• Nenhum resultado encontrado

E.Colli M.L.doNascimento E.Vargas Metricaspectsofthedynamicsofcoveringmapsofthecircle

N/A
N/A
Protected

Academic year: 2022

Share "E.Colli M.L.doNascimento E.Vargas Metricaspectsofthedynamicsofcoveringmapsofthecircle"

Copied!
68
0
0

Texto

(1)

Introduction Main result Tools and Ideas

Metric aspects of the dynamics of covering maps of the circle

E. Colli 1 M. L. do Nascimento 2 E. Vargas 3

1

Departamento de Matemática Aplicada Universidade de São Paulo

2

Centro de Ciências Exatas e Naturais Universidade Federal do Pará

3

Departamento de Matemática

Universidade de São Paulo

(2)

Introduction Main result Tools and Ideas

O UTLINE

1 I NTRODUCTION Set up

Topolgical aspects Metric aspects

2 M AIN RESULT Statement

Strong recurrence History

3 T OOLS AND I DEAS

Difference equation I

Difference equation II

(3)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

C RITICAL COVERING MAPS ON S 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8

1.0

Class C 1 , degree d ≥ 2, critical point c of order ` > 1;

Class C 3 and Negative Schwarzian on S 1 \ {c};

There is no wandering interval.

(4)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

C RITICAL COVERING MAPS ON S 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8

1.0

Class C 1 , degree d ≥ 2, critical

point c of order ` > 1;

Class C 3 and Negative Schwarzian on S 1 \ {c};

There is no wandering interval.

(5)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

C RITICAL COVERING MAPS ON S 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8

1.0

Class C 1 , degree d ≥ 2, critical

point c of order ` > 1;

Class C 3 and Negative Schwarzian on S 1 \ {c};

There is no wandering interval.

(6)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

C RITICAL COVERING MAPS ON S 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8

1.0

Class C 1 , degree d ≥ 2, critical point c of order ` > 1;

Class C 3 and Negative Schwarzian on S 1 \ {c};

There is no wandering interval.

(7)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

C RITICAL COVERING MAPS ON S 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8

1.0

Class C 1 , degree d ≥ 2, critical point c of order ` > 1;

Class C 3 and Negative Schwarzian on S 1 \ {c};

There is no wandering interval.

(8)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

C RITICAL COVERING MAPS ON S 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8

1.0

Class C 1 , degree d ≥ 2, critical point c of order ` > 1;

Class C 3 and Negative Schwarzian on S 1 \ {c};

There is no wandering interval.

(9)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

C RITICAL COVERING MAPS ON S 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8

1.0

Class C 1 , degree d ≥ 2, critical point c of order ` > 1;

Class C 3 and Negative Schwarzian on S 1 \ {c};

There is no wandering interval.

(10)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

C RITICAL COVERING MAPS ON S 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8

1.0

Class C 1 , degree d ≥ 2, critical point c of order ` > 1;

Class C 3 and Negative Schwarzian on S 1 \ {c};

There is no wandering interval.

(11)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

C RITICAL COVERING MAPS ON S 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8

1.0

Class C 1 , degree d ≥ 2, critical point c of order ` > 1;

Class C 3 and Negative Schwarzian on S 1 \ {c};

There is no wandering interval.

(12)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

C RITICAL COVERING MAPS ON S 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8

1.0

Class C 1 , degree d ≥ 2, critical point c of order ` > 1;

Class C 3 and Negative Schwarzian on S 1 \ {c};

There is no wandering interval.

(13)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

T HE MAP R(z ) = 2z MOD 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

(14)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

Q UESTIONS

Regularity of conjugacy;

Invariant measures Attractors;

Decay of geometry;

Renormalization;

Growth of Df n (c f ).

(15)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

Q UESTIONS

Regularity of conjugacy;

Invariant measures Attractors;

Decay of geometry;

Renormalization;

Growth of Df n (c f ).

(16)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

Q UESTIONS

Regularity of conjugacy;

Invariant measures Attractors;

Decay of geometry;

Renormalization;

Growth of Df n (c f ).

(17)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

Q UESTIONS

Regularity of conjugacy;

Invariant measures Attractors;

Decay of geometry;

Renormalization;

Growth of Df n (c f ).

(18)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

Q UESTIONS

Regularity of conjugacy;

Invariant measures Attractors;

Decay of geometry;

Renormalization;

Growth of Df n (c f ).

(19)

Introduction Main result Tools and Ideas

Set up

Topolgical aspects Metric aspects

Q UESTIONS

Regularity of conjugacy;

Invariant measures Attractors;

Decay of geometry;

Renormalization;

Growth of Df n (c f ).

(20)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

G ROWTH OF DERIVATIVES

T HEOREM

Let f be as above, µ + := 1+

√ 1+4`

2` and ϕ := 1+

√ 5 2 . If in addition f has the Fibonacci combinatorics then:

1

If 1 < ` < 2 then log log Df n

sn

(c

f

) → log µ + > 0.

2

If 1 < ` < 2 then log log log Df k

k

(c

f

)log log µ ϕ

+

< 1.

3

If ` = 2 then 0 < K ≤ log Df n

sn

(c

f

) ≤ K −1 .

4

If ` > 2 then Df s

n

(c f ) is bounded.

5

If 1 < ` ≤ 2 then ω(c) (which is a minimal

Cantor set) has Hausdorff dimension zero.

(21)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

G ROWTH OF DERIVATIVES

T HEOREM

Let f be as above, µ + := 1+

√ 1+4`

2` and ϕ := 1+

√ 5 2 . If in addition f has the Fibonacci combinatorics then:

1

If 1 < ` < 2 then log log Df n

sn

(c

f

) → log µ + > 0.

2

If 1 < ` < 2 then log log log Df k

k

(c

f

)log log µ ϕ

+

< 1.

3

If ` = 2 then 0 < K ≤ log Df n

sn

(c

f

) ≤ K −1 .

4

If ` > 2 then Df s

n

(c f ) is bounded.

5

If 1 < ` ≤ 2 then ω(c) (which is a minimal

Cantor set) has Hausdorff dimension zero.

(22)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

G ROWTH OF DERIVATIVES

T HEOREM

Let f be as above, µ + := 1+

√ 1+4`

2` and ϕ := 1+

√ 5 2 . If in addition f has the Fibonacci combinatorics then:

1

If 1 < ` < 2 then log log Df n

sn

(c

f

) → log µ + > 0.

2

If 1 < ` < 2 then log log log Df k

k

(c

f

)log log µ ϕ

+

< 1.

3

If ` = 2 then 0 < K ≤ log Df n

sn

(c

f

) ≤ K −1 .

4

If ` > 2 then Df s

n

(c f ) is bounded.

5

If 1 < ` ≤ 2 then ω(c) (which is a minimal

Cantor set) has Hausdorff dimension zero.

(23)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

G ROWTH OF DERIVATIVES

T HEOREM

Let f be as above, µ + := 1+

√ 1+4`

2` and ϕ := 1+

√ 5 2 . If in addition f has the Fibonacci combinatorics then:

1

If 1 < ` < 2 then log log Df n

sn

(c

f

) → log µ + > 0.

2

If 1 < ` < 2 then log log log Df k

k

(c

f

)log log µ ϕ

+

< 1.

3

If ` = 2 then 0 < K ≤ log Df n

sn

(c

f

) ≤ K −1 .

4

If ` > 2 then Df s

n

(c f ) is bounded.

5

If 1 < ` ≤ 2 then ω(c) (which is a minimal

Cantor set) has Hausdorff dimension zero.

(24)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

G ROWTH OF DERIVATIVES

T HEOREM

Let f be as above, µ + := 1+

√ 1+4`

2` and ϕ := 1+

√ 5 2 . If in addition f has the Fibonacci combinatorics then:

1

If 1 < ` < 2 then log log Df n

sn

(c

f

) → log µ + > 0.

2

If 1 < ` < 2 then log log log Df k

k

(c

f

)log log µ ϕ

+

< 1.

3

If ` = 2 then 0 < K ≤ log Df n

sn

(c

f

) ≤ K −1 .

4

If ` > 2 then Df s

n

(c f ) is bounded.

5

If 1 < ` ≤ 2 then ω(c) (which is a minimal

Cantor set) has Hausdorff dimension zero.

(25)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

G ROWTH OF DERIVATIVES

T HEOREM

Let f be as above, µ + := 1+

√ 1+4`

2` and ϕ := 1+

√ 5 2 . If in addition f has the Fibonacci combinatorics then:

1

If 1 < ` < 2 then log log Df n

sn

(c

f

) → log µ + > 0.

2

If 1 < ` < 2 then log log log Df k

k

(c

f

)log log µ ϕ

+

< 1.

3

If ` = 2 then 0 < K ≤ log Df n

sn

(c

f

) ≤ K −1 .

4

If ` > 2 then Df s

n

(c f ) is bounded.

5

If 1 < ` ≤ 2 then ω(c) (which is a minimal

Cantor set) has Hausdorff dimension zero.

(26)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

G ROWTH OF DERIVATIVES

T HEOREM

Let f be as above, µ + := 1+

√ 1+4`

2` and ϕ := 1+

√ 5 2 . If in addition f has the Fibonacci combinatorics then:

1

If 1 < ` < 2 then log log Df n

sn

(c

f

) → log µ + > 0.

2

If 1 < ` < 2 then log log log Df k

k

(c

f

)log log µ ϕ

+

< 1.

3

If ` = 2 then 0 < K ≤ log Df n

sn

(c

f

) ≤ K −1 .

4

If ` > 2 then Df s

n

(c f ) is bounded.

5

If 1 < ` ≤ 2 then ω(c) (which is a minimal

Cantor set) has Hausdorff dimension zero.

(27)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

G ROWTH OF DERIVATIVES

T HEOREM

Let f be as above, µ + := 1+

√ 1+4`

2` and ϕ := 1+

√ 5 2 . If in addition f has the Fibonacci combinatorics then:

1

If 1 < ` < 2 then log log Df n

sn

(c

f

) → log µ + > 0.

2

If 1 < ` < 2 then log log log Df k

k

(c

f

)log log µ ϕ

+

< 1.

3

If ` = 2 then 0 < K ≤ log Df n

sn

(c

f

) ≤ K −1 .

4

If ` > 2 then Df s

n

(c f ) is bounded.

5

If 1 < ` ≤ 2 then ω(c) (which is a minimal

Cantor set) has Hausdorff dimension zero.

(28)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

G ROWTH OF DERIVATIVES

T HEOREM

Let f be as above, µ + := 1+

√ 1+4`

2` and ϕ := 1+

√ 5 2 . If in addition f has the Fibonacci combinatorics then:

1

If 1 < ` < 2 then log log Df n

sn

(c

f

) → log µ + > 0.

2

If 1 < ` < 2 then log log log Df k

k

(c

f

)log log µ ϕ

+

< 1.

3

If ` = 2 then 0 < K ≤ log Df n

sn

(c

f

) ≤ K −1 .

4

If ` > 2 then Df s

n

(c f ) is bounded.

5

If 1 < ` ≤ 2 then ω(c) (which is a minimal

Cantor set) has Hausdorff dimension zero.

(29)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

G ROWTH OF DERIVATIVES

T HEOREM

Let f be as above, µ + := 1+

√ 1+4`

2` and ϕ := 1+

√ 5 2 . If in addition f has the Fibonacci combinatorics then:

1

If 1 < ` < 2 then log log Df n

sn

(c

f

) → log µ + > 0.

2

If 1 < ` < 2 then log log log Df k

k

(c

f

)log log µ ϕ

+

< 1.

3

If ` = 2 then 0 < K ≤ log Df n

sn

(c

f

) ≤ K −1 .

4

If ` > 2 then Df s

n

(c f ) is bounded.

5

If 1 < ` ≤ 2 then ω(c) (which is a minimal

Cantor set) has Hausdorff dimension zero.

(30)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

G ROWTH OF DERIVATIVES

T HEOREM

Let f be as above, µ + := 1+

√ 1+4`

2` and ϕ := 1+

√ 5 2 . If in addition f has the Fibonacci combinatorics then:

1

If 1 < ` < 2 then log log Df n

sn

(c

f

) → log µ + > 0.

2

If 1 < ` < 2 then log log log Df k

k

(c

f

)log log µ ϕ

+

< 1.

3

If ` = 2 then 0 < K ≤ log Df n

sn

(c

f

) ≤ K −1 .

4

If ` > 2 then Df s

n

(c f ) is bounded.

5

If 1 < ` ≤ 2 then ω(c) (which is a minimal

Cantor set) has Hausdorff dimension zero.

(31)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

G ROWTH OF DERIVATIVES

T HEOREM

Let f be as above, µ + := 1+

√ 1+4`

2` and ϕ := 1+

√ 5 2 . If in addition f has the Fibonacci combinatorics then:

1

If 1 < ` < 2 then log log Df n

sn

(c

f

) → log µ + > 0.

2

If 1 < ` < 2 then log log log Df k

k

(c

f

)log log µ ϕ

+

< 1.

3

If ` = 2 then 0 < K ≤ log Df n

sn

(c

f

) ≤ K −1 .

4

If ` > 2 then Df s

n

(c f ) is bounded.

5

If 1 < ` ≤ 2 then ω(c) (which is a minimal

Cantor set) has Hausdorff dimension zero.

(32)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

T HE F IBONACCI COMBINATORICS

c is recurrent;

Set I 0 := (0, 1) and I n 3 c, a domain of the first return map φ n to I n−1 ( φ n : I n → I n−1 );

If φ n (c) = f s

n

(c) then s n is the Fibonacci

sequence 1, 2, 3, 5, 8, . . .

(33)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

T HE F IBONACCI COMBINATORICS

c is recurrent;

Set I 0 := (0, 1) and I n 3 c, a domain of the first return map φ n to I n−1 ( φ n : I n → I n−1 );

If φ n (c) = f s

n

(c) then s n is the Fibonacci

sequence 1, 2, 3, 5, 8, . . .

(34)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

T HE F IBONACCI COMBINATORICS

c is recurrent;

Set I 0 := (0, 1) and I n 3 c, a domain of the first return map φ n to I n−1 ( φ n : I n → I n−1 );

If φ n (c) = f s

n

(c) then s n is the Fibonacci

sequence 1, 2, 3, 5, 8, . . .

(35)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

T HE F IBONACCI COMBINATORICS

c is recurrent;

Set I 0 := (0, 1) and I n 3 c, a domain of the first return map φ n to I n−1 ( φ n : I n → I n−1 );

If φ n (c) = f s

n

(c) then s n is the Fibonacci

sequence 1, 2, 3, 5, 8, . . .

(36)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

T HE F IBONACCI COMBINATORICS

c is recurrent;

Set I 0 := (0, 1) and I n 3 c, a domain of the first return map φ n to I n−1 ( φ n : I n → I n−1 );

If φ n (c) = f s

n

(c) then s n is the Fibonacci

sequence 1, 2, 3, 5, 8, . . .

(37)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

T HE F IBONACCI COMBINATORICS

c is recurrent;

Set I 0 := (0, 1) and I n 3 c, a domain of the first return map φ n to I n−1 ( φ n : I n → I n−1 );

If φ n (c) = f s

n

(c) then s n is the Fibonacci

sequence 1, 2, 3, 5, 8, . . .

(38)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

T HE F IBONACCI COMBINATORICS

c is recurrent;

Set I 0 := (0, 1) and I n 3 c, a domain of the first return map φ n to I n−1 ( φ n : I n → I n−1 );

If φ n (c) = f s

n

(c) then s n is the Fibonacci sequence 1, 2, 3, 5, 8, . . .

c S_n

S_{n−1}

S_n

S_{n+1}

c

(39)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

T HE F IBONACCI COMBINATORICS

c is recurrent;

Set I 0 := (0, 1) and I n 3 c, a domain of the first return map φ n to I n−1 ( φ n : I n → I n−1 );

If φ n (c) = f s

n

(c) then s n is the Fibonacci sequence 1, 2, 3, 5, 8, . . .

c S_n

S_{n−1}

S_n

S_{n+1}

c

(40)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

O THER DYNAMICS

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

(41)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

O THER DYNAMICS

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

(42)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

O THER DYNAMICS

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

(43)

Introduction Main result Tools and Ideas

Statement Strong recurrence History

O THER DYNAMICS

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

(44)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

C ROSS RATIO

Df s

n

−1 (c s f

n+1

) = |J |j

n

|

n

| ≥ |L |L

n

||R

n

|

n

∪R

n

|

|l

n

∪r

n

|

|l

n

||r

n

|

csn−1

xn csn+1

c

xfn jn:=cfsn+1

cf

ln rn

0 or 1 Jn=csn+2

csn

Rn

Ln

f

fsn−1

E. Colli, M. L. do Nascimento, E. Vargas School and Workshop on Dynamical Systems, July/2008

(45)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION I

Df s

n

−1 (c f s

n+1

) = |J n |

|j n | ≥ |L n ||R n |

|L n ∪ R n |

|l n ∪ r n |

|l n ||r n |

Df s

n

−1 (c s f

n+1

) ≥ |L n |

|L n ∪ R n |

d n − d n+2

d n+1 f

d n−1 f d n−1 f − d n+1 f ,

where d n := |c s

n

− c|.

For the next slide λ n := d d

n

n+2

≥ λ > 1.

(46)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION I

Df s

n

−1 (c f s

n+1

) = |J n |

|j n | ≥ |L n ||R n |

|L n ∪ R n |

|l n ∪ r n |

|l n ||r n |

Df s

n

−1 (c s f

n+1

) ≥ |L n |

|L n ∪ R n |

d n − d n+2

d n+1 f

d n−1 f d n−1 f − d n+1 f ,

where d n := |c s

n

− c|.

For the next slide λ n := d d

n

n+2

≥ λ > 1.

(47)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION I

Df s

n

−1 (c f s

n+1

) = |J n |

|j n | ≥ |L n ||R n |

|L n ∪ R n |

|l n ∪ r n |

|l n ||r n |

Df s

n

−1 (c s f

n+1

) ≥ |L n |

|L n ∪ R n |

d n − d n+2

d n+1 f

d n−1 f d n−1 f − d n+1 f ,

where d n := |c s

n

− c|.

For the next slide λ n := d d

n

n+2

≥ λ > 1.

(48)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION I

Df s

n

−1 (c f s

n+1

) = |J n |

|j n | ≥ |L n ||R n |

|L n ∪ R n |

|l n ∪ r n |

|l n ||r n |

Df s

n

−1 (c s f

n+1

) ≥ |L n |

|L n ∪ R n |

d n − d n+2

d n+1 f

d n−1 f d n−1 f − d n+1 f ,

where d n := |c s

n

− c|.

For the next slide λ n := d d

n

n+2

≥ λ > 1.

(49)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION I

Df s

n

−1 (c f s

n+1

) = |J n |

|j n | ≥ |L n ||R n |

|L n ∪ R n |

|l n ∪ r n |

|l n ||r n |

Df s

n

−1 (c s f

n+1

) ≥ |L n |

|L n ∪ R n |

d n − d n+2

d n+1 f

d n−1 f d n−1 f − d n+1 f ,

where d n := |c s

n

− c|.

For the next slide λ n := d d

n

n+2

≥ λ > 1.

(50)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION I

Df s

n+1

(c f ) 2

Df s

n

(c f )Df s

n−1

(c f ) ≥ K n ` 2 λ 2−` n−1 q n−1

q n

1 − λ −1 n 1 − λ −` n−2

1 − λ −1 n−1 1 − λ −` n−1

Df s

n+1

(c f ) 1 − λ −1 n

2 "

Df s

n

(c f ) 1 − λ −1 n−1

# −1 "

Df s

n−1

(c f ) 1 − λ −1 n−2

# −1

≥ Q n−1

Q n

σ n

where

σ n := K n ` 2 λ 2−` n−1 1 − λ −1 n−1 1 − λ −` n−1

1 − λ −1 n−2

1 − λ −` n−2 ≥ σ > 1

(51)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION I

Df s

n+1

(c f ) 2

Df s

n

(c f )Df s

n−1

(c f ) ≥ K n ` 2 λ 2−` n−1 q n−1

q n

1 − λ −1 n 1 − λ −` n−2

1 − λ −1 n−1 1 − λ −` n−1

Df s

n+1

(c f ) 1 − λ −1 n

2 "

Df s

n

(c f ) 1 − λ −1 n−1

# −1 "

Df s

n−1

(c f ) 1 − λ −1 n−2

# −1

≥ Q n−1

Q n

σ n

where

σ n := K n ` 2 λ 2−` n−1 1 − λ −1 n−1 1 − λ −` n−1

1 − λ −1 n−2

1 − λ −` n−2 ≥ σ > 1

(52)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION I

Df s

n+1

(c f ) 2

Df s

n

(c f )Df s

n−1

(c f ) ≥ K n ` 2 λ 2−` n−1 q n−1

q n

1 − λ −1 n 1 − λ −` n−2

1 − λ −1 n−1 1 − λ −` n−1

Df s

n+1

(c f ) 1 − λ −1 n

2 "

Df s

n

(c f ) 1 − λ −1 n−1

# −1 "

Df s

n−1

(c f ) 1 − λ −1 n−2

# −1

≥ Q n−1

Q n

σ n

where

σ n := K n ` 2 λ 2−` n−1 1 − λ −1 n−1 1 − λ −` n−1

1 − λ −1 n−2

1 − λ −` n−2 ≥ σ > 1

(53)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

E XPONENTIAL GROWTH

X n := log

Df

sn

(c

f

) 1−λ

−1n−1

≥ Y n , where

Y n+1 − 1 2 Y n − 1

2 Y n−1 = 1

2 log Q n−1 − 1

2 log Q n + 1 2 log σ n

lim inf Y n

n ≥ 1

3 lim inf log σ n ≥ ε > 0

(54)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

E XPONENTIAL GROWTH

X n := log

Df

sn

(c

f

) 1−λ

−1n−1

≥ Y n , where

Y n+1 − 1 2 Y n − 1

2 Y n−1 = 1

2 log Q n−1 − 1

2 log Q n + 1 2 log σ n

lim inf Y n

n ≥ 1

3 lim inf log σ n ≥ ε > 0

(55)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION II

Df s

n

−1 (c f ) = |R |r

n

|

n

| ≤ (|L

n

∪J |L

n

|)|J

n

|

n

|

|l

n

| (|l

n

∪j

n

|)|j

n

|

csn−1

xn csn+1 c

xfn cfsn+1

rn:=cf ln

0 or 1 csn+2

Rn=csn

Ln

f

jn

Jn

fsn−1

E. Colli, M. L. do Nascimento, E. Vargas School and Workshop on Dynamical Systems, July/2008

(56)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION II

C −1 λ 2−` n−1 ≤ Df s

n+1

(c f ) 2

Df s

n

(c f )Df s

n−1

(c f ) ≤ Cλ 2−` n−1 .

C 1 −1 λ ` n−1 ≤ Df s

n

(c f ) Df s

n−1

(c f ) ≤ C 1 λ ` n−1

X n := log Df s

n

(c f ) satisfies

−∆ ≤ X n+1 − 1

` (X n−1 + X n ) ≤ ∆

(57)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION II

C −1 λ 2−` n−1 ≤ Df s

n+1

(c f ) 2

Df s

n

(c f )Df s

n−1

(c f ) ≤ Cλ 2−` n−1 .

C 1 −1 λ ` n−1 ≤ Df s

n

(c f ) Df s

n−1

(c f ) ≤ C 1 λ ` n−1

X n := log Df s

n

(c f ) satisfies

−∆ ≤ X n+1 − 1

` (X n−1 + X n ) ≤ ∆

(58)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION II

C −1 λ 2−` n−1 ≤ Df s

n+1

(c f ) 2

Df s

n

(c f )Df s

n−1

(c f ) ≤ Cλ 2−` n−1 .

C 1 −1 λ ` n−1 ≤ Df s

n

(c f ) Df s

n−1

(c f ) ≤ C 1 λ ` n−1

X n := log Df s

n

(c f ) satisfies

−∆ ≤ X n+1 − 1

` (X n−1 + X n ) ≤ ∆

(59)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION II

C −1 λ 2−` n−1 ≤ Df s

n+1

(c f ) 2

Df s

n

(c f )Df s

n−1

(c f ) ≤ Cλ 2−` n−1 .

C 1 −1 λ ` n−1 ≤ Df s

n

(c f ) Df s

n−1

(c f ) ≤ C 1 λ ` n−1

X n := log Df s

n

(c f ) satisfies

−∆ ≤ X n+1 − 1

` (X n−1 + X n ) ≤ ∆

(60)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

D IFFERENCE INEQUATION II

C −1 λ 2−` n−1 ≤ Df s

n+1

(c f ) 2

Df s

n

(c f )Df s

n−1

(c f ) ≤ Cλ 2−` n−1 .

C 1 −1 λ ` n−1 ≤ Df s

n

(c f ) Df s

n−1

(c f ) ≤ C 1 λ ` n−1

X n := log Df s

n

(c f ) satisfies

−∆ ≤ X n+1 − 1

` (X n−1 + X n ) ≤ ∆

(61)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

S UPEREXPONENTIAL GROWTH

Z n+1 = 1 ` (Z n + Z n−1 ) − ∆ T (x , y ) := (y , 1 ` (x + y ) − ∆) ; (Z n , Z n+1 ) = T (Z n−1 , Z n ) Fixed point

p := ∆

2

` − 1 , ∆

2

` − 1

!

, eigenvalues: µ ± = 1 ± √ 1 + 4`

2`

corresponding eigenvectors: (1, µ ± ).

X n := log Df s

n

(c f ) ≥ Z n

y

p (Z_n, Z_{n+1})

(62)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

S UPEREXPONENTIAL GROWTH

Z n+1 = 1 ` (Z n + Z n−1 ) − ∆ T (x , y ) := (y , 1 ` (x + y ) − ∆) ; (Z n , Z n+1 ) = T (Z n−1 , Z n ) Fixed point

p := ∆

2

` − 1 , ∆

2

` − 1

!

, eigenvalues: µ ± = 1 ± √ 1 + 4`

2`

corresponding eigenvectors: (1, µ ± ).

X n := log Df s

n

(c f ) ≥ Z n

y

p (Z_n, Z_{n+1})

(63)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

S UPEREXPONENTIAL GROWTH

Z n+1 = 1 ` (Z n + Z n−1 ) − ∆ T (x , y ) := (y , 1 ` (x + y ) − ∆) ; (Z n , Z n+1 ) = T (Z n−1 , Z n ) Fixed point

p := ∆

2

` − 1 , ∆

2

` − 1

!

, eigenvalues: µ ± = 1 ± √ 1 + 4`

2`

corresponding eigenvectors: (1, µ ± ).

X n := log Df s

n

(c f ) ≥ Z n

y

p (Z_n, Z_{n+1})

(64)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

S UPEREXPONENTIAL GROWTH

Z n+1 = 1 ` (Z n + Z n−1 ) − ∆ T (x , y ) := (y , 1 ` (x + y ) − ∆) ; (Z n , Z n+1 ) = T (Z n−1 , Z n ) Fixed point

p := ∆

2

` − 1 , ∆

2

` − 1

!

, eigenvalues: µ ± = 1 ± √ 1 + 4`

2`

corresponding eigenvectors: (1, µ ± ).

X n := log Df s

n

(c f ) ≥ Z n

y

p (Z_n, Z_{n+1})

(65)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

S UPEREXPONENTIAL GROWTH

Z n+1 = 1 ` (Z n + Z n−1 ) − ∆ T (x , y ) := (y , 1 ` (x + y ) − ∆) ; (Z n , Z n+1 ) = T (Z n−1 , Z n ) Fixed point

p := ∆

2

` − 1 , ∆

2

` − 1

!

, eigenvalues: µ ± = 1 ± √ 1 + 4`

2`

corresponding eigenvectors: (1, µ ± ).

X n := log Df s

n

(c f ) ≥ Z n

y

p (Z_n, Z_{n+1})

(66)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

S UPEREXPONENTIAL GROWTH

Z n+1 = 1 ` (Z n + Z n−1 ) − ∆ T (x , y ) := (y , 1 ` (x + y ) − ∆) ; (Z n , Z n+1 ) = T (Z n−1 , Z n ) Fixed point

p := ∆

2

` − 1 , ∆

2

` − 1

!

, eigenvalues: µ ± = 1 ± √ 1 + 4`

2`

corresponding eigenvectors: (1, µ ± ).

X n := log Df s

n

(c f ) ≥ Z n

y

p (Z_n, Z_{n+1})

(67)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

S UPEREXPONENTIAL GROWTH

Z n+1 = 1 ` (Z n + Z n−1 ) − ∆ T (x , y ) := (y , 1 ` (x + y ) − ∆) ; (Z n , Z n+1 ) = T (Z n−1 , Z n ) Fixed point

p := ∆

2

` − 1 , ∆

2

` − 1

!

, eigenvalues: µ ± = 1 ± √ 1 + 4`

2`

corresponding eigenvectors: (1, µ ± ).

X n := log Df s

n

(c f ) ≥ Z n

y

p (Z_n, Z_{n+1})

(68)

Introduction Main result Tools and Ideas

Difference equation I Difference equation II

THANKS

Referências

Documentos relacionados

Diagramação do artigo “Gestão da cultura: estratégia e articulações no âmbito do branding e das tribos urbanas” para a revista LOGO... Laboratório de Orientação da

JFrame frame = new JFrame( &#34;Imagem rotacionada&#34; ); frame.add( new DisplayTwoSynchronizedImages(imagem,rotacionadaOK)); frame.pack();

• processo educacional na universidade exige do estudante maior autonomia e independência em relação ao que lhe é oferecido em termos de estrutura de ensino

intitulado “O Plano de Desenvolvimento da Educação: razões, princípios e programas” (BRASIL, 2007d), o PDE tem a intenção de “ser mais do que a tradução..

No Brasil, a falta de uma fiscalização mais rigorosa é uma das razões que possibilitam que certas empresas utilizem os estágios como forma de dispor de uma mão-de-obra qualificada,

A presente dissertação é desenvolvida no âmbito do Mestrado Profissional em Gestão e Avaliação da Educação (PPGP) do Centro de Políticas Públicas e Avaliação

Estudo sobre flare, estudo do sistema de funcionamento do BSS (Brazilian Solar Spectroscope), pelo seu todo, começando do funcionamento da antena , transmissão de dados para o

Marque a alternativa CORRETA: a) As duas afirmativas são verdadeiras. d) As duas afirmativas são falsas. O álcool pode ser utilizado para limpar locais com bactérias. Identificar