• Nenhum resultado encontrado

Carbânions Alguns compostos orgânicos funcionam como ácidos, liberando um próton de uma ligação C-H. A base conjugada é conhecida como carbânion.

N/A
N/A
Protected

Academic year: 2021

Share "Carbânions Alguns compostos orgânicos funcionam como ácidos, liberando um próton de uma ligação C-H. A base conjugada é conhecida como carbânion."

Copied!
23
0
0

Texto

(1)

Carbânions  Alguns compostos orgânicos funcionam como ácidos, liberando um próton de uma ligação C-H. A base conjugada é conhecida como carbânion.

C

H

C

-

+ H

+

Esta tendência é pouco pronunciada em hidrocarbonetos alifáticos, porque a ligação C-H é bastante forte e não existe característica estrutural que favoreça a acidez do átomo de hidrogênio.

Ex: CH4  pKa = 58 e CH3COOH  pKa = 4,76

A presença de um ou mais grupos aceptores exerce um efeito mais acentuado ainda.

Ex: Tricianometano ácido forte, semelhante aos ácidos minerais.

CN C CN CN H CN C C CN C C C CN H+ -N N N

,

etc

O grupamento ciano é importante na acidez dos compostos.

N CH3 C H CH2 C C + -N N Acetonitrila (pKa alto) -CH2

(2)

De maneira análoga, o grupo carbonila (C=O) de aldeídos e cetonas, aumenta a acidez dos átomos de hidrogênio ligados ao carbono , permitindo várias reações químicas.

Ex: Ionização de um hidrogênio .

C C -O

+

..

B C C O -C C O

+

H

..

B Equivalente a C C O

-Ionizações deste tipo não acontecem em hidrogênios , , etc

Base

Formação de carbânions

Embora a tendência à dissociação espontânea de ligação C-H seja baixa, fatores estruturais (grupos que retirem elétrons) pode causar nos átomos de hidrogênio acidez suficiente para sua retirada fácil por base.

R C X

+

..

B

R CH

-

X

+

H

..

B

H H

(3)

Assim, C O O C EtO CH2 OEt pKa 15 ; CH3NO2 pKa 10,2 ; O C C O CH3 CH2 OCH3 pKa 10,2 C O O C CH3 CH2 CH3 ; pKa 8,8

Estabilidade dos carbânions  Efeitos de grupos retiradores de elétrons aumentam a acidez do átomo de hidrogênio e estabilizam o carbânion resultante. R C

..

B -+ H

..

B R CH H H N O O + Grupo nitroso -N O O + -R CH -N O O + -R C

..

B R CH + H

..

B H H C O R Grupo carbonila C O R -R CH C O R -R C

..

B R CH + H

..

B H H C Menos eficiente -F F F C F F F

(4)

Algumas reações de carbânions

Reações de adição (condensação aldólica)

CH3 C CH2 O H C O H -O -OH -CH2 C O H -CH3 C O H CH3 C H CH2 C O H H2O OH CH3 C H CH2 C O H

Condensação de ésteres condensação de Claysen (Reação do tipo aldólico  Base necessária ETO-).

CH3 C CH2 O OCH3 C O -O -EtO -CH2 C O -CH3 C O CH3 C CH2 C O H2O OH CH3 C CH2 C O OCH3 OCH3 OCH3 OCH3 OCH3 OCH3

..

O CH3 C CH2 C O OCH3 (ceto-éster) + CH3OH (álcool) OCH3

(5)

Nas condensações, forma-se uma nova ligação C-C, aumentando assim a cadeia.

Um exemplo biológico da condensação de Claysen é a condensação de acetil-CoA com ácido oxalacético, produzindo ácido cítrico.

CH3 C CH2 O C -HO CH2 C O C O H2O OH C O SR O SR + OH HO CH2 C O C C O OH CH2 C SR O OH HO CH2 C O C C O OH CH2 C RSH (CoA) O OH + Ác. cítrico Ác. oxalácetico

Descarboxilação ocorre através do carbânion.

R C R O C O -O -CO2 O

+

H + RH

+

Próton do solvente ou outra fonte

(6)

CH2 C O -CO2

+

H + R C O O -CH2 C O R CH2 C O R -CH3 C O R

Radicais livres  formados pela cisão homolítica da ligação covalente. Ocorrem na maioria das vezes na fase gasosa, em reações onde o solvente é apolar e em reações catalisadas por luz ou pela decomposição de substâncias produtoras de radicais como, por exemplo, peróxidos. Reação rápida, ocorre em cadeia.

Os radicais podem ser classificados como de vida longa e vida curta

Radicais de vida longa (Facilmente estabilizados)

C C Hexafeniletano

3C

.

+

.

C

3 Solvente apolar (Benzeno)

Grande estabilidade do radical trifenilmetila

C

.

C C

.

.

(7)

Estabilização pela deslocalização de elétrons desemparelhados via orbitais  dos núcleos benzênicos (3 núcleos).

Radicais de vida curta

As diferenças de estabilidade em radicais são menos pronunciadas do que aquelas com carbocátions.

Radicais que envolvem posições alílicas ou benzílicas são mais estáveis (deslocalização de elétrons via orbitais ).

CH2 CH CH

.

2 CH2 CH CH2

.

;

CH2

.

CH2

. ,

etc

Métodos de formação (Radicais de vida curta)  Cisão fotoquímica, cisão térmica, óxido-redução, eletrólise e outros métodos.

Reações nas quais os radicais participam: adição de halogênios, adição de haletos de hidrogênio, polimerização vinílica, substituição de halogênios, auto-oxidação (Reação entre composto orgânico e o oxigênio).

(8)

C O M P O S T O S O R G Â N I C O S O X I G E N A D O S

Possuem um ou mais átomos de oxigênio.

Os compostos orgânicos podem ser classificados de acordo com sua estrutura química. Compostos com propriedades semelhantes apresentam o mesmo grupo funcional, este sofre as mesmas reações químicas independentemente do resto da molécula.

Quanto maior o tamanho do “esqueleto carbônico”, menor a influência do grupo funcional.

Grupos funcionais comuns contendo oxigênio

Função Orgânica Fórmula geral Grupo funcional

Álcool ROH OH Éter ROR' O Aldeído RCH O CH O Cetona RCR' O C O

Ácido carboxílico RCOH O COH O Éster RCOR' O CO O

O radical R (alquila) num aldeído, ácido e éster pode ser um átomo de hidrogênio. Os dois radicais alquila (R, R’) do éter, da cetona e do éster podem ser iguais ou diferentes.

(9)

Á L C O O I S

Possuem o grupo hidroxila (-OH), ligado a um radical alquila. Grupo hidroxila  íon hidróxido

Álcool mais simples  CH3OH - Metanol ou álcool metílico.

(10)

Classificação dos Álcoois

Tipo de átomo de carbono Estrutura Exemplo

Primário (1°) C H H C CH3CH2CH2CH2OH Butan-1-ol Secundário (2°) C H C C HCH2CH3 CH3C OH Butan-2-ol Terciário (3°) C C C C CH3 H3C C OH CH3 metil-propan-2-ol

Os álcoois são encontrados na natureza isolados e ligados quimicamente a outras moléculas (na forma de ésteres, acetais ou outros derivados).

Álcool metílico ou metanol  Álcool de madeira, é venenoso, a ingestão em pequenas quantidades pode causar cegueira, paralisia e morte. (Vapores também são nocivos).

Álcool etílico  Ocorre no estado livre, é produto da fermentação de grãos, frutos, legumes.

C6H12O6 2 CH3CH2OH

+

2 CO2

Glicose Etanol Dióxido de

carbono Enzimas

(11)

O etanol é um álcool utilizado em bebidas (embora seja tóxico), também é usado para fazer preparações conhecidas como “tinturas”. Sua solução aquosa a 50-70% é desinfetante ou antisséptico.

Álcool isopropílico (propan-2-ol)  “álcool para fricção” em banhos de esponja. Atua como adstringente, fazendo com que o tecido se contraia, endurecendo a pele e limitando as secreções. A solução 70% é usada como antisséptico. Para uso “interno” – Tóxico.

Propriedades dos álcoois

O grupo OH determina as propriedades físicas e químicas dos álcoois com cadeia carbônica pequena.

Álcoois com até três carbonos  Solúveis em água em todas as proporções, suas propriedades físicas e químicas se assemelham às da água.

Álcoois com massa molar mais elevada  Apenas parcialmente solúveis em água, ou mesmo insolúveis (longa cadeia de HC), suas propriedades físicas se assemelham aos alcanos.

As temperaturas de ebulição da água e dos álcoois são anormalmente elevadas em relação aos hidrocarbonetos, éteres e outros compostos de massa molar semelhante.

(12)

Composto MM TE (°C) CH4 16 -161 H2O 18 100 CH3CH3 30 -89 CH3OH 32 65 CH3-O-CH3 46 -25 CH3CH2OH 46 78

Preparação dos álcoois

Os álcoois são preparados por hidrólise de derivados halogenados de alcanos  Reações de substituição nucleofílica.

+

RX H2O ROH

+

HX

A reação dependerá da estabilidade do carbocátion intermediário, derivado do haleto de alquila. Se o carbocátion for relativamente estável ocorrerá em duas2 etapas (SN1).

CH3 C CH3

+

+

CH3 Br CH3 C CH3 CH3 Br

-Etapa 1 (Lenta) Etapa 2 (Rápida)

+

+

CH3 C CH3 CH3 2 H2O CH3 C CH3 CH3

+

H3O+ OH

(13)

Reações dos álcoois

Pode ocorrer a quebra da ligação O-H ou a quebra da ligação C-O.

Reações envolvendo quebra da ligação O-H.

Muitas das reações dos álcoois são semelhantes às da água. Ex: Os álcoois reagem com metais alcalinos para formar sais

+

RO H2

ROH 2 Na 2 -Na+

+

2

ácido fraco alcóxido (base conjugada) mais forte que o íon hidróxido

As reações que acontecem são reações de óxido redução; os metais altamente eletropositivos deslocam o hidrogênio dos álcoois.

Formação de ésteres  Os álcoois reagem com ácidos carboxílicos formando ésteres, através de uma reação de condensação conhecida como esterificação.

Mecanismo  Reação catalisada por ácidos fortes. H+ C O OH C O OH H + R'OH

..

R

..

R R C O R' OH OH H +

..

..

C O R OR' + H2O

(14)

Oxidação dos álcoois  Os álcoois primários podem ser oxidados a

aldeídos e ácidos carboxílicos.

CH2OH H R C O R (o) OH C O R (o)

A oxidação de um álcool implica na perda de um ou mais hidrogênios (hidrogênios ) do carbono que está ligado ao –OH.

A oxidação de aldeídos a ácidos carboxílicos se dá com agentes mais brandos do que os requeridos para oxidar álcoois primários a aldeídos, por isso torna-se difícil interromper a oxidação no estágio aldeído. Os álcoois secundários podem perder o único hidrogênio  que possuem e formar cetonas. Em geral, a reação para no estágio de cetona, porque a oxidação posterior requer a quebra de uma ligação carbono-carbono. C R C O R OH H R' (o) R' Álcool 2ario

Um álcool terciário não possui hidrogênios , somente pode ser oxidado sob condições drásticas. A oxidação de um álcool terciário requer a quebra de uma ligação C-C e as oxidações, quando ocorrem, são de pouca utilidade sintética.

(15)

Oxidação do isopropanol (álcool secundário a cetona)

O agente oxidante mais comumente empregado é o ácido crômico (H2CrO4). Normalmente é preparado “in situ” pela adição do óxido

crômico (CrO3) ou dicromato de sódio (Na2Cr2O7) ao ácido sulfúrico.

Mecanismo sugerido:

Etapa 1 – O álcool reage com o ácido crômico para produzir um éster

(cromato). Nesta etapa não ocorre mudança nos estados de oxidação.

H2O + + Rápida Cr O O H O H O

..

..

H CH CH3 O CH3

..

..

CH CH3 O CH3 Cr O O H O Isopropanol Cr +6 Cr +6 Cromato de isopropila (éster)

Etapa 2 (mais lenta) - O éster cromato perde um próton e um íon HCrO-3 para produzir a cetona. Pode ocorrer de duas maneiras:

Etapa 2a

+

Lenta H CH CH3 O CH3

..

..

CH CH3 O CH3 Cr +6 H Cr O O H O H O HCrO-3

+

H3O+ Cr +4

(16)

Etapa 2b

+

Lenta CH CH3 CH3

..

CH CH3 O CH3 Cr +6 Cr O O H O H O Cr +4

O próton pode ser transferido em um mecanismo cíclico.

H2CrO3

Em qualquer um dos mecanismos, o estado de oxidação do carbono do álcool aumenta e o estado de oxidação do Cr passa de +6 para +4. Oxidação biológica do etanol

Os álcoois podem ser oxidados nos organismos vivos. A reação de oxidação do etanol a acetaldeído é catalisada por uma enzima, a desidrogenase do álcool.

CH

2

CH

3

C

O

OH

Oxidação Redução

CH

3

H

O agente oxidante é um dos mais comuns em sistemas biológicos, o NAD (dinucleotídeo de nicotinamida adenina).

Coenzima, molécula orgânica que colabora com uma enzima

na realização de uma determinada transformação química.

Neste caso, a enzima possibilita o encontro do etanol e a coenzima, sendo a coenzima a que efetivamente realiza a oxidação.

(17)

Na oxidação, o NAD arranca do substrato um hidrogênio e um par de elétrons (um íon hidreto).

NAD+ (Forma oxidada)

Representação do NAD

NADH (Forma reduzida)

CH2 CH3 OH Desidrogenase do álcool CH3CHO H

+

NAD+

+

NADH

+

+

(NAD oxidado) (NAD reduzido)

O etanol perde um dos seus hidrogênios  com um par de elétrons, e em seguida (provavelmente simultaneamente), perde o próton ligado ao oxigênio, produzindo aldeído.

Mecanismo C CH3 C O O CH3 H H H H

..

..

NAD

+

+

NADH

+

H+

As enzimas aceleram a reação tanto num sentido quanto no outro. A desidrogenase do álcool catalisa também a redução do acetaldeído pelo NADH. O acetaldeído captura o hidreto e um próton do solvente.

CH2

CH3 OH

+

NAD+

(NAD oxidado)

CH3CHO

+

NADH

+

H+

(18)

Mecanismo C CH3 C O O CH3 H H H H

+

NAD

+

NAD H+ H

No organismo, após ingestão de bebida alcoólica, o álcool é rapidamente absorvido, particularmente no estômago vazio, neste caso, a absorção é praticamente completa em 1 hora. O etanol é degradado no fígado pela enzima desidrogenase alcoólica.

A reação de conversão de etanol a acetaldeído é a etapa lenta da degradação do álcool.

O acetaldeído é convertido em acetato e depois canalizado para um processo liberador de energia que produz 7 Kcal por grama de álcool. O nível alcoólico sangüíneo volta a zero após cerca de 6 horas.

Drogas usadas para tratamento de alcoólatras, como o disulfiran (antabase), impedem a oxidação do acetaldeído. Elas causam tontura, dor de cabeça, náusea, vômito e dificuldade respiratória se o álcool for ingerido.

Reações envolvendo quebra da ligação C-O  Reações de eliminação e substituição nucleofílica, necessitam de um ácido para converter o álcool ao verdadeiro substrato, o álcool protonado.

(19)

Tanto nas reações de substituição nucleofílica, quanto nas de eliminação, seguindo um mecanismo bimolecular (SN2) ou

unimolecular (SN1), o substrato tem que perder um grupo nucleofílico.

O álcool protonado perde facilmente a molécula de água fracamente básica.

Eliminação (Desidratação)  Álcoois aquecidos com ácidos fortes sofrem eliminação de água (desidratação) e formam alquenos. Os ácidos mais comumente usados (doadores de prótons) são o ácido sulfúrico e o ácido fosfórico.

Os alcoóis primários são os mais difíceis de desidratar. A desidratação do etanol, por exemplo, requer ácido sulfúrico concentrado e uma temperatura de 180°C. C CH3 C H O H H H H

+

H2O H H C H2SO4 conc 180°C Eteno

Os álcoois secundários desidratam sob condições mais brandas. O ciclo-hexanol, por exemplo, desidrata em ácido fosfórico a 85% a 165-170°C.

OH

+

H2O

H3PO4 (85%)

165-170°C

Ciclo hexanol Ciclo hexeno (80%)

(20)

Os álcoois terciários podem usar condições muito mais brandas pois

são facilmente desidratados, o álcool t-butílico, por exemplo, desidrata em H2SO4 aquoso a 20%, a uma temperatura de 85°C.

C CH3 O C CH3 CH3 H H2SO4 (20%)

+

H2O 85°C CH3 CH2 CH3 Álcool t-butílico

Ordem de facilidade relativa para desidratação de alcoóis:

C R O R' R" H R C O R" H R C O H H H H

3ario 2ario 1ario

Alguns álcoois desidratam fornecendo mais de um produto.

C CH3CH2CH2CH2OH C H H H + H C H2SO4 conc 170°C CH3 CH3 C H H C CH3 CH3 + CH3CH2CH Ex: 1-butanol -H2O Trans-2-Buteno, Cis-2-Buteno e 1-Buteno

Trans-2-Buteno Cis-2-Buteno 1-Buteno (Produto principal) (Produto secundário) (Produto secundário)

(21)

Alguns álcoois primários e secundários sofrem rearranjos. Ex: Desidratação do 3,3-dimetil-butan-2-ol

+ H3PO4 (85%) 80°C C CH3 OH CH3 CH3 CH CH3 CH3 C CH3 CH3 C CH3 CH2 C CH3 CH3 CH CH3 2,3-Dimetil-Buteno 2,3-Dimetil-1-Buteno (80%) (20%) Mecanismo

Etapa 1 – Protonação do álcool

+

C CH3 OH CH3 CH3 CH CH3

..

C CH3 OH2 CH3 CH3 CH CH3

..

O H H H

+

+

Álcool protonado

Etapa 2 – O álcool protonado perde água formando um carbocátion

secundário.

+

C CH3 H2O CH3 CH3 CH CH3 C CH3 OH2 CH3 CH3 CH CH3

..

+

+

Neste ponto ocorre rearranjo: o carbocátion secundário rearranja para formar um carbocátion terciário mais estável.

+

C CH3 H2O CH3 CH3 CH CH3 C CH3 CH3 CH3 CH CH3

+

+

2ario (- estável) 3 ario (+ estável)

(22)

Etapa 3 – Perda de próton do novo carbocátion e formação de

alqueno. Pode acontecer de duas maneiras:

C CH2 H CH3 CH3 C CH3

+

H 1 2 1 2 C CH2 CH3 CH CH3 CH3 C CH3 CH3 CH CH3 CH3

Alqueno menos estável (Produto secundário)

Alqueno mais estável (Produto principal)

Reação de substituição com haletos de hidrogênio (HX)  Os álcoois reagem com os haletos de hidrogênio (HI, HBr, HC), para formar os haletos de alquila. A reação é catalisada por ácido, só se processa com velocidade apreciável, quando um ácido forte está presente.

OH

+

H

2

O

R

HX

RX

+

Ordem de reatividade dos haletos de hidrogênio:

HI > HBr > HC(o HF geralmente não é reativo).

Ordem de reatividade dos alcoóis:benzílico > 3ario > 2ario > 1ario

Os álcoois 2arios, 3arios, alílicos e benzílicos podem reagir por um mecanismo que envolve a formação de carbocátions.

(23)

Mecanismo Etapa 1 – Protonação.

+

O CH3 C CH3 CH3 OH2 H2O C CH3 OH CH3 CH3 H

..

+

+

..

H H Rápida

+

Etapa 2 – Dissociação do álcool protonado para formar carbocátion e

água.

C

CH

3

O

CH

3

CH

3

H

2

O

C

CH

3

CH

3

CH

3

H

+

+

H

+

Lenta

Nesta etapa, o carbocátion reage com o nucleófilo (íon haleto).

+

Cl

C

CH

3

CH

3

C

CH

3

CH

3

CH

3

..

+

.. ..

..

-

Rápida

CH

3

Cl

Muito freqüentemente as conversões de álcoois a haletos de alquila produzem um pouco de alqueno através da eliminação.

Referências

Documentos relacionados

Os processos mais rápidos de soldagem ao arco elétrico restringem o campo da soldagem oxiacetilênica, a qual é aplicada para aço carbono e aços de baixa liga para espessuras de até

Está pesquisa teve como objetivo geral analisar a relação entre a qualidade de relacionamento da marca, satisfação e a lealdade à marca de artigos esportivos

10.11 – Em caso de não aceitação, quando do recebimento provisório, fica a FORNECEDORA obrigada a substituir os produtos sem custos para o Município, no prazo

Lernaea cyprinacea of Steindachnerina insculpta from Taquari River, municipality of Taquarituba, São Paulo State, Brazil.. Note the hemorrhagic area around the insertion point of

Se no cadastro da administradora, foi selecionado na aba Configurações Comissões, para que as comissões fossem geradas no momento da venda do contrato, já é

Logo, a velocidade da reação é determinada pelo produto das concentrações iniciais dos reagentes e a reação S N 2 classificada como cinética de segunda ordem ou bimolecular, uma

O produto majoritário é aquele que for obtido em maior quantidade em uma reação química. Para um melhor entendimento da formação do produto majoritário, vamos entender o

 Diferentemente de ácidos carboxílicos e derivados, aldeídos e cetonas não sofrem substituição nucleofílica,. devido não ter um bom