• Nenhum resultado encontrado

OPERAÇÕES UNTÁRIAS C - EXERCÍCIOS TORRES DE RESFRIAMENTO

N/A
N/A
Protected

Academic year: 2021

Share "OPERAÇÕES UNTÁRIAS C - EXERCÍCIOS TORRES DE RESFRIAMENTO"

Copied!
5
0
0

Texto

(1)

C

C RR EE DD EE NN CC II AA DD OO PP EE LL OO DD EE CC RR EE TT OO DD EE 2 2 66 // 00

OPERAÇÕES UNTÁRIAS C

OPERAÇÕES UNTÁRIAS C

AULA 5 – 

AULA 5 – 

Exercícios de fixação sobre torres de resfriamentoExercícios de fixação sobre torres de resfriamento PROFESSOR: Nazareno Braga

PROFESSOR: Nazareno Braga

1. Uma água quente gerada no resfriamento de uma planta de energia nuclear entra em 1. Uma água quente gerada no resfriamento de uma planta de energia nuclear entra em uma torre de resfriamento a 40 ºC e 90 kg/s. A água é resfriada para 25 ºC na torre de uma torre de resfriamento a 40 ºC e 90 kg/s. A água é resfriada para 25 ºC na torre de resfriamento por um ar que entra na torre a 1 atm, 23 ºC e 60% de umidade relativa e resfriamento por um ar que entra na torre a 1 atm, 23 ºC e 60% de umidade relativa e deixa a torre saturado a 32 ºC. Determine: (a) o fluxo de massa do ar na entrada da torre deixa a torre saturado a 32 ºC. Determine: (a) o fluxo de massa do ar na entrada da torre e (b) taxa de escoamento da água de reposição requerida.

e (b) taxa de escoamento da água de reposição requerida.  Assumptions

 Assumptions

11

Steady operating conditions exist and thus mass flow rate of dry air Steady operating conditions exist and thus mass flow rate of dry air  remains constant during the entire process.

remains constant during the entire process.

22

Dry air and water vapor are ideal gases.Dry air and water vapor are ideal gases.

33

The

The kinkinetietic c and and potpotentential ial eneenergy rgy chachangenges s are are negnegligligiblible.e.

44

ThThe e cocoololining g totowewer r isis adiabatic.

adiabatic.  Analysis

 Analysis ((aa) ) ThThe e mamass ss floflow w ratrate e of of drdry y aiair r ththrorougugh h ththe e totowewer r reremamainins s coconsnstatantnt

((mm  aa11= = mm  aa22 ==mmaa)), but the mass flow rate of liquid water decreases by an amount equal to, but the mass flow rate of liquid water decreases by an amount equal to

the amount of

the amount of water that vaporizes in water that vaporizes in the tower during the tower during the cooling process. the cooling process. The water The water  lo

lost st ththrorougugh h evevapapororatatioion n mumust st be be mamade de up up lalateter r in in ththe e cycycle cle to to mamainintatain in ststeadeadyy operation.

operation. Applying thApplying the mass and e mass and energy balances yieldenergy balances yieldss  Dry Air Mass Balance

 Dry Air Mass Balance::

a a a a a a e e a a ii a a mm mm mm mm m m ==∑∑        →→  ==  ==  ∑ ∑ ,, ,, 11 22

Water Mass Balance Water Mass Balance::

makeup makeup 1 1 2 2 4 4 3 3 2 2 2 2 4 4 1 1 1 1 3 3 ,, ,, )) (( mm m m m m m m m m m m m m m m m m m m a a a a a a e e w w ii w w           = = − − = = − − + + = = + +    →→       ∑ ∑ = = ∑ ∑ ω   ω   ω   ω   ω   ω   ω   ω    Energy Balance  Energy Balance:: 3 3 3 3 4 4 makeup makeup 3 3 1 1 2 2 3 3 3 3 1 1 1 1 4 4 4 4 2 2 2 2 out out in in (steady) (steady) 0 0 system system out out in in

))

((

))

((

0

0

0

0

0

0

0

0

=

=

=

=

since

since

0

0

h

h

m

m

h

h

m

m

m

m

h

h

h

h

m

m

h

h

m

m

h

h

m

m

h

h

m

m

h

h

m

m

h

h

m

m

h

h

m

m

Q

Q

h

h

m

m

h

h

m

m

 E 

 E 

 E 

 E 

 E 

 E 

 E 

 E 

 E 

 E 

a a a a a a ii ii ee ee ee ee ii ii







































+

+

=

=

+

+

=

=

=

=

=

=

=

=

=

=

=

=

 Solving for  Solving for mm



aa,, 4 4 1 1 2 2 1 1 2 2 4 4 3 3 3 3

))

((

))

((

))

((

h

h

h

h

h

h

h

h

h

h

m

m

m

m

aa ω  ω  ω  ω 

=

=





From the psychometric chart (Figure A-33), From the psychometric chart (Figure A-33),

System System  boundary  boundary 1 1 2 2 4 4 32 32°°CC 100% 100% WATER  WATER  40 40°°CC 90 kg/s 90 kg/s 1 atm 1 atm 23 23°°CC 60% 60% AIR  AIR  3 3 Makeup water  Makeup water  25 25°°CC

(2)

air  dry /kg m 854 . 0 air  dry O/kg H kg 0106 . 0 air  dry kJ/kg 3 . 50 3 1 2 1 1 = = = v h ω   and air  dry O/kg H kg 0307 . 0 air  dry kJ/kg 8 . 110 2 2 2 = = ω   h

From Table A-4,

O H kJ/kg 89 . 104 O H kJ/kg 57 . 167 2 C 25 @ 4 2 C 40 @ 3 = ≅ = ≅ ° °   f     f   h h h h Substituting, kg/s 96.6 kJ/kg ) 89 . 104 )( 0106 . 0 0307 . 0 ( kJ/kg ) 3 . 50 8 . 110 ( kg 104.89)kJ/ 57 kg/s)(167. 90 ( = − − − − = a m

Then the volume flow rate of air into the cooling tower becomes

/s m 82.5 3 = = = v1 (96.6kg/s)(0.85 4m3/kg) 1 ma V 

(b) The mass flow rate of the required makeup water is determined from

kg/s 1.942 = − = − = ( 2 1) (96.6kg/s)(0.03 07 0.0106) makeup ma ω   ω   m 

2. Uma água quente proveniente de uma planta de resfriamento entre em uma torre de resfriamento a 43 ºC a uma velocidade de alimentação de 45 kg/s. A água é resfriada a 27 ºC por um ar que entra na torre a 1 atm, 24 ºC e 60% de umidade relativa e deixa

(3)

C R E D E N C I A D O P E L O D E C R E T O D E 2 6 / 0

saturado a 35 ºC. Determine: (a) a vazão volumétrica do ar que entra na torre e (b) vazão mássica requerida para a água de reposição.

 Assumptions

1

Steady operating conditions exist and thus mass flow rate of dry air  remains constant during the entire process.

2

Dry air and water vapor are ideal gases.

3

The kinetic and potential energy changes are negligible.

4

The cooling tower is adiabatic.

 Analysis (a) The mass flow rate of dry air through the tower remains constant )

(ma1 =ma2 =ma , but the mass flow rate of liquid water decreases by an amount equal to the amount of water that vaporizes in the tower during the cooling process. The water lost through evaporation must be made up later in the cycle to maintain steady operation. Applying the mass balance and the energy balance equations yields

Dry Air Mass Balance:

a a a e a i a m m m m m =∑    → = = , , 1 2

Water Mass Balance:

makeup 1 2 4 3 2 2 4 1 1 3 , , ) ( m m m m m m m m m m a a a e w i w           = − = − + = +  →    ∑ = ∑ ω   ω   ω   ω   Energy Balance: 3 3 4 makeup 3 1 2 3 3 1 1 4 4 2 2 out  in (steady) 0 system out  in ) ( ) ( 0 0 0 ) 0 = = (since 0 h m h m m h h m h m h m h m h m h m h m W   Q h m h m  E   E   E   E   E  a a a i i e e e e i i                    − − + − = − − + = ∑ − ∑ = ∑ = ∑ = = ∆ = −  Solving for m

a, 4 1 2 1 2 4 3 3 ) ( ) ( ) ( h h h h h m ma ω  ω  − − − − =  

From the psychometric chart (Figure A-33),

air  dry /lbm ft 76 . 13 air  dry O/lbm H lbm 0115 . 0 air  dry Btu/lbm 9 . 30 3 1 2 1 1 = = = v h ω   and air  dry O/lbm H lbm 0366 . 0 air  dry Btu/lbm 2 . 63 2 2 2 = = ω   h

From Table A-4E,

O H Btu/lbm 09 . 48 O H Btu/lbm 02 . 78 2 F 80 @ 4 2 F 110 @ 3 = ≅ = ≅ ° °   f     f   h h h h Substituting, lbm/s 96.3 Btu/lbm ) 09 . 48 )( 0115 . 0 0366 . 0 ( Btu/lbm ) 9 . 30 2 . 63 ( )Btu/lbm 09 . 48 02 lbm/s)(78. 100 ( = − − − − = a m

Then the volume flow rate of air into the cooling tower becomes

System  boundary 1 2 4 95°F 100% WATER  110°F 100 lbm/s 1 atm 76°F 60% AIR  3 Makeup water  80°F

(4)

/s ft 1325 3 = = = 1 (96.3 lbm/s)(13. 76ft3/lbm) 1 m v V 

a

(b) The mass flow rate of the required makeup water is determined from

lbm/s 2.42 = − = − = ( 2 1) (96.3lbm/s)(0.0 366 0.0115) makeup ma ω   ω   m 

3. Uma torre está resfriamento uma corrente de água quente de 40 ºC para 25 ºC onde a  pressão atmosférica é 96 kPa. Ar entra na torre a 20 ºC e 70% de umidade e deixa saturado a 35 ºC. Determine: a vazão volumétrica do ar que entra na torre e (b) vazão mássica da água de reposição.

 Assumptions

1

Steady operating conditions exist and thus mass flow rate of dry air  remains constant during the entire process.

2

Dry air and water vapor are ideal gases.

3

The kinetic and potential energy changes are negligible.

4

The cooling tower is adiabatic.

 Analysis (a) The mass flow rate of dry air through the tower remains constant

(m a1= m a2 =ma), but the mass flow rate of liquid water decreases by an amount equal to

the amount of water that vaporizes in the tower during the cooling process. The water  lost through evaporation must be made up later in the cycle to maintain steady operation. Applying the mass and energy balances yields

 Dry Air Mass Balance:

a a a e a i a m m m m m =∑    → = = , , 1 2

Water Mass Balance:

makeup 1 2 4 3 2 2 4 1 1 3 , ,

)

(

m

m

m

m

m

m

m

m

m

m

a a a e w i w

=

=

+

=

+

 →

  

=

ω  ω  ω  ω  System  boundary 1 2 4 35°C 100% WATER  40°C 50 kg/s 96 kPa 20 ºC 70% AIR  3 Makeup water  25°C

(5)

C R E D E N C I A D O P E L O D E C R E T O D E 2 6 / 0  Energy Balance: 3 3 4 makeup 3 1 2 3 3 1 1 4 4 2 2 out  in (steady) 0 system out  in ) ( ) ( 0 0 0 ) 0 = = (since 0 h m h m m h h m h m h m h m h m h m h m W   Q h m h m  E   E   E   E   E  a a a i i e e e e i i                    − − + − = − − + = ∑ − ∑ = ∑ = ∑ = = ∆ = −  Solving for ma , 4 1 2 1 2 4 3 3 ) ( ) ( ) ( h h h h h m ma ω  ω  − − − − =  

The properties of air at the inlet and the exit of the tower are calculated to be

air  dry kJ/kg 5 . 47 kJ/kg) 538.1 (0.0108)(2 + C) C)(20 kJ/kg 005 . 1 ( air  dry O/kg H kg 0.0108 kPa ) 637 . 1 (96 kPa) 637 . 1 ( 622 . 0 622 . 0 air  dry kg /  m 891 . 0 kPa 363 . 94 K) K)(293 kg /  m kPa 287 . 0 ( kPa 363 . 94 637 . 1 96 kPa 637 . 1 kPa) 339 . 2 )( 70 . 0 ( 1 1 1 1 2 1 1 1 1 3 3 1 1 1 1 1 1 C 20 @ sat  1 1 1 1

=

+

=

°

°

=

=

=

=

=

=

=

=

=

=

=

=

=

=

°

  g       p v v a a v a   g  v h T     C   h   P    P    P    P  T       R v   P    P    P    P    P    P 

ω 

ω 

φ 

φ 

and air  dry kJ/kg 5 . 134 (0.0387)(2 + C) C)(35 kJ/kg 005 . 1 ( dry O/kg H kg 0.0387 kPa ) 628 . 5 (96 kPa) 628 . 5 ( 622 . 0 622 . 0 kPa 628 . 5 kPa) 628 . 5 )( 00 . 1 ( 2 2 2 2 2 2 2 2 2 C 35 @ sat  2 2 2 2

=

+

=

°

°

=

=

=

=

=

=

=

=

°

 g      p v v  g  v h T    C   h  P   P   P   P   P   P 

ω 

ω 

φ 

φ 

From Table A-4,

O H kJ/kg 89 . 104 O H kJ/kg 57 . 167 2 C 25 @ 4 2 C 40 @ 3 = ≅ = ≅ ° °   f     f   h h h h Substituting, kg/s .3 37 kJ/kg ) 89 . 104 )( 0108 . 0 0387 . 0 ( kJ/kg ) 5 . 47 5 . 134 ( kg 104.89)kJ/ 57 kg/s)(167. 50 ( = − − − − = a m

Then the volume flow rate of air into the cooling tower becomes /s m 33.2 3 = = = 1 (37.3kg/s)(0.89 1m3/kg) 1 m v V 

a

(b) The mass flow rate of the required makeup water is determined from

kg/s 1.04 = − = − = ( 2 1) (33.2kg/s)(0.03 87 0.0108) makeup ma ω   ω   m 

Referências

Documentos relacionados

Operating at different conditions of methanol flow, pressure and temperature it was determined the optimal conditions for the maximum yield of the global process, the

O conhecimento de como as pessoas agem e porque agem desta forma, associado ao levantamento da organização comunitária, das redes de influências e da intensidade e forma de

Diante desses dispositivos móveis trazidos por alunos, percebemos que é possível ampliar a prática pedagógica e auxiliar nos processos de ensino e de aprendizagem,

Effects of the operating variables: spouting air temperature, atomizing air pressure and coating suspension flow rate over the dependent variables: seeds germination, seeds

Behavior of the total dry matter mass (A), total fresh matter mass B, absolute (AGR) and relative growth rate (RGR) of dry matter mass (C), and AGR and RGR of

The main objectives of this study were to dry apple slices in a convective hot air dryer and to investigate the effect of air temperature and flow rate on drying kinetic and

Then a further, third, set of experiments were done at unsteady state, using step changes of the inlet concentration levels of both styrene and acetone at a steady air

Durante o período de pós-tratamento, não foram observadas diferenças significantes entre os grupos na quantidade média de redução da maioria das variáveis que avaliaram