• Nenhum resultado encontrado

Acaricidal potential of volatile oils from Croton species on Rhipicephalus microplus

N/A
N/A
Protected

Academic year: 2022

Share "Acaricidal potential of volatile oils from Croton species on Rhipicephalus microplus"

Copied!
5
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Short communication

Acaricidal potential of volatile oils from Croton species on Rhipicephalus microplus

Karina Neoob de Carvalho Castro

a,∗

, Ana Carolina de Souza Chagas

b

,

Lívio Martins Costa-Júnior

c

, Kirley Marques Canuto

d

, Edy Sousa de Brito

d

, Tigressa Helena Soares Rodrigues

d

, Ivanilza Moreira de Andrade

e

aEmbrapaTabuleirosCosteiros,Aracaju,SE,Brazil

bEmbrapaPecuáriaSudeste,SãoCarlos,SP,Brazil

cUniversidadeFederaldoMaranhão,SãoLuís,MA,Brazil

dEmbrapaAgroindústriaTropical,Fortaleza,CE,Brazil

eUniversidadeFederaldoDeltadoParnaíba,Parnaíba,PI,Brazil

a r t i c l e i n f o

Articlehistory:

Received17June2019 Accepted12September2019 Availableonline23October2019

Keywords:

Acaricidalactivity Chemicalcomposition Essentialoil

Rhipicephalusmicroplus

a b s t r a c t

Theobjectiveofthisstudywastoevaluatetheacaricidalactivityofthevolatileoilsofthreespeciesof Croton,Euphorbiaceae,againstthecattletickRhipicephalusmicroplus.Thevolatileoilswereobtained byhydrodistillation,analyzedbyGC–MSandGC-FIDandtheiracaricidalactivitywasevaluatedbythe larvalpackettestandadultimmersiontest.ThevolatileoilsfromCrotonconduplicatusKunth,Crotonpule- giodorusBaill.,andtwodifferentcollectionsofCrotongrewioidesBaill.(CG1andCG2)showedeucalyptol (24.09%),p-cymene(23.13%)andmethylchavicol(83.59%and95.38%)asthemajorcompounds,respec- tively.Allthevolatileoilstestedinthisstudyshowedefficacyagainstlarvaeandengorgedfemalesof Rhipicephalusmicroplus.Therefore,Crotonpulegiodorusvolatileoilispromisingforapotentialacaricidal formulationbecauseofthebestactivityagainstbothstagesofthecattletick.

©2019SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Rhipicephalusmicroplus(Canestrini1888)isresponsibleforsig- nificanteconomiclossesincattleproduction(Grisietal.,2014).

Chemicalcontrolhasbeenthemostusedmethodforcontrolling ticks.However,populationsoftheseparasitesareresistanttomost ofthecommerciallyavailableacaricidesintheworld(Grafetal., 2004).The use of plants with acaricide compounds have been proposedtoreducetheenvironmentalandfinancialimpactofsyn- theticacaricides(Castrejon,2003).

Brazilpossessesagreatdiversityofmedicinalplants;therefore, theirextractshavebeentestedagainstparasites.Significantresults invitrohavebeenobtainedagainsttickwithsomeextractsfrom Pypertuberculatum andLippia gracilis(Chagasetal., 2012;Cruz et al.,2013).Advantages ofacaricides plant-basedpreparations aretheirgenerallylowertoxicityforhostanimals,rapiddegrada- tionandslowdevelopmentofresistanceinacari(Chungsamarnyart etal.,1991).

Correspondingauthor.

E-mail:karina.castro@embrapa.br(K.N.Castro).

TheCaatingaisanexclusivelyBrazilianbiome,oneofthemost diverseintheworldandanalmostunexploredsourceofbiologi- callyactivesubstances(AlbuquerqueandOliviera,2007).Various speciesofthegenusCroton,Euphorbiaceae,arecommonplantsof thisbiome.ExtractsofCrotonsphaerogynusBaill.andC.joufraRoxb.

havebeenshowntobeeffectiveagainstR.microplus(Righietal., 2013).Followinguptheseinvestigations,theobjectiveofthestudy reportedherewastomakeaquantitativeevaluationofacaricidal activityonR.microplususingvolatileoilsfromthreenativespecies ofCrotonfromtheCaatingabiomeinPiauístate,northeastBrazil.

Materialsandmethods

Specimens of Croton conduplicatus Kunth. (82043.8S, 421934.3W), C. pulegiodorus Baill. (82038.9 S, 421935.1 W) and C. grewioides Baill., Euphorbiaceae (082015.2S, 0421757.8W) were collected in April 2015 in the munici- pality of São João do Piauí, Piauí state, northeast Brazil. The latterspecieswasalsocollectedinMay2015inthemunicipality of Caxingó, Piauí state (32141.2S”, 414809.5W). Reference specimens of C. conduplicatus,C. pulegiodorus and C.grewioides (CG1)collectedinSãoJoãodoPiauíweredepositedattheHerbar-

https://doi.org/10.1016/j.bjp.2019.09.001

0102-695X/©2019SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Table1

ComparativechemicalcompositionofvolatileoilsfromCrotonconduplicatus,C.pulegiodorusandC.grewioides(CG1andCG2).

Compounds KIa KIlitb Relativepercentages(%)c

C.conduplicatus C.pulegiodorus CG1 CG2

␣-Thujene 937 930 1.50 1.09

␣-Pinene 947 939 5.46 1.33 0.13

Camphene 963 954 0.33 0.83

Sabinene 985 975 6.49 0.41 0.57 0.17

␤-Pinene 990 979 0.52 0.75

Myrcene 996 990 0.59 3.14 0.50 0.79

␣-Phellandrene 1012 1002 9.88 1.65 0.12

␣-Terpinene 1027 1017 9.32

p-Cymene 1034 1024 6.40 23.13

Limonene 1039 1029 2.16

o-Cymene 1039 1026 0.11

Eucalyptol 1044 1031 24.09 1.57 4.27 0.98

E-␤-Ocimene 1054 1050 0.41 0.18

␥-Terpinene 1068 1059 0.52 5.88

Terpinolene 1097 1088 0.59

Chrysanthenone 1137 1127 0.79

Limoneneoxide 1148 1136 0.80

Camphor 1159 1146 8.26

␤-Pineneoxide 1167 1159 0.46

Isoborneol 1170 1160 2.33

cis-Chrysanthenol 1172 1164 2.00

Borneol 1178 1169 0.57 0.57

Terpinen-4-ol 1183 1177 1.78 2.22 0.19

␣-Terpineol 1199 1188 3.89 0.77 0.18

trans-Isocarveol 1196 1189 0.30

Myrtenol 1206 1195 0.26 0.30

Methylchavicol 1204 1196 83.59 95.38

Ascaridole 1252 1237 22.50

trans-Piperitoneepoxide 1266 1256 0.45

cis-Chrysanthenylacetate 1270 1265 1.05

Tymol 1297 1290 0.37

Carvacrol 1308 1299 0.35

Eugenol 1368 1359 4.34

␣-Copaene 1387 1376 0.37

␤-Elemene 1401 1390 1.69 0.74 0.13 0.22

Methyleugenol 1411 1403 1.44

␤-Caryophyllene 1434 1419 5.97 0.85 0.62

␣-Caryopyllene 1468 1454 1.09 0.27 0.09

allo-Aromadendrene 1475 1460 1.24

␥-Muurolene 1494 1479 1.53

GermacreneD 1494 1481 0.32 0.43

␤-Selinene 1499 1490 0.74

Bicyclogermacrene 1511 1500 5.93 2.14 0.94

GermacreneA 1517 1509 0.02 0.02

␥-Cadinene 1528 1513 0.93

␦-Cadinene 1536 1523 0.77 0.08

cis-Calamenene 1536 1529 0.10

Spathulenol 1593 1578 6.23 0.48

Caryophylleneoxide 1599 1583 0.23

␤-Copaen-4-␣-ol 1598 1590 3.41

␣-Muurolol 1655 1646 3.64

Valerianol 1670 1658 0.30

Total 100.00 92.57 100.00 100.00

aKI:KovatsindexdisplayedbycompoundsinRTXcolumn.

b KIlit:Literaturedata(Adams,2007).

c PeakrelativeareasdeterminedintheGC-FIDchromatogram.

ium of the Embrapa Recursos Genéticos eBiotecnologia (CEN) (registration numbers 92493, 92494, and 92492, respectively), and the specimens of C. grewioides collected in Caxingó (CG2) wasdeposited at the Herbário Prisco Bezerra (EAC) under the registrationnumber56771.ThisstudywasregisteredintheSisgen database(SistemaNacionaldeGestãodoPatrimônioGenéticoedo Conhecimento Tradicional Associado)under protocol A0981DB.

ThestudyhasbeenapprovedbytheEthicsCommitteeonAnimal Use of the Universidade Federal do Maranhão under protocol 23115018061.

Volatileoilsfromleavesofthethreespecieswereextractedby hydrodistillationusingaClevengerapparatus.Thechemicalanaly- seswerecarriedoutusinggaschromatography–massspectroscopy

(GC–MS)andgaschromatographyflameionizationdetector(GC- FID)methodology.Theexperimentalprotocolforextractionand chemicalcharacterizationaredescribedbyCastroetal.(2019).Five concentrations,rangingfrom6.2–100.0mg/ml,ofeachvolatileoil wereusedforthelarvalpackettestandadultimmersiontest.A solutionof50%ethanol+1%Tween80wasusedasthenegative control,and a mixtureof 0.18mg/mlcypermethrin, 0.30mg/ml chlorpyrifos,and0.012mg/mlcitronellal(Colosso®,OuroFino,São Paulo)dilutedinultrapurewater(0.125%),wasusedfortheposi- tivecontrol.Theexperimentwasperformedwiththreereplicates foreachtreatment.

EngorgedfemalesandlarvaeofR.micropluswerecollectedin August2015fromnaturallyinfectedcattle.Larvaeagedbetween

(3)

Table2

ActionofCrotonconduplicatus,C.pulegiodorusandC.grewioides(CG1andCG2)onlarvae(mortality)andengorgedfemale(eggproductionindex,reductionofoviposition, hatchabilityandproductefficacy)ofRhipicephalusmicroplus.

Larvae(%) Engorgedfemales(%)

Treatment Concentration(mg/ml) Mortality Eggsproductionindex Reductionofoviposition Hatchability Productefficacy

Negativecontrol 0.0±0.0a 51.5±4.0a 91.1±3.8a

C.conduplicatus 6.2 2.5±2.7a 49.3±1.0a 4.2±2.0a 74.8±7.6a 21.6±7.0a

12.5 11.4±1.6a 45.8±6.6a 11.1±12.9a 60.8±10.7a,b 39.7±18.2a

25.0 16.2±3.2a 27.7±9.8b 46.2±19.1b 15.4±12.0b,c 89.2±11.8d

50.0 17.2±2.0a 11.5±6.3c 77.6±12.3c 31.0±45.3a,c 94.7±6.1d

100.0 75.8±11.9b 3.0±4.2c 94.2±8.2c 0.0±0.0c,d 100.0±0.0d

C.pulegiodorus 6.2 8.7±4.2a 46.1±2.7a 10.4±5.3a 88.8±4.4a 12.7±8.2a

12.5 28.8±10.9a,b 41.5±0.9a 19.4±1.7a 68.8±16.6a 39.3±14.5b

25.0 81.4±5.5b,c 30.5±4.7b 40.7±9.1b 40.1±16.4b 74.9±7.4c

50.0 96.1±5.5c 3.4±2.1c 93.5±4.0c 0.0±0.0d 100.0±0.0d

100.0 100.0±0.0c 0.0±0.0c 100.0±0.0c 0.0±0.0d 100.0±0.0d

CG1 6.2 2.9±0.9a 53.2±4.8a 0.0±9.3a 88.8±2.4a 0.0±11.6a

12.5 0.0±0.0a 52.1±2.1a 0.0±4.2a 68.6±7.5b,c 23.7±11.5a,b

25.0 24.2±6.1a 47.6±3.4a 7.5±6.6a 71.7±7.2b 27.0±12.1b,c

50.0 62.9±10.5a 46.9±5.1a 8.9±9.8a 59.9±2.7c 40.2±7.2b,c

100.0 74.5±25.4b 46.3±3.3a 10.1±6.4a 52.0±1.2c 48.7±4.2c

CG2 6.2 0.0±0.0a 48.8±4.8a 5.2±9.4a 84.3±6.7a 12.4±9.9a

12.5 0.0±0.0a 42.9±7.3a 16.6±14.1a 65.9±7.6b 39.0±17.0b

25.0 59.1±15.5b 18.0±8.1b 65.0±15.8b 31.7±13.3c 86.3±11.7d

50.0 75.9±4.6b 0.5±0.9c 99.0±1.7c 1.6±2.7d 99.9±0.1d

100.0 84.5±7.1b 0.0±0.0c 100.0±0.0c 0.0±0.0d 100.0±0.0d

Positivecontrol 100.0±0.0c 1.0±1.0c 98.0±1.9c 0.0±0.0d 100.0±0.0d

Valuesrepresentaverage±standarddeviation.Negativecontrol(ultrapurewaterand50%ethanol+1%tween80).Positivecontrol(ultrapurewaterwith0.18mg/mlof Cypermethrin,0.30mg/mlchlorpyrifosand0.012mg/mlcitronellal(Colosso®,Ourofino,SãoPaulo).Differentlettersinthesamecolumnrepresentadifferencestatistically significant(p0.05).

14 and 21 days after hatching were used in the larval packet test. The larval packet test was performed according to Stone andHaydock(1962)asmodifiedbyFoodandAgricultureOrga- nizationoftheUnitedNations(FAO,1984).Theadultimmersion test was performed as described by Drummond et al. (1973).

Hatchability was estimated from the averagenumbers of eggs and larvae. The egg production index (EPI), oviposition reduc- tion (OR), reproductive efficiency (RE), and product efficacy (PE) werecalculated accordingtothe following formulas:EPI= (weightofeggs/weightofengorgedfemales)×100(Bennett,1974);

OR=((controlEPI−treatedEPI)/controlEPI)×100(Roulstonetal., 1968);RE=(Eggmassweight×%ofeclosion/weightofthemass of females)×20,000; and PE=(control RE–treated RE)/(control RE×100)(Drummondetal.,1973).Lethalconcentrationsfor50%

ofthepopulation(LC50)oflarvaeandengorgedfemaleswerecal- culatedusingGraphPadPrism6.0byProbitanalysis.Formulations wereconsideredsignificantlydifferentwhenthe95%confidence intervalsofLC50didnotoverlap(Roditakisetal.,2005).Thedif- ferencesamongtheconcentrationsofmortalityagainstlarvae,EPI, OR,andhatchabilitywereanalyzedbytheFtestofANOVAfollowed byTukeytest(p<0.05).

Resultsanddiscussion

ThelargestyieldofvolatileoilwasobtainedfromC.grewioides (5.0%),inbothCG1andCG2collections,followedbyC.pulegiodorus (1.1%) andC. conduplicatus(0.8%). Thechemical composition of thetestedvolatileoils,alongwiththeretentionindicesandper- centages,areshowninTable1.Atotalofthirty-two,twenty-nine, nineteenandelevencomponentswereidentifiedinthevolatileoils fromC.conduplicatus,C.pulegiodorus,andC.grewioides(CG1and CG2),respectively,representingover92%oftheirtotalcompounds.

ThemostabundantcompoundinC.conduplicatusvolatileoils was eucalyptol (24.09%). Eucalyptol or 1,8-cineol is present in volatileoilsofMesosphaerumsuaveolens(35.77%),Ocimumgratis- simum(24.68%)andAlpiniazerumbet(24.05%).Theirvolatileoils haveshownhighefficacyagainstlarvaeandengorgedfemalesofR.

microplusinpreviousstudy(Castroetal.,2018).

AnalysisofC.pulegiodorusvolatileoilsshowedthatp-cymene (23.13%)andascaridole(22.50%)werethemaincomponents.The volatile oilof C. pulegiodorushad maximum efficacy onlarvae (100%)andengorgedfemales(100%)ofR.microplusatconcentra- tionsof50and100mg/ml,respectively(Table2).Thevolatileoilof A.zerumbetalsocontainedthecompoundp-cymene(32.72%)and demonstratedefficacyagainstbothstagesofticklife(Castroetal., 2018).

Methyl chavicol was the predominant component in C.

grewioidesCG1(83.59%)andCG2(95.38%).C.grewioidesCG1and CG2werecollectedinthesamestate(Piauí),buttheirlocalities were530kmapart,whichcouldexplainthesignificantdifference obtainedintheirvolatileoil.Sincedifferentfactorsasgenotype, herbivorousattack,andedaphoclimaticconditionscaninfluence theproductionofsecondarymetabolites,includingterpenes,the acaricidalactivityofthevolatileoilsmaybeaffected(Cruzetal., 2013;Soaresetal.,2016).

Thelowproductefficacy(48.7%)onengorgedfemalesinduced byC. grewioidesCG1 volatileoilsat100mg/mlwasdue tolow reduction ofoviposition(10.1%) andhighhatchability(52.0%), whichmaintainedtheeggproductionindexunchangedatallcon- centrationsevaluated (Table2). Thisresult differssubstantially fromthatobtainedwithC.grewioidesCG2volatileoils,thatreached maximum product efficacy (100 %). Thisremarkable difference betweentheresultsobtainedbytwovolatileoilsoriginatingfrom thesamespeciescanberelatedtoitschemicalprofile,andgeo- graphicaloriginasdiscussed(Cruzetal.,2013).Methylchavicolwas themajorconstituentofthevolatileoilsofbothpopulationsam- ples,mainlyinC.grewioidesCG2.Thisresultsuggeststhatmethyl chavicolisoneofthemainactivecompoundsresponsibleforaca- ricidalactiononengorgedfemales,eventhoughitssynergismwith minorchemicalconstituentsshouldalsobetakenintoconsidera- tionintheoverallbiologicaleffectofthevolatileoilonthecattle tick (Soares et al.,2016).Thismajorcompound, alsoknownas estragole,showedfastinsecticidalactivityagainstadultfruitflies (Changetal.,2009).

Allthevolatileoilstestedinthisstudyshowedefficacyagainst larvaeandengorgedfemalesofR.microplus(Table2).Thevolatile

(4)

Table3

Lethalconcentration,confidencelimitandR2valuesforthevolatileoilsfromCroton conduplicatus,C.pulegiodorusandC.grewioides(CG1andCG2)againstRhipicephalus micropluslarvaeandengorgedfemales.

LC50(mg/ml) Confidencelimit R2 Larvae

C.conduplicatus 49.35d 17.38–81.32 0.21

C.pulegiodorus 17.52a 16.08–19.09 0.98

C.grewioides(CG1) 30.91c 25.40–38.24 0.90

C.grewioides(CG2) 22.16b 19.50–24.82 0.96

Engorgedfemale

C.conduplicatus 16.52b 13.56–19.48 0.93

C.pulegiodorus 17.41b 15.19–19.97 0.96

C.grewioides(CG1) 57.69a 41.04–80.79 0.82

C.grewioides(CG2) 15.73b 13.72–18.19 0.95

LC50=Lethalconcentration50%(mg/ml)R.micropluslarvaeorengorgedfemales;

Confidencelimit=95%;R2=Regressioncoefficient.Valuesdownacolumnwithdif- ferentlettersaresignificantlydifferent.

oilsofC. conduplicatus,C.grewioides(CG2)(25–100mg/ml) and C.pulegiodorus (50 and 100mg/ml) showed statisticallysimilar (p≤0.05)efficacyagainst engorgedfemales when compared to commercialacaricides(positivecontrol).Thesamewastruefor C.pulegiodorusagainstlarvaeatconcentrationsof25–100mg/ml.

TheresultsalsoshowthatvolatileoilsofC.pulegiodorusandC.

grewioides(CG2)completelyinhibiteggproductionat100mg/ml, whilethoseofC.conduplicatusat100mg/mlandC.pulegiodorus at50mg/mlresultedinthetickslayinginfertileeggsandconse- quentlyproducedsimilarhatchabilityinhibitioninregardtothe positivecontrol(p≤0.05)(Table2).

In relation to the lethal concentration reached in each tick stage, the C. pulegiodorus volatile oils had significantly higher activity(LC50=17.52mg/ml)onlarvae,beingfollowedbythoseof C.grewioidesCG2(LC50=22.16mg/ml), CG1(LC50=30.91mg/ml) andC.conduplicatus (LC50=49.35mg/ml).For engorgedfemales, theoilsofC.grewioidesCG2(LC50=15.73mg/ml),C.conduplicatus (LC50=16.52)andC.pulegiodorus(LC50=17.51mg/ml)didnotdiffer statisticallybutshowedhigheractivitythanthoseofC.grewioides CG1(LC50=57.69mg/ml)(Table3).

Our findings showed that C. pulegiodorus volatile oils at 50mg/ml obtainedthehighest acaricidal effect onR. microplus larvae(96.1%),whencomparedtotheothervolatileoilsatthe sameconcentration.Additionally,thevolatileoilsofthisspecies alsopresentedhigheffectivenessonR.microplusengorgedfemales (100.0%)at50mg/ml,similartothevolatileoilsofC.conduplicatus (94.7%)andC.grewioidesCG2(99.9%).Itshouldnotbeforgotten thatcattleareparasitizedbybothlarvaeandfemalesandtherefore anacaricidewhichisactiveagainstdifferentstagesoftheparasite tendstobemoreeffective(Soaresetal.,2016).

Theaction of the volatileoils of thesethree analyzed plant speciesagainstthecattletickR.microplusisdemonstratedhere forthefirsttime.Amongthesevolatileoilsstudied,thatonefrom C.pulegiodorusexhibitedthebestresultsagainstbothlarvaeand engorgedfemalesofR.microplus.Nanoparticlessynthesisstudies tomosquitoscontrolalreadyhasbeenhighlypromisingtoimprove theefficacyofbotanicalpesticidesextendingthestability while preservingtheirenvironmentaland healthsafety (Benelli etal., 2018).Inregardstotick,furtherresearchisneededtodetermine morepreciselythecompoundsresponsiblefortheactivityofthese volatileoilsandthedevelopmentofnanoformulationsthathave therequiredstabilityforinvivousage.Thisstudyisthusacontribu- tiontofoodsafetyinsupportingthedevelopmentofnewacaricidal moleculesforthetreatmentofcattlethatproducebothmilkand meat.

Conflictofinterest

Theauthorsdeclarenoconflictsofinterest.

Authors’contribution

KNCC,ACSC,LMCJandIMAmadethestudyconception,design andacquisitionandinterpretationofdata.THSR,KMCandESBcon- tributedonchemicalanalysisandinterpretationofdata.Allthe authorsmadeimportantcontributionsintheaccomplishmentof theworkandapprovedthefinalmanuscripttobesubmittedfor publication.

Acknowledgements

The authors are grateful to Empresa Brasileira de Pesquisa Agropecuária(Embrapa)forfinancialsupportandtoS.J.Mayofor assistancewithtranslationofthePortuguesetext.

References

Adams,R.P.,2007.IdentificationofEssentialOilComponentsbyGasChromatogra- phyMassSpectrometry,4thed.AlluredPubl.Corp.,CarolStream,IL,USA,pp.

469p.

Albuquerque,U.P.,Oliveira,R.F.,2007.Istheuse-impactonnativecaatingaspecies inBrazilreducedbythehighspeciesrichnessofmedicinalplants?J.Ethnophar- macol.113(1),156–170.

Benelli,G.,Maggi,F.,Pavela,R.,Murugan,K.,Govindarajan,M.,Vaseeharan,B., Petrelli,R.,Cappellacci,L.,Kumar,S.,Hofer,A.,Youssefi,M.A.,Alarfaj,A.A., Hwang,J.S.,Higuchi,A.,2018.Mosquitocontrolwithgreennanopesticides:

towardstheoneHealthapproach?Areviewofnon-targeteffects.Environ.Sci.

Pollut.Res.25,10184–10206.

Bennett,G.F.,1974.OvipositionofBoophilusmicroplus(Canestrini)(Acarida:ixodi- dae).I.Influenceofticksizeoneggproduction.Acarologia.16(1),52–61.

Castrejon,F.M.,2003.RepellenceofBoophilusmicropluslarvaeinStylosantheshumilis andStylosantheshamataplants.Parasitol.Latinoamer.58(2–3),118–121.

Castro,K.N.C.,Canuto,K.M.,Brito,E.S.,Costa-júnior,L.M.,Andrade,I.M.,Magalhães, J.A.,Barros,J.M.A.,2018.Invitroefficacyofessentialoilswithdifferentconcen- trationsof1,8-cineoleagainstRhipicephalus(Boophilus)microplus.Rev.Bras.

Parasitol.Vet.27(2),203–210.

Castro,K.N.C.,Costa-júnior,L.M.,Lima,D.F.,Canuto,K.M.,Brito,E.S.,Andrade,I.M., Teodoro,M.S.,Oiram-Júnior,F.,2019.Acaricidalactivityofcashewnutshell liquidassociatedwithessentialoilsfromCordiaverbenaceaandPsidiumguajava onRhipicephalusmicroplus.J.Essent.OilRes.31(4),297–304.

Chagas,A.C.S.,Barros,L.D.,Cotinguiba,F.,Fulan,M.,Giglioti,R.,Oliveira,M.C.S., Bizzo,H.R.,2012.Invitroefficacyofplantextractsandsynthesizedsubstances onRhipicephalus(Boophilus)microplus(Acari:ixodidae).Parasitol.Res.110(1), 295–303.

Chang,C.L.,Cho,I.K.,Li,Q.X.,2009.Insecticidalactivityofbasiloil,trans-anethole, estragole,andlinalooltoadultfruitfliesofCeratitiscapitata,Bactroceradorsalis, andBactroceracucurbitae.J.Econ.Entomol.102(1),203–209.

Chungsamarnyart,N.,Rattanakrithakul,C.,Jiwajinda,S.,1991.Practicalextractionof sugarappleseedsagainsttropicalcattleticks.KasetsartJ.(Nat.Sci.)25,101–105.

Cruz,E.M.O.,Costa-Júnior,L.M.,Pinto,J.A.O.,Santos,D.A.,Araújo,S.,Arrigoni-Blank, M.F.,Bacci,L.,Alves,P.B.,Cavalcanti,S.C.H.,Blank,A.F.,2013.Acaricidalactivity ofLippiagracilisessentialoilanditsmajorconstituentsonthetickRhipicephalus (Boophilus)microplus.Vet.Parasitol.195,198–202.

Drummond,R.O.,Ernst,S.E.,Trevino,J.L.,Gladney,W.J.,Graham,O.H.,1973.Boophilus annulatusandB.microplus:laboratorytestsforinsecticides.J.Econ.Entomol.66 (1),130–133,PMid:4690254.

FAO,1984.TicksandTickBorneDiseaseControl:aPracticalFieldManual.Foodand AgricultureOrganization,Roma.

Graf,J.F.,Gogolewski,R.,Leach-Bing,N.,Satatini,G.A.,Molento,M.B.,Bordin,E.L., Arantes,G.J.,2004.Tickcontrol:anindustrypointofview.Parasitology129(7 Suppl),427–442.

Grisi,L.,Leite,R.C.,Martins,J.R.,Barros,A.T.,Andreotti,R.,Canc¸ado,P.H.,León,A.A., Pereira,J.B.,Villela,H.S.,2014.Reassessmentofthepotentialeconomicimpact ofcattleparasitesinBrazil.Rev.Bras.Parasitol.Vet.23,150–156.

Righi,A.A.,Motta,L.B.,Klafke,G.M.,Pohl,P.C.,Furlan,C.M.,Santos,D.Y.A.C.,Salatino, M.L.F.,Negri,G.,Labruna,M.B.,Salatino,A.,2013.Chemicalcompositionandeffi- cacyofdichloromethaneextractofCrotonsphaerogynusBaill.(Euphorbiaceae) againstthecattletickRhipicephalusmicroplus(Acari:ixodidae).Vet.Parasitol.

192(1–3),292–295.

Roditakis,E.,Roditakis,N.E.,Tsagkarakou,A.,2005.InsecticideresistanceinBemisia tabaci(Homoptera:aleyrodidae)populationsfromCrete.PestManag.Sci.61(6), 577–582,PMid:15712366.

Roulston,W.J.,Schnitzerling,H.J.,Schuntner,C.A.,1968.Acetylcholinesteraseinsen- sitivityintheBiarrastrainofthecattletickBoophilusmicroplus,asacauseof

(5)

resistancetoorganophosphorusandcarbamateacaricides.Aust.J.Biol.Sci.21 (4),759–767,PMid:5680996.

Soares,A.M.S.,Penha,T.A.,Araújo,A.S.,Cruz,E.M.,Blank,A.F.,Costa-Júnior,L.M., 2016.AssessmentofdifferentLippiasidoidesgenotypesregardingtheiracari-

cidalactivityagainstRhipicephalus(Boophilus)microplus.Rev.Bras.Parasitol.

Vet.25(4),401–406.

Stone,B.F.,Haydock,K.P.,1962.Amethodformeasuringtheacaricidesusceptibility ofthecattletickBoophilusmicroplus(can.).Bull.Entomol.Res.53(3),563–578.

Referências

Documentos relacionados

B) Formado pelos estudantes que declaram não gostar da Matemática, independentemente do desempenho apresentado na disciplina. Alguns afirmam categoricamente que odeiam a

São exemplos de técnicas de representação que podem complementar a abordagem “Dividir e conquistar”: desenho em camadas, aplicando a abordagem hierárquica presente na

Percentage mortality, percentage hatching and treatment efficiency, relating to in vitro treatments of teleogynes of Rhipicephalus (Boophilus) microplus with distilled

The acaricidal activity of crude ethanolic extract and fractions from the leaves of Morus nigra (Moraceae) was carried out on female cattle ticks Rhipicephalus microplus,

This study aimed to perform a morphological, molecular and phylogenetic characterization of Borrelia theileri obtained from infected Rhipicephalus microplus in Brazil.. microplus

[...] integre indissoluvelmente o materialismo dialético (a análise da legalidade específica e do sistema categorial peculiar da arte) e o materialismo histórico

Acaricidal activity of Amburana cearensis on the cattle tick Rhipicephalus (Boophilus) microplus.. Atividade acaricida de Amburana cearensis frente ao Rhipicephalus

àquelas que apresentaram os valores de CV e SK mais baixos fo ram consideradas como espécies K ou espécies conservativas, as demais foram consideradas COED espécies r