrobiol.1998;20:257–66.

53.AlkoutAM,BlackwellCC,WeirDM.Increasedinflammatory responsesofpersonsofbloodgroupOtoHelicobacterpylori.J InfectDis.2000;181:1364–9.

54.AirdI,BentallHH,RobertsJA.Arelationshipbetweencancer ofstomachandtheABObloodgroups.BrMedJ.

(10)

55.WolpinBM,ChanAT,HartgeP,ChanockSJ,KraftP,HunterDJ, etal.ABObloodgroupandtheriskofpancreaticcancer.JNatl CancerInst.2009;101:424–31.

56.LeeSJ,RoJY,SahinAA,HongWK,BrownBW,MountainCF, etal.Expressionofblood-groupantigenA—afavorable prognosticfactorinnon-small-celllungcancer.NEnglJMed. 1991;324:1084–90.

57.FujitaniN,LiuY,TodaS,ShirouzuK,OkamuraT,KimuraH. ExpressionofHtype1antigenofABOhisto-bloodgroupin normalcolonandaberrantexpressionsofHtype2andHtype 3/4antigensincoloncancer.GlycoconjJ.2000;17:331–8.

58.DabelsteenE,GaoS.ABOblood-groupantigensinoralcancer. JDentRes.2005;84:21–8.

59.MengelM,HusainS,HidalgoL,SisB.Phenotypesof antibody-mediatedrejectioninorgantransplants.Transpl Int.2012;25:611–22.

60.AikawaA,SaitoK,TakahashiK.TrendsinABO-incompatible kidneytransplantation.ExpClinTransplant.2015;13Suppl 1:18–22.

61.HenrySM.Modificationofredbloodcellsforlaboratory qualitycontroluse.CurrOpinHematol.2009;16: 467–72.

62.OliverC,BlakeD,HenryS.Modelingtransfusionreactions andpredictinginvivocellsurvivalwithkodecytes. Transfusion(Paris).2011;51:1723–30.

63.SunaseeR,AdokohCK,DarkwaJ,NarainR.Therapeutic potentialofcarbohydrate-basedpolymericandnanoparticle systems.ExpertOpinDrugDeliv.2014;11:867–84.

64.WangQ,LingCC.Addressingtheglobalneedtocombat multidrugresistance:carbohydratesmayholdthekey.Future MedChem.2014;6:1539–43.

Imagem

Table 1 shows the linear structures of the six precursor oligosaccharide chains.
Table 3 – Histo-blood group glycosyltransferases, carbohydrates and mucosa and red blood cell phenotypes.
Table 4 – Examples of associations between some histo-blood group phenotypes and microorganisms.

Referências

Documentos relacionados

Although malarial parasites are protected from the external medium by at least two membranes, the red blood cell membrane and the parasitophore vacuole (22), both melatonin and NAS

[5] demonstrated in Naja kaouthia , that the hematological values of packed cell volume, total red blood cell count, MCV, and total white blood cell count did not differ

Complete blood count, including hemoglo- bin (Hb), mean corpuscular volume (MCV), whi- te blood cell count (WBC), red blood cell count (RBC), platelet number (PLT), mean platelet

The functional microcirculatory parameters (the functional capillary density, red blood cell velocity at baseline and peak levels, and time required to reach the peak red blood

Conclusion : Chronic kidney disease patients on the transplant waiting list in Ceará, Brazil, display high rates of red cell (7.4%) and leukocyte (30.5%) alloimmunization.. In

The hematocrit, hemoglobin level, red blood cell count (RBC), white blood cell count (WBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean

Blood was assayed for selected hematological parameters (hematocrit, hemoglobin, red blood cell count, white blood cell count total plasma protein and plasma

Furthermore, the cytotoxicity tests by the assay methods of mitochondrial metabolic activity (MTT), neutral red (NRU) and Red Blood Cell System (RBC) are also accepted by ANVISA