• Nenhum resultado encontrado

CÁLCULO III - INTEGRAIS DE LINHA RESOLVIDAS EM 04 MAI 2011

N/A
N/A
Protected

Academic year: 2021

Share "CÁLCULO III - INTEGRAIS DE LINHA RESOLVIDAS EM 04 MAI 2011"

Copied!
22
0
0

Texto

(1)

CURSOS LIVRES DE 3º GRAU CÁLCULO III

INTEGRAIS DE LINHA – EXERCÍCIOS RESOLVIDOS

1. Calcule a integral de linha

(

)

C

x 2y ds,+

onde C é uma semicircunferência centrada na origem de raio igual a 3 e orientada no sentido positivo.

Solução:

A parametrização dessa semicircunferência será dada por:

(

) (

2

)

2

r(t) 3cos ti 3sent j, 0 t= + ≤ ≤ π ⇒ds= −3sent + 3cos t dt⇔ds= 9 dt 3dt=

r r r

. Substituindo:

(

)

(

)

0

( )

0

3cos t 6sent 3dt 3 3sent 6cos t 3 12 36

π π + = − = × =

2. Calcular a integral

(

)

C x² y² z ds,+ −

onde C é a hélice circular dada por :

r(t) cos ti sent j tk de P(1,0,0) a Q(1,0,2 )= + + π

r r r r

Solução:

(

) (

2

)

ds= −sent + cost ² 1dt+ = 2 dt. Assim, podemos escrever:

(

)

(

)

(

)

(

)

2 2 2 0 0 0 2 0 t² cos ²t sen²t t 2 dt 2 1 t dt 2 t 2 4 ² 2 1 t dt 2 2 2 2 1 2 π π π π   + − = − =   π   − = π − = π − π  

3. Calcule

(

)

C 2x y z ds− +

, onde C é o segmento de reta que liga A(1, 2, 3) a B(2, 0, 1). Solução:

Parametrização do segmento de reta AB:

= +   = − − = − − ⇔ = −  = −  = ⇒ = − = ⇒ = ∴− ≤ ≤ uuur r r r suur x(t) 2 t AB (1, 2, 2) i 2j 2k; B(2,0,1) AB : y(t) 2t z(t) 1 2t y 2 t 1; y 0 t 0 1 t 0

(2)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = + + ⇔ = + − + − = − − ⇒ = + + = = ∴ = = − + ⇔ = + − − + − = + + + − = + ∴ = + r r ur r r r r ˆ ˆ ˆ ˆ ˆ ˆ r(t) x t i y t j z t k r(t) 2 t i 2tj 1 2t k Assim : r '(t) i 2j 2k r(t) 1 4 4 9 3 ds 3dt (1) f x,y,z 2x y z f t 2(2 t) ( 2t) 1 2t 4 2t 2t 1 2t 5 2t f t 5 2t (2)

Substituindo (1) e (2) na integral dada:

(

)

(

)

(

)

0 0 0 1 C 1 1 C 2x y z ds 5 2t 3dt 3 (5 2t) dt 3(5t t²) | 2x y z ds 0 3( 5 1) ( 3)( 4) 12 − − − − + = + = + = + − + = − − + = − − =

Resp.: 12 4. Calcule C xz ds

, onde C é a interseção da esfera x² + y² + z² = 4 com o plano x = y. Solução:

Vamos parametrizar a curva dada:

( )

( )

( )

(

)

( )

= = ⇒ + + = ⇒ = − ∴ = − − ≥ ⇔ − ≤ ⇒ − ≤ ≤ = + + ⇔ = + + − = + − −   − = + + − = + = − −   r r r r r r ur 2 2 2 2 2 2 2 2 x y t t² t² z² 4 z² 4 2t² z 4 2t² 4 2t² 0 2t² 4 0 2 t 2 ˆ ˆ ˆ r(t) x t i y t j z t k r(t) ti t j 4 2t² k 2t ˆ ˆ ˆ r ' t i j k 4 2t 2t 4t 8 4t r '(t) 1 1 2 4 2t 4 2t +4t2

( )

(

)

( )

= = − − = ⇔ = − 2 2 2 8 8 1 4 2t 4 2t 4 2t e f x,y,z xz f t t 4 2t² (2)

Substituindo (1) e (2) na integral dada:

= −

C xz ds t 4 2t² − ⋅ −

2 2 2 8 4 2t

( ) ( )

(

)

− − =   = × = × − − = × − =  

2 2 2 2 2 2 C 3 dt 8 t dt t 8 8 xz ds 8 2 2 2 2 0 2 2 2 Resp.: 0

(3)

Outra Solução:

( )

( )

( )

( )

(

)

( )

(

)

( )

(

) (

)

(

)

( )

( )

+ + = = + + = ⇔ + = ∴ + = = = = = ⇒ = − − = − + − + ⇔ = + + = r r r r r 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 C : x y z 4 x y Assim : y z y y z 4 2y z 4 1 2 4 Parametrizando:

x t 2 cos t y t 2 cos t z t 2sent Assim :

r t 2 cos t, 2 cos t, 2sent r ' t 2sent, 2sent, 2cos t e

r ' t 2sent 2sent 2cos t r ' t 2sen t 2sen t 4cos t

r ' t 4

( )

(

)

( )

( )

(

)

( )

( )

π π π + ⇔ = + ⇔ = ∴ = = × × = = = ⇒ =   = = × = = π − =

r r r 2 2 2 2 2 2 b C 0 0 a b b 2 22 2 2 0 C a a

sen t 4cos t r ' t 4 sen t cos t r ' t 4 r ' t 2 Substituindo :

xzds 2 cos t 2sent 2dt 4 2 sent cos tdt 4 2 udu Onde :

u sent du cos tdt Assim:

u

xzds 4 2 udu 4 2 2 2 sent 2 2 sen 2 sen 0 0 2

Resp: 0 5. Calcule

C xyds

, onde C é a elipse x² y² 1 a² b²+ = . Solução:

A parametrização da elipse é dada por:

[

]

( )

(

)

= = ∈ π = + ≤ ≤ π = − + = + = − = − + ⇔ = − + ∴ = − + r r r r ur ur 2 2 ur 2 2 2 ur

x(t) acos t e y(t) bsen t t 0, 2 r(t) acos ti bsen tj, 0 t 2 e

ˆ ˆ

r ' t asenti bcos tj

r '(t) a²sen²t b² cos ²t, mas sen²t 1 cos ²t

r '(t) a² 1 cos t b² cos t r '(t) a² a cos t b² cos t r '(t ) (b² a²)cos ²t a²

(4)

Substituindo na integral dada: π π = ⋅ ⋅ − + = ⋅ ⋅ − + = − + ⇒ = − ⋅ − = − − ⋅ ⋅ = − ⋅ ⋅ ⋅ ∴ = − ⋅ ⋅ =

2 C 0 2 C 0 C

xyds acos t bsent (b² a²)cos ²t a² dt xyds ab cos t sent (b² a²)cos ²t a² dt

u (b² a²)cos ²t a² du 2(b² a²)cos t ( sent) 2(b² a²) cos t sent du

du 2(a² b²) cos t sent dt dt

2(a² b²) cos t sent xyds ab cos t sent⋅ ⋅ ⋅

− ⋅ ⋅

u du

2(a² b²) cos t sent

[ − + ] π = = − − =

3 2 1 2 2 0 C C (b² a²)cos ²t a² ab ab xyds u du | 3 2(a² b²) 2(a² b²) 2 ab xyds 2 − ⋅ 2 (a² b²) ( )

(

) (

{

)

( )

(

)

( )

}

(

) (

) (

)

π      − +  = − π + − − +         = − + − − + = ∴ = −

2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 C C ab

b² a² cos t a b a cos 2 a b a cos 0 a

3 3 a b ab xyds b a a b a a 0 xyds 0 3 a b Resp.:0 6.

(

)

C

3y z ds, onde C é o arco da parábola z = y² e x = 1 de A(1,0,0) a B(1,2,4).

Solução: Parametrizando C:

( )

( )

( )

 =  = = ≤ ≤  =  2 x t 1 C y t t 0 t 2 z t t Assim:

( )

=

(

)

( ) (

=

)

( )

= + r 2 r r 2 r t 1,t,t r ' t 0,1,2t r ' t 1 4t Assim:

(5)

(

)

(

)

(

)

(

)

(

)

− = − + = − + = + = + ⇒ = ∴ = ≤ ≤ ⇔ ≤ ≤   − = + = =       − = = × ×    

2 2 2 2 2 2 2 C 0 0 0 2 2 17 17 1 2 2 C 0 1 1 17 3 2 C 1 3y z ds 3t t 1 4t dt 3t t 1 4t dt 2t 1 4t dt Fazendo : du du u 1 4t 8t dt dt 8t e 0 t 2 1 u 17 Substituindo : du 2t 3y z ds 2t 1 4t dt 2t u u du 8t 8t 1 u 1 2 3y z ds 17 3 4 4 3 2

(

)

(

)

(

)

  − = −     − = −

3 3 3 2 2 C 1 1 17 1 6 1 3y z ds 17 17 1 6 Resp: 1

(

17 17 1−

)

6 7.

C

y ds, onde C é a curva dada por y = x³ de (-1,-1) a (1, 1).

Solução: Sabemos que: ≥ ⇔ − ≤ ≤  =  < ⇔ < <  y, se y 0 1 y 0 y y, se y 0 0 y 1 Parmetrizando C:

( )

=

( )

= 3 C : x t t; y t t Assim:

(6)

( )

( )

( )

( )

( )

( )

(

)

( )

( )

( )

− = + ∴ = = ⇒ = + ∴ = + = + = − + + + = + ⇒ = ∴ = − ≤ ≤ ⇔ ≤ ≤ ≤ ≤ ⇔ ≤ ≤ = −

r r r r r 1 2 3 2 2 2 4 0 1 3 4 3 4 C C C 1 0 4 3 3 3 C ˆ ˆ r t x t i y t j r t t,t Assim : r ' t 1,3t r ' t 1 3t r ' t 1 9t Assim :

yds -yds yds t 1 9t dt t 1 9t dt Fazendo : du du u 1 9t 36t dt dt 36t Se 1 t 0 10 u 1e 0 t 1 1 u 10 Substituindo : yds t

(

)

−     + + + = − +     = − + = + = ×   = = × = × ×= − =  

0 1 1 10 4 3 4 3 3 3 3 1 0 10 1 1 1 10 1 10 1 10 1 10 1 2 2 2 2 2 C 10 1 1 1 1 3 10 1 2 3 3 3 2 2 2 C 1 du du 1 9t dt t 1 9t dt t u t u 36t 36t 1 1 1 1 1 yds u du u du u du u du 2 u du 36 36 36 36 36 1 1 u 1 2 1 1 yds u du 10 1 10 1 3 18 18 18 3 27 2 2

(

)

− = − =

C 10 10 1 7 10 10 1 10 10 1 yds 27 27 27 Resp: 10 10 1− 27 8. Calcule C y(x z)ds−

(7)

Solução: Parametrizando C:

(

)

 + + =  + + =  + == −   + + = ⇔ + + − = + + 2 2 2 2 2 2 2 2 2 2 2 2 2 2 x y z 9 x y z 9 C : C : x z 3 z 3 x Assim : x y z 9 x y 3 x 9 x y 9 −6x x+ 2 = 9 + = +− + = ⇔+ = ⇔+ =                       + = ⇔  + = = + = = − ⇔ = + − = − + 2 2 2 2 2 2 2 2 2 2 2 2 2x 6x y 0

Comple tando o quadrado :

9 9 3 9 3 2 x 3x y 0 2 x y 4 x 2y 9 4 2 2 2 2 3 3 4 x x 2y y 2 1 2 1 9 9 9 9 4 2 Assim: 3 3 3 x cos t e y sent 2 2 2 Mas : 3 3 3 3 z x 3 z cost 3 cos t 2 2 2 2 Assim

( )

( )

( )

( )

( )

(

)

  = + − + ≤ ≤ π     = −         = + + − ⇔ = + +       = + = + r r r r r 2 2 2 2 2 2 2 2 2 2 : 3 3 3 3 3

r t cos t, sent, cos t 0 t 2

2 2 2 2 2

e

3 3 3

r ' t sent, cos t, sent

2 2 2

Então :

3 3 3 9 9 9

r ' t sent cos t sent r ' t sen t cos t sen t

2 2 2 4 2 4

9 9 9

r ' t sen t cos t sen t cos t

2 2 2 = = ∴

( )

= r 1 9 3 3 r ' t 2 2 2 Assim:

(8)

π   − = + − + −     − = ×

2 C 0 C 3 3 3 3 3 3

y(x z)ds sent cos t cos t 3 dt

2 2 2 2 2 2 3 3 3 y(x z)ds sent 2 2 2 + 3 cost 2 3 -2 − 3 cos t 2

(

)

(

)

(

)

π π π π   +     − = = = − = − π − = − − = − =

2 0 2 2 2 0 C 0 0 C 3 dt 9 27 27 27 27

y(x z)ds 3sentdt sentdt cos t cos2 cos0 1 1 0

2 2 2 2 2 Assim : y(x z)ds 0 Resp: 0 9. Calcule C (x y)ds+

, onde C é a interseção das superfícies z = x² + y² e z = 4. Solução:

A curva C é a circunferência x² + y² = 4, cuja parametrização é dada por:

( ) (

)

( ) (

)

( )

(

)

=  ≤ ≤ π  =  = ⇒ = − = + = + r r r 2 2 2 2 x 2cos t C : 0 t 2 y 2sent Assim :

r t 2cos t, 2sent r ' t 2sent, 2cos t e

r ' t 4sen t 4cos t 4 sen t cos t

( )

(

)

(

)

(

)

( )

( )

(

( )

( )

)

(

)

π π π = = ∴ = + = + = + = −   + = π − − π − = − − + = × = + =

r 1 2 2 2 0 C 0 0 C C 4 2 r ' t 2 Substituindo :

(x y)ds 2cos t 2sent 2dt 4 cos t sent dt 4 sent cos t

(x y)ds 4 sen 2 sen 0 cos 2 cos 0 4 0 0 1 1 4 0 0 Logo :

(x y)ds 0

(9)

Solução:

Parametrizando os segmentos de reta que formam os lados do quadrado, temos:

(

)

( ) (

)

( ) (

)

( )

(

)

(

)

(

)

= − = =   =   =  = ⇒ = ∴ = ≤ ≤ + + = + + = + = + = + =

suur r r r r 1 AB 1 1 1 1 2 C 0 0 0 A(1,0,1), B(1,1,1), C(0,1,1) e D(0,0,1) Reta AB : u B A 0,1,0 Assim : x 1 C : y t z 1 r t 1,t,1 r ' t 0,1,0 r ' t 1 0 t 1 Assim : t 1 5 x y z ds 1 t 1 dt 2 t dt 2t 2 2 2 2

(

)

( ) (

)

( ) (

)

( )

(

)

(

)

(

)

− − − = − = − = −   =   =  = ⇒ = − ∴ = − ≤ ≤   + + = − + + = − = − = − − − =  

suur r r r r 2 BC 2 0 0 0 2 C 1 1 1 A(1,0,1), B(1,1,1), C(0,1,1) e D(0,0,1) Reta BC : u C B 1,0,0 Assim : x t C : y 1 z 1 r t -t,1,1 r ' t 1,0,0 r ' t 1 1 t 0 Assim : t 1 5 x y z ds t 1 1 dt 2 t dt 2t 0 2 2 2 2

(10)

(

)

( ) (

)

( ) (

)

( )

(

)

(

)

(

)

− − − = − = − =   = −   =  = ⇒ = − ∴ = − ≤ ≤   + + = − + = − = − = − − − =  

suur r r r r 3 CD 3 0 0 0 2 C 1 1 1 A(1,0,1), B(1,1,1), C(0,1,1) e D(0,0,1) Reta CD : u D C 0, 1,0 Assim : x 0 C : y t z 1 r t 0,-t,1 r ' t 0, 1,0 r ' t 1 1 t 0 Assim : t 1 3 x y z ds 0 t 1 dt 1 t dt t 0 1 2 2 2

(

)

( ) (

)

( ) (

)

( )

(

)

(

)

(

)

− − − = − = = +   =   =  = ⇒ = ∴ = − ≤ ≤   + + = + + + = + = + = − − + =  

suur r r r r 4 DA 4 0 0 0 2 C 1 1 1 A(1,0,1), B(1,1,1), C(0,1,1) e D(0,0,1) Reta DA : u A D 1,0,0 Assim : x 1 t C : y 0 z 1 r t 1+t,0,1 r ' t 1,0,0 r ' t 1 1 t 0 Assim : t 1 3 x y z ds 1 t 0 1 dt 2 t dt 2t 0 2 2 2 2 Assim: + + = + + + + + + + + + + + + + + + + = + + + = = = ∴ + + =

1 2 3 4 C C C C C C C (x y z)ds (x y z)ds (x y z)ds (x y z)ds (x y z)ds 5 5 3 3 5 5 3 3 16 (x y z)ds 8 (x y z)ds 8 2 2 2 2 2 2 Resp: 8

(11)

11. Calcular a integral C

xyds,

onde C é a interseção das superfícies x² + y² = 4 e y + z = 8. 12. Calcular

C 3xyds

, sendo C o triângulo de vértices A(0,0), B(1,0) e C(1,2), no sentido anti-horário. 13. Calcule

C

y(x z)ds−

, onde C é a interseção das superfícies x² + y² + z² = 9 e x + z = 3. 14. Calcule

C

(x y)ds+

, onde C é a interseção das superfícies z = x² + y² e z = 4. 15. Calcule

(

)

c

x² y² z ds+ −

, onde C é a interseção das superfícies x² + y² + z² = 8z e z = 4. 16. Calcule

C

xy²(1 2x²)ds−

, onde C é a parte da curva de Gauss y e= −x² de A(0,1) a B 1 1

2 e      . 17. C ds

, onde C : r t

( ) (

= t cos t, tsent

)

t∈ 0,1

r . Solução: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 t C C t 2 2 2 ds ds r ' t dt 1 Assim :

r ' t cos t tsent,sent t cos t r ' t cos t tsent sent t cos t r ' t cos t 2t cos tsent

− = = = − + = − + + = − ∫ ∫ ∫ r r r

r +t sen t sen t2 2 + 2 + 2tsent cos t

( )

(

)

( ) ( ) ( ) 0 2 2 2 2 2 2 t C C t 1 2 C 0 t cos t r ' t 1 t sen t cos t r ' t 1 t Substituindo em 1 : ds ds r ' t dt ds 1 t dt − − + = + + = + = = = + ∫ ∫ ∫ ∫ ∫ r r r Resolvendo 1 2 C 0 ds 1 t dt − = +

:

(12)

1 2 C 0 2 1 4 2 2 2 2 2 C 0 0 ds 1 t dt Mas : t tg de sec d Se t 0 0 Se t 1 4 Assim :

ds 1 t dt 1 tg sec d Mas :1 tg sec

− π − = + = θ ⇒ = θ θ π = ⇒ θ = = ⇒ θ = = + = + θ θ θ + θ = θ

Substituindo: 1 4 2 2 2 C 0 0 1 4 2 2 2 C 0 0 1 4 2 2 C 0 0 1 4 2 3 C 0 0 n n 2 n 2 1 2 C 0 ds 1 t dt 1 tg sec d ds 1 t dt sec sec d ds 1 t dt sec sec d ds 1 t dt sec d Utilizando : 1 n 2

sec udu sec u tgu sec udu

n 1 n 1 Assim : ds 1 t dt se π − π − π − π − − − − = + = + θ θ θ = + = θ θ θ = + = θ ⋅ θ θ = + = θ θ − = ⋅ + − − = + =

( ) 4 3 0 1 4 2 C 0 0 1 4 2 0 C 0 1 2 C 0 c d 1 1

ds 1 t dt sec tg sec d Mas : secud ln secu tgu c

2 2 Substituindo : 1 1 ds 1 t dt sec tg ln sec tg 2 2 1 1 1

ds 1 t dt sec tg ln sec tg sec 0

2 4 4 2 4 4 2 π π − π − − θ θ = + = θ ⋅ θ + θ θ = + + = + = θ ⋅ θ + θ + θ π π π π         = + =   +  +   −        

( ) ( ) ( ) ( ) ( ) 1 2 C 0 1 tg 0 ln sec 0 tg 0 2 1 1 1 ds 1 t dt 2 1 ln 2 1 sec 0 tg 0 2 2 2 − ⋅ + + = + = × × + + − ⋅

0 1 ln 1 0 2 + + 0 1 2 C 0 Logo : 2 1 ds 1 t dt ln 2 1 2 2 − = + = + +

(13)

18. 2 C

x ds

, onde C : x32 +y23 = a23 a 0> 1º quadrante. Solução:

Uma equação vetorial para a hipociclóide x23 + y23 =a23 é: r tr

( )

=acos ti asen tj3 ˆ+ 3ˆ

( )

( )

(

)

( )

(

) (

)

( )

(

)

3 3 2 2 2 2 2 2 2 4 2 2 4 2 2 2 2 2 2 ˆ ˆ r t acos ti asen tj Mas :

r ' t 3acos t sent,3asen t cos t Assim :

r ' t 3acos t sent 3asen t cos t 9a cos t sen t 9a sen t cos t r ' t 9a cos t sen t cos t sen t

= + = − ⋅ ⋅ = − ⋅ + ⋅ = ⋅ + ⋅ = ⋅ + r r r r

( )

1 2 2 2

9a cos t sen t 3acos t sent r ' t 3acos t sent = ⋅ = ⋅ = ⋅ r Assim:

( )

( ) ( )

(

)

(

)

(

)

0 t 2 2 2 3 C t 0 2 2 2 2 6 3 7 C 0 0 2 3 7 C 0 r ' t 3acos t sent

x ds f t r ' t dt acos t 3acos t sent dt

x ds a cos t 3acos t sent dt 3a cos t sentdt Fazendo : du du u cos t sent dt dt sent Se t 0 u 1 Se t u 0 2 Substituindo : x ds 3a cos t sent π π π = ⋅ = = ⋅ = ⋅ = ⋅ = ⇒ = − ∴ = − π = ⇒ = = ⇒ = = ⋅

r r 2 3 7 dt 3a u sent π =

0 − sentdu 30 7 1 1 3a u du   = −    

(14)

(

)

0 0 8 8 8 3 2 3 7 3 3 3 C 1 1 3 2 C u 0 1 1 3a x ds 3a u du 3a 3a 3a 8 8 8 8 8 Logo : 3a x ds 8       = − = − = − = − × − =       =

19. 2 C x ds

, onde C : r t

( )

(

2 cos t,2sen t3 3

)

t 0, 2 π   = ∈    r . Solução:

( )

( )

(

)

( )

(

) (

)

( )

(

)

3 3 2 2 2 2 2 2 4 2 4 2 2 2 2 2 ˆ ˆ r t 2 cos ti 2sen tj Mas :

r ' t 6cos t sent,6sen t cos t

Assim :

r ' t 6cos t sent 6sen t cos t 36 cos t sen t 36sen t cos t

r ' t 36 cos t sen t cos t sen t

= + = − ⋅ ⋅ = − ⋅ + ⋅ = ⋅ + ⋅ = ⋅ + r r r r

( )

1 2 2

36 cos t sen t 6 cos t sent

r ' t 6 cos t sent = ⋅ = ⋅ = ⋅ r Assim:

( )

( ) ( )

(

)

(

)

(

)

0 t 2 2 2 3 C t 0 2 2 2 6 7 C 0 0 2 2 7 C 0 r ' t 6 cos t sent

x ds f t r ' t dt 2 cos t 6 cos t sent dt

x ds 4 cos t 6 cos t sent dt 24 cos t sentdt Fazendo : du du u cos t sent dt dt sent Se t 0 u 1 Se t u 0 2 Substituindo : x ds 24 cos t sentdt π π π π = ⋅ = = ⋅ = ⋅ = ⋅ = ⇒ = − ∴ = − π = ⇒ = = ⇒ = = ⋅ =

r r 7 24 u sent du sent − 0 0 7 1 1 24 u du   = −    

(15)

(

)

0 0 8 8 8 2 7 C 1 1 2 C u 0 1 1 24 x ds 24 u du 24 24 24 3 8 8 8 8 8 Logo : x ds 3       = − = − = − = − × − = =       =

20.

(

)

C x y ds−

, onde C é o triângulo da figura abaixo:

Solução:

Parametrizando os segmentos de reta AB, BC e CA.

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 C 3 A 1, ; B 2,2 e C 2,1 2 x 2 t AB C : 1 1 t 0 y 2 t 2 Assim : 1 1 r t 2 t, 2 t r ' t 1, 2 2 e 1 5 5 r ' t 1 r ' t 4 4 2 Assim : x y ds 2       = +   ⇔  = + − ≤ ≤      = + + ⇒ =     = + = ∴ = − = ∫ r t 2 + − ( ) ( ) 1 1 0 0 1 1 0 0 2 C 1 1 C 1t 5 dt 5 1t dt 2 2 2 2 5 5 t 5 0 1 5 5 x y ds tdt x y ds 4 4 2 8 2 2 8 8 − − −    =             − = = × = = − ∴ − = −   ∫ ∫ ∫ ∫ ∫

(16)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 C 3 A 1, ; B 2,2 e C 2,1 2 x 2 BC C : 0 t 1 y 2 t Assim : r t 2, 2 t r ' t 0, 1 e r ' t 0 1 1 r ' t 1 Assim : x y ds 2       =  ⇔  = − ≤ ≤  = − ⇒ = − = + = ∴ = − = ∫ r 2 −

(

)

( ) ( ) 2 1 1 1 2 0 0 0 C t 1 1 t 1 dt t dt x y ds 2 2 2 + = = = ∴ − = ∫ ∫ ∫ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 3 3 1 1 C 0 0 1 2 C 0 3 A 1, ; B 2,2 e C 2,1 2 x 2 t CA C : 1 0 t 1 y 1 t 2 Assim : 1 1 r t 2 t, 1 t r ' t 1, 2 2 e 1 5 5 r ' t 1 r ' t 4 4 2 Assim : 1 5 5 3 x y ds 2 t 1 t dt 1 t dt 2 2 2 2 5 3 t x y ds t 2 2 2       = −   ⇔  = + ≤ ≤      = − + ⇒ = −     = + = ∴ =       − =  − − −  =  −      − = − ×   ∫ ∫ ∫ ∫ r ( ) 3 C 5 1 3 5 1 5 x y ds 5 2 4 2 4 8 8   = = × = ∴ − =   ∫ Assim:

(

)

(

)

(

)

(

)

(

)

(

)

1 2 3 C C C C C C x y ds x y ds x y ds x y ds 5 1 5 1 1 x y ds x y ds 8 2 8 2 2 − = − + − + − − = − + + = ∴ − =

(17)

21. 2 C

y ds

, onde C é a semicircunferência da figura abaixo:

Solução:

Parametrizando a semicircunferência, temos:

( ) (

)

( ) (

)

( )

(

)

=  ≤ ≤ π  =  = ⇒ = − = + = + r r r 2 2 2 2 x 2cos t C : 0 t 2 y 2sent Assim :

r t 2cos t, 2sent r ' t 2sent, 2cos t e

r ' t 4sen t 4cos t 4 sen t cos t

( )

(

)

( )

( )

( )

( )

( )

( )

( )

π π π π π π π = = ∴ =   = = = =   = − = ⋅ +   = − × = π − π −

r 1 2 2 2 2 C 0 0 0 0 2 C 0 0 2 0 C 4 2 r ' t 2 Substituindo : 1 1

y ds 2sent 2dt 2 4sen tdt 8 sen tdt 8 cos 2t dt 2 2

1

y ds 4 dt 4 cos 2t dt Mas : cos mx dx sen mx C m

Assim :

1

y ds 4t 4 sen 2t 4 2 sen 2 sen 0

2 = π∴

= π

1

2 C

(18)

22. 2 C

y ds

, onde C é o 1º arco da ciclóide:

( )

(

)

ˆ

(

)

ˆ r tr =2 t sent i 2 1 cos t j− + − . Solução:

( )

(

)

(

)

( ) (

)

( ) (

)

( )

( )

(

) (

)

( )

(

)

2 2 2 2 2 2 ˆ ˆ r t 2 t sent i 2 1 cos t j r t 2t 2sent,2 2 cos t 0 t 2 Derivando : r' t 2-2cost,2sent Mas : ds r ' t dt Assim :

r ' t 2 2 cos t 2sent 4 8 cos t 4 cos t 4sen t

r ' t 4 8 cos t 4 cos t+sen t

= − + − = − − ≤ ≤ π = = = − + = − + + = − + r r r r r r

( )

(

)

( )

1 4 8 cos t 4 8 8 cos t Assim :

r ' t 8 1 cos t 8 1 cos t r ' t 2 2 1 cos t

= − + = − = − = − ∴ = − r r Substituindo na integral: ( )

(

)

(

)

2 2 2 C 0 2 2 2 C 0 2 2 2 2 2 C 0 0 0 2 2 2 2 2 2 C 0 0 y ds 2 2 cos t 2 2 1 cos t dt y ds 2 2 4 8 cos t 4 cos t 1-cost dt

y ds 8 2 1 cos t dt 16 2 cos t 1 cos t dt 8 2 cos t 1 cos t dt Mas :

cos t 1 sen t Assim :

y ds 8 2 1 cos t dt 16 2 cos t 1 cos t dt 8 2 1 sen t

π π π π π π π = − × − = − + = − − − + − = − = − − − + −

2 0 2 2 2 2 2 2 C 0 0 0 0 2 2 2 2 2 C 0 0 0 1 cos t dt

y ds 8 2 1 cos t dt 16 2 cos t 1 cos t dt 8 2 1 cos t dt 8 2 sen t 1 cos t dt y ds 16 2 1 cos t dt 16 2 cos t 1 cos t dt 8 2 sen t 1 cos t dt

π π π π π π π π − = − − − + − − − = − − − − −

(19)

( )

2 2 2 2 2 C 0 0 0 2 2 2 2 2 2 2

y ds 16 2 1 cos t dt 16 2 cos t 1 cos t dt 8 2 sen t 1 cos t dt Fazendo : t 2 dt 2d e se t 0 0 e se t=2 e mais :

1 cos t 1 cos 2 cos 2 cos sen Assim :

1 cos t 1 cos sen sen sen 2sen

Logo : 1 cos t 2 sen π π π = − − − − − = θ ⇒ = θ = ⇒ θ = π ⇒ θ = π − = − θ θ = θ − θ − = − θ + θ = θ + θ = θ − =

(

)

( )

(

)

(

)

( )

(

)

(

)

( )

( )

2 2 2 2 2 C 0 0 0 2 2 C 0 0 0 2 2 C 0 0 0 Substituindo :

y ds 16 2 1 cos t dt 16 2 cos t 1 cos t dt 8 2 sen t 1 cos t dt

y ds 16 2 2 sen 2d 16 2 cos 2 2 sen 2d 8 2 sen 2 2 sen 2d

y ds 64 sen d 64 cos 2 sen d 32 sen 2 sen d

π π π π π π π π π θ = − − − − − = θ θ − θ × θ × θ − θ × θ × θ = θ θ − θ θ θ − θ θ θ

Resolvendo

( )

0 64 cos 2 sen dπ

θ θ θ: ( )

(

)

( ) ( )

(

)

( ) 2 2 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0

64 cos 2 sen d 64 cos sen sen d

64 cos 2 sen d 64 cos sen d 64 sen sen d 64 cos 2 sen d 64 cos sen d 64 1 cos sen d

64 cos 2 sen d 64 cos sen d 64 sen d +64 cos sen d

π π π π π π π π π π π θ θ θ = θ − θ θ θ θ θ θ = θ θ θ − θ θ θ θ θ θ = θ θ θ − − θ θ θ θ θ θ = θ θ θ − θ θ θ θ θ

( ) 0 2 0 0 0

64 cos 2 sen d 128 cos sen d 64 sen d

π

π π π

θ θ θ = θ θ θ − θ θ

(20)

( )

2 0 0 0 2 0 2 2 0

64 cos 2 sen d 128 cos sen d 64 sen d Re solvendo 128 cos sen d :

128 cos sen d 128 u sen

π π π π π θ θ θ = θ θ θ − θ θ θ θ θ θ θ θ = θ

sendu θ

( )

( )

1 1 2 1 1 1 1 3 2 2 0 1 1 3 3 2 0 2 0 128 u du Onde : du du u cos sen d d sen e se 0 u 1 e se u 1 Logo : u 128 cos sen d 128 u du 128 3 1 1 128 128 256 128 cos sen d 128 3 3 3 3 3 Assim : 128 cos sen d − − − π − π π   = −     = θ → = − θ ∴ θ = − θ θ θ = ⇒ = θ = π ⇒ = − θ θ θ = − = − ×     θ θ θ = − × − = + =     θ θ θ

256 3 =

Substituindo:

( )

( )

(

)

( )

(

)

(

)

( )

(

)

( )

( )

2 0 0 0 0 0 0 0 0 0

64 cos 2 sen d 128 cos sen d 64 sen d 256

64 cos 2 sen d 64 cos 3

256 256

64 cos 2 sen d 64 cos 64 cos cos 0

3 3 256 256 256 64 cos 2 sen d 64 1 1 64 2 128 3 3 3 128 64 cos 2 sen d 3 π π π π π π π π π θ θ θ = θ θ θ − θ θ θ θ θ = − × − θ θ θ θ = + × θ = + × π − θ θ θ = + × − − = + × − = − θ θ θ = −

(21)

Resolvendo 2

( )

0 32 sen 2 sen d

π θ θ θ:

( )

(

)

( )

( )

(

)

( )

2 2 0 0 2 2 2 0 0 2 2 2 0 0 2 2 4 0 0 0

32 sen 2 sen d 32 2sen cos sen d 32 sen 2 sen d 128 sen cos sen d 32 sen 2 sen d 128 1 cos cos sen d

32 sen 2 sen d 128 cos sen d 128 cos sen d Fazendo : du u cos sen d π π π π π π π π π θ θ θ = θ θ θ θ θ θ θ = θ θ θ θ θ θ θ = − θ θ θ θ θ θ θ = θ θ θ − θ θ θ = θ → = − θ ∴ θ

( )

( )

2 2 4 0 0 0 2 2 0 du d sen e se 0 u 1 e se u 1 Assim :

32 sen 2 sen d 128 cos sen d 128 cos sen d 32 sen 2 sen d 128 u sen

π π π π θ = − θ θ = ⇒ = θ = π ⇒ = − θ θ θ = θ θ θ − θ θ θ θ θ θ = θ

sendu θ 4 128 u sen   θ     du sen − θ

( )

( )

( )

( )

( )

( )

( )

( )

1 1 1 1 1 1 2 2 4 0 1 1 -1 1 3 5 2 0 1 1 3 3 5 5 2 0 2 0 32 sen 2 sen d 128 u du 128 u du u u 32 sen 2 sen d 128 128 3 5 1 1 1 1 32 sen 2 sen d 128 128 3 3 5 5 1 1 32 sen 2 sen d 128 3 3 − − π − − − π π π       θ θ θ = − +     θ θ θ = − × + ×             θ θ θ = − × − + × −          θ θ θ = − × − −

( )

2 0 1 1 256 256 512 128 5 5 3 5 15 Assim : 512 32 sen 2 sen d 15 π + × − −  = =       θ θ θ =

(22)

Substituindo na integral:

( )

( )

(

)

(

) (

) (

)

( )

( )

( )

2 2 C 0 0 0 0 0 0 2 0 2 C 0 0

y ds 64 sen d 64 cos 2 sen d 32 sen 2 sen d Onde :

64 sen d 64 cos 64 cos cos 0 64 1 1 128 128 64 cos 2 sen d 3 512 32 sen 2 sen d 15 Substituindo :

y ds 64 sen d 64 cos 2 sen d 3

π π π π π π π π π = θ θ − θ θ θ − θ θ θ θ θ = − θ = − π − = − × − − = θ θ θ = − θ θ θ = = θ θ − θ θ θ −

2

( )

0 2 C 2 C 2 sen 2 sen d 128 512 128 512 2048 y ds 128 128 3 15 3 15 15 Logo : 2048 y ds 15 π θ θ θ     = − −   = + − =     =

Referências

Documentos relacionados

1760 CLEUDILEA DE JESUS BARROS 1761 DANIELE CORREA SILVA 1762 EDSON SOUSA AGUIAR 1763 FRANCISCO RODRIGUES CORREA 1764 FRANCIVALDO SILVA MONTEIRO 1765 JUCILENE COSTA NUNES 1766

O Roberto recebeu, no seu aniversário, um avião em miniatura que mede 12 cm de comprimento, e está feito numa escala de 1/150 em relação ao avião real?. Qual é, em metros,

Foram coletados botões florais de cinco genótipos (indivíduos) de Bixa orellana em três populações, sendo estas nos municípios de Nova Canaã do Norte (NC), Alta Floresta

&gt;&gt; [ANDRÉ YUKIO AB MOTA]: Experimento aleatório são os fenômenos que a gente repete inúmeras vezes, de uma forma semelhante, e eles têm resultados imprevisíveis.. São

Para os demais estudos apresentados na Tabela 3 (Cesar et al., 2006; Moreira, 2009), a ausência de correlações signifi cativas entre os resultados dos ensaios com Tiburonella

Porto e Pilati (2010) observaram que os fatores da EVT avaliavam limitadamente os tipos motivacionais de Schwartz (1992) e validaram uma nova versão da escala a EVT-R (Escala

1 Prefeitura Municipal de Afogados da Ingazeira 2 Prefeitura Municipal de Pesqueira 3 Prefeitura Municipal de Poção 4 Prefeitura Municipal de Serra Talhada 5

A pretendente: ALINE FERREIRA FREITAS, profi ssão: operadora de caixa, estado civil: solteira, naturalidade: São Paulo, SP, data-nascimento: 10/11/1996, residente e domiciliada